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Low Temperature Relaxational Dynamics of the Ising Chain in a Transverse Field
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We present asymptotically exact results for the real time order parameter correlations of a class
of d = 1 Ising models in a transverse field at low temperatufgs dn both sides of the quantum
critical point. The correlations are a product of Taindependent factor determined by quantum
effects, and ar-dependent relaxation function which comes fronctlassical theory. We confirm
our predictions by a no-free-parameter comparison with numerical studies on the nearest neighbor spin-
1/2 model. [S0031-9007(97)02724-5]

PACS numbers: 75.40.Gb, 05.30.-d, 75.10.Jm

Real time, nonzero temperatur®)( correlation func- We also use our semiclassical method to obtain cor-
tions of quantum many body systems are directly relatedelators of thed = 1 impenetrable Bose gas in a certain
to the observables of many experiments. For stronglyow T regime; our results here are in agreement with ear-
interacting systems, there are few quantitative results olier work [1], although our approach is much simpler and
the relaxation and transport processes that are believed toore physically transparent. Our method should also ap-
occur at long times at any # 0. Monte Carlo and per- ply to otherd = 1 quantum models (like the nonlinear
turbative methods work best in imaginary time, but thesigma or sine-Gordon) with an excitation gap.
analytic continuation to real time is most dangerous, and We consider the Hamiltonian
often fails, in the low frequency limit. At special confor-
mally invariant points in dimensio# = 1, real time corre- Hy = — Z(Z Jeoioie + gaf), (1)
lations describing relaxation of an order parameter can be i \>0
computed exactly. Among systems in arbitrafywhich  whereo?, o} are Pauli matrices on a chain of sites/,
are tuned across a quantum critical point by a variabl€¢>0) are short-ranged exchange constants, @iigt0) is
coupling, there is only one for which reliable results arethe transverse field. The ground statehfis expected to
available: thed = 1 impenetrable Bose gas, whose cor-have long range order witNy = (o) # 0 for all g < g,
relators were determined by a profound and sophisticateand a gap to all excitations f@r # g. [4]; see Fig. 1.
inverse scattering analysis [1]. Away from g = g, the low lying states consist of a sta-

In this paper, we study real timd, # 0 correlations ble particle with energy, at momentump, andn > 1
of the d = 1 Ising model in a transverse field. We particle continua at higher energy. We also havg =
use a novel semiclassical method to obtain the exad,, and expect thag, has a minimum ap = 0. Con-
asymptotics of order parameter correlations in the twasequently, for smalp we parametrizee, = [(mc?)* +
low T regions on either side of its quantum critical point. ¢2p2 + @ (p*)]'/2, which defines the “velocity’c > 0
Our main new result, given in Egs. (4) and (8) below, isand the “massin; we choosen > 0 (m < 0) for g < g.
that in these lowl" regimes, the spin correlation function (g > g.). The critical point atg = g, is described by a
can be expressed as a product of two factors. Oneontinuum theory with dynamic exponent= 1, and cor-
arising from quantum effects, gives tife= 0 value of  relation length exponent = 1; hencec ~ constant for
the correlation function, and the other, which comes