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Low Temperature Relaxational Dynamics of the Ising Chain in a Transverse Field
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We present asymptotically exact results for the real time order parameter correlations of a class
of d ­ 1 Ising models in a transverse field at low temperatures (T ) on both sides of the quantum
critical point. The correlations are a product of aT-independent factor determined by quantum
effects, and aT -dependent relaxation function which comes from aclassical theory. We confirm
our predictions by a no-free-parameter comparison with numerical studies on the nearest neighbor spin
1y2 model. [S0031-9007(97)02724-5]

PACS numbers: 75.40.Gb, 05.30.–d, 75.10.Jm
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Real time, nonzero temperature (T ), correlation func-
tions of quantum many body systems are directly relat
to the observables of many experiments. For strong
interacting systems, there are few quantitative results
the relaxation and transport processes that are believe
occur at long times at anyT fi 0. Monte Carlo and per-
turbative methods work best in imaginary time, but th
analytic continuation to real time is most dangerous, a
often fails, in the low frequency limit. At special confor
mally invariant points in dimensiond ­ 1, real time corre-
lations describing relaxation of an order parameter can
computed exactly. Among systems in arbitraryd, which
are tuned across a quantum critical point by a variab
coupling, there is only one for which reliable results a
available: thed ­ 1 impenetrable Bose gas, whose co
relators were determined by a profound and sophistica
inverse scattering analysis [1].

In this paper, we study real time,T fi 0 correlations
of the d ­ 1 Ising model in a transverse field. We
use a novel semiclassical method to obtain the ex
asymptotics of order parameter correlations in the tw
low T regions on either side of its quantum critical poin
Our main new result, given in Eqs. (4) and (8) below,
that in these lowT regimes, the spin correlation function
can be expressed as a product of two factors. O
arising from quantum effects, gives theT ­ 0 value of
the correlation function, and the other, which comes fro
a classical theory, describes the effects of temperatur
Combined with earlier results [2,3], our new results give
complete description of time-dependent correlations in
the distinct limiting regions of the Ising model, and exhibi
simply and clearly, the crossovers in the roles of quantu
and thermal fluctuations in the relaxational dynamics.

For the Ising chain with only nearest neighbor e
change, we also use the free-fermion representation [4
to obtain accurate, numerical data [6,7] for real time sp
correlations for systems with up to 512 spins: these resu
are in excellent agreement with the asymptotic theoreti
results even at relatively short times and distances.
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We also use our semiclassical method to obtain co
relators of thed ­ 1 impenetrable Bose gas in a certai
low T regime; our results here are in agreement with ea
lier work [1], although our approach is much simpler an
more physically transparent. Our method should also a
ply to other d ­ 1 quantum models (like the nonlinea
sigma or sine-Gordon) with an excitation gap.

We consider the Hamiltonian

HI ­ 2
X

i

√X
,.0

J,sz
i s

z
i1, 1 gsx

i

!
, (1)

wheres
z
i , s

x
i are Pauli matrices on a chain of sitesi, J,

s.0d are short-ranged exchange constants, andg s.0d is
the transverse field. The ground state ofHI is expected to
have long range order withN0 ; kszl fi 0 for all g , gc,
and a gap to all excitations forg fi gc [4]; see Fig. 1.

Away from g ­ gc, the low lying states consist of a sta
ble particle with energyep at momentump, and n . 1
particle continua at higher energy. We also havee2p ­
ep , and expect thatep has a minimum atp ­ 0. Con-
sequently, for smallp we parametrizeep ­ fsmc2d2 1

c2p2 1 O sp4dg1y2, which defines the “velocity”c . 0
and the “mass”m; we choosem . 0 (m , 0) for g , gc

(g . gc). The critical point atg ­ gc is described by a
continuum theory with dynamic exponentz ­ 1, and cor-
relation length exponentn ­ 1; hencec , constant forg
neargc, while m vanishes linearly,jmj , jg 2 gcj, with
possibly a different slope on the two sides.

The model withJ,.1 ­ 0 is integrable [4], and all pa-
rameters are known exactly: in units whereh̄ ­ kB ­ 1

FIG. 1. FiniteT phase diagram ofHI . The dashed lines are
crossover boundaries atT , jmc2j.
© 1997 The American Physical Society
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we havegc ­ J1, N0 ­ f1 2 sgyJ1d2g1y8, andep ­ 2fJ2
1 1

g2 2 2J1gcosspadg1y2, wherea is the lattice spacing, so
mc2 ­ 2sJ1 2 gd. However, the existence of these stab
particles isnota special feature of this integrable point. In
deed, forg ø gc, a particle has the simple weak-couplin
interpretation as the boundary between domains with o
posite orientations inkszl. Conversely, forg ¿ gc, the
ground states has all the spins oriented in the1x direction,
and the particle is a2x spin hopping from site to site. We
expect that these interpretations remain correct at the lo
est energies, as we approachgc from either side, but not at
g ­ gc.

In the above interpretations, the particles are eviden
bosons. They have short-range repulsive interactio
which, by an elementary calculation [1] implies that th
two-particleS-matrix Spp0 approaches21 for pa, p 0a ø
1. The integrable model hasSpp0 ­ 21 for all p, p0,
and this is often used to obtain a free-fermion descripti
after a nonlocal gauge transformation: we shall not u
this transformation in our analytical computations.

Our new analytical results are in the two lowT
regimes on either side ofgc, with T ø jmc2j. In these
regimes [3], the density,r, of thermally excited particles
, e2jmc2jyT , is exponentially small; their mean spacin
is much larger than their thermal de Broglie wavelengt
, s2jmjT d21y2. These are the standard conditions fo
classicalbehavior in whichr ­

R
dpys2pde2epyT .

We now derive results in the “renormalized classica
(RC) regiong , gc, T ø mc2. Consider the correlation
function

Csxi , td ­ Trse2HI yT eiHI tsz
i e2iHI tsz

0dyZ , (2)

wherexi ­ ia, Z ­ Tr e2HI yT . This can be evaluated in
terms of the trajectories of the dilute gas of classical p
ticles noting that, since the particles physically represe
domain walls,sz changes sign every time a particle goe
by. Observe that the classical trajectories remain strai
lines across collisions because the momenta before
after the collision are the same ind ­ 1. This implies
that the trajectories are simply independently distribut
straight lines, placed with a uniform densityr along thex
axis, with an inverse slopeyp ; depydp, and with their
momenta chosen with the Boltzmann probability dens
e2ep yT yr (Fig. 2).

This heuristic argument, based on the classical pictu
can be justified by taking the semiclassical (stationa
phase) limit of the double-time (“Keldysh”) path integra
[8], in which each collision appears in both the forwar
and backward paths [generated by thee2iHI t and theeiHI t

in (2), respectively] and therefore contributes the fact
jSpp0 j2 ­ 1.

ComputingCsx, td is now an exercise in classical proba
bilities. The value ofszs0, 0dszsx, td is the square of the
magnetization renormalized by quantum fluctuations (N2

0 ),
times s21d if the number of trajectories intersecting th
dashed line in Fig. 2 is odd. Consider an Ising syste
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FIG. 2. A typical semiclassical contribution to the double
time path integral forCsx, td. Full lines are thermally excited
particles which propagate forward and backward in time
The 6 signs are significant only forg , gc and denote the
orientation of the order parameter. Forg . gc, the dashed
line is a particle propagating only forward in time froms0, 0d
to sx, td.

of size L ¿ jxj, and let it containN thermally excited
particles; thenr ­ NyL. Let the probability that any
given trajectory intersect the dashed line­ q; then the
probability only a given set ofk lines will intersect is­
qks1 2 qdN2k . Summing over all possibilities, we have

Csx, td ­ N2
0

NX
k­0

s21dkqks1 2 qdN2kN!yfk!sN 2 kd!g

­ N2
0 s1 2 2qdN ø N2

0 e22qN . (3)

The last step holds because, as we shall now compu
q ø 1. First, for t ­ 0, as the density of trajectories
along thet ­ 0 axis is uniform,q ­ jxjyL. For t fi 0,
consider first all trajectories with a fixed momentump:
they will intersect the dashed line if their intersection with
t ­ 0 axis is between ordinates0 and x 2 ypt, and so
q ­ jx 2 yptjyL. Averaging over allp, and inserting in
(3), we get one of our main results [9],

Csx, td ­ N2
0 Rsx, td sRC regiond, (4)

where

Rsx, td ­ exp

√
2

Z dp
p

e2epyT
Ä
x 2 ypt

Ä!
. (5)

Notice that Rsx, 0d ­ e2jxjyj and Rs0, td ­ e2jtjyt , but
the general behavior is more complicated. The correl
tion length j ­ 1y2r. Remarkably, we find from (5)
that the correlation time,t, is independent of the func-
tional form of ep and depends only on the gap:t ­
spy2T demc2yT . In the T ! 0 scaling limit, in which
j ­ spy2mT d1y2emc2yT , Rsx, td obeys the scaling form
Rsx, td ­ fsjxjyj, jtjytd, where the scaling functionf
is given by

lnfsx̄, t̄d ­ 2x̄ erf

√
x̄

t̄
p

p

!
2 t̄e2x̄2yp t̄2

. (6)

Similar classical scaling forms have been discussed earl
[3], but it was incorrectly conjectured that the scaling
functions would be those of the Glauber model [10]
Glauber dynamics does not conserve total energy a
momentum, and these conservation laws have play
2221
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a crucial role in the kinematic constraints on partic
collisions.

We have also investigated the nearest neighbor mo
numerically by the mapping to free fermions [4,5]. W
generalized an earlier study [6] of equal time properti
to dynamical quantities [7] for the case of free bounda
conditions; details will be presented elsewhere. We fi
that in the RC regime the imaginary part ofCsx, td is
much smaller than its real part, which suggests that t
dynamics is indeed classical as argued above. In Fig
we show data forg ­ 0.6, T ­ 0.3, and x ­ 20 for a
lattice sizeL ­ 256.

We took J1 ­ 1 so gc ­ 1 and mc2 ­ 2s1 2 gd ­
0.8. For comparison we show the theoretical predictio
from Eqs. (4) and (5), in which we used the full lattic
dispersion relation. The agreement is remarkably goo
It is interesting to note that because there is a maximu
velocity,ymax (on the lattice this is given byymax ­ 2J1g
for g , gc and ymax ­ 2J1 for g . gc, whereas in the
continuumymax ­ c), Eq. (5) predicts thatCsx, td should
be independent oft for jtj , jxjyymax, and the numerical
results show this very clearly. The inset, with a muc
increased vertical scale, gives an idea of how small are
deviations between the theory and numerics. We find th
the agreement is also excellent even atr ­ 0, for t . 1.

Now we turn to the “quantum disordered” (QD) regio
g . gc, m , 0, T ø jmc2j. The operatorsz flips spins
between the6x directions, and the largeg picture,
noted earlier, then suggests thatsz is the sum of
a creation and annihilation operator for the particle
As a result, theT ­ 0 the spectral density, obtained
from the Fourier transform ofCsx, td, has a contribution

FIG. 3. The points show numerical data for the neare
neighbor model, in the RC region, obtained for a lattice siz
L ­ 256 with free boundary conditions. This is compare
with the theoretical prediction in Eqs. (4) and (5), in whic
the full lattice dispersion,ep , was used. In the numerics, the
two sites were chosen to be as close as possible to the ce
of the lattice. The inset shows the earlier time data with a
enlarged scale.
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,dsv 2 epd associated with the stable particle. Highe
order corrections in1yg, or the form factor expansion [11]
on the continuum theory valid close togc, show that the
next contribution to the spectral density is a continuu
above the three-particle threshold. Here we will focu
exclusively on how the one-particle pole broadens asT
becomes nonzero. We defineKsx, td ; Csx, td at T ­ 0,
and dropping the multiparticle terms, we have

Ksx, td ­
Z dp

2p
Dspdeipx2iept , (7)

where Dspd is a form factor. For the general lattice
model, Dspd is not known; neglecting the multiparticle
terms, Dspd is seen from (7) to be the spatial Fourie
transform ofCsx, 0d, i.e., the structure factor. For the con
tinuum theory, we haveDspd ­ Acy2ep where A is
the dimensionless quasiparticle amplitude [11] [for an u
derlying integrable lattice modelA ­ 2sjmc2jyJ1d1y4],
so Ksx, td ­ AK0fjmjcsx2 2 c2t2d1y2gy2p , with K0 the
modified Bessel function.

Now we considerT fi 0 in the semiclassical approxi-
mation. A typical set of paths contributing to the Keldys
path integral is still given by Fig. 2, but its physical in
terpretation is now very different. The dashed line no
represents the trajectory of a particle created ats0, 0d
and annihilated atsx, td, and 6 signs in the domains
should be ignored. In the absence of any other partic
this dashed line would contributeKsx, td to Csx, td. The
scattering off the background particles (the full lines i
Fig. 2) introduces factors of theS-matrix elementSpp0 ;
as the dashed line only propagates forward in time, t
S-matrix elements for collisions between the dashed a
full lines (andonly these) are not neutralized by a com
plex conjugate partner. Using the low momentum valu
Spp0 ­ 21, we see that the contribution toCsx, td equals
s21dn, Ksx, td wheren, is the number of full lines inter-
secting the dashed line. Thes21dn, is precisely the term
that appeared in the RC region, although for very differe
reasons. We can carry out the averaging over all trajec
ries as before, and obtain our main result

Csx, td ­ Ksx, tdRsx, td sQD regiond, (8)

whereKsx, td is given by Eq. (7) andRsx, td by Eq. (5).
While (7) is valid for all x, t, relaxation due to classical
particles makes sense only within the “light cone,” and
strictly speaking, (8) requiresct ¿ x. Outside the light
cone, Ksx, td decays exponentially to zero on the sho
length scale,1ymc at which R ø 1 and T-dependent
effects are not expected to be large: so it is reasona
to use (8) except, perhaps, forx, t extremely small.

The result (8) clearly displays the separation in scales
which quantum and thermal effects act. Quantum fluctu
tions determine the oscillatory, complex functionKsx, td,
which gives theT ­ 0 value ofCsx, td. Exponential re-
laxation of spin correlations occurs at longer scales,j, t,
and is controlled by the classical motion of particles and
purely real relaxation functionRsx, td.
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In Fig. 4 we compare the predictions of Eq. (8) wit
numerical results on a lattice of sizeL ­ 512.

The theoretical curve was determined from the cont
uum expression forKsx, td, but the full lattice form forep

was used in Eq. (5) to determineRsx, td. With the parame-
ters used,jmc2j ­ 0.2, which is greater thanT s­0.1d as
required to be in the QD region. The theory predicts th
Im Csx, td ­ 0 for jtj , jxjyymax, with a singularity in
both real and imaginary parts atjtj ­ jxjyymax. At longer
time both parts oscillate and decay. Part of this dec
comes from the1y

p
t decay of the Bessel functions, bu

for jtj . t this is dominated by the exponential decay fro
Rsx, td. The theory agrees well with the numerics; som
differences are visible for smallx, outside the light cone,
but this is outside the domain of validity of (8).

Precisely the same semiclassical arguments can also
applied to thed ­ 1 impenetrable gas of bosons of mas
mB, in a chemical potentialm , 0, with T ø jmj. This
system hasS-matrix elementsSpp0 ­ 21, and its single
particle propagator will be given by (8), (5), and (7), wit
ep ­ 2m 1 p2y2mB and Dspd ­ 1. This propagator
has also been computed by the inverse scattering met
[1], and theT ø jmj limit of their result agrees with (8).

Turning to the “quantum critical” regionjmc2j ø T ø

J1, g, the dynamics is now given by finiteT correlators
of the g ­ gc critical point. An explicit expression for

FIG. 4. The numerical data for the nearest neighbor mo
with J1 ­ 1, in the QD region, obtained for a lattice size
L ­ 512 with free boundary conditions. Also shown is th
theoretical prediction from Eqs. (8), (5), and (7), withDspd
determined in the continuum theory. The numerical data ha
a “ringing” at high frequency, which we believe is due to th
upper energy cutoff in the dispersion relation, that is present
the lattice model but not in the continuum model used for t
theory. The envelope of the numerical curve fits the theoreti
prediction well (but not perfectly on the scale of resolution o
the figure). The inset shows a part of the same data with
enlarged scale for clarity.
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Csx, td was given earlier [2,3], and has exponential dec
at a single-time scale,1yT in both its real and imaginary
parts. There is no clear separation between the contri
tions of thermal and quantum fluctuations since both a
effective at this scale. Hence there can be no effect
classical model describing relaxation [12]. For complet
ness, we also note the nonuniversal lattice highT region
T ¿ J1, g; time-dependent correlators atT ­ ` were ob-
tained earlier [2] and show a Gaussian decay in time.

Before concluding, we emphasize that, although w
compared the analytical results with numerical data
an integrable model, the main result does not depend
integrability. The simplification of the integrable mode
is that the parameters in the theory,m, c, A, and N0,
are known exactly, whereas in general, they would
phenomenological parameters of a low energy theo
The equality of the classical relaxation functions in th
RC and QD regions is surely related to the self-duality
the Ising critical theory, and is a special feature of th
model. Finally, it is interesting to speculate that Eq. (
may also be true ford . 1 because of the separation o
time scales between the quantum and thermal fluctuatio
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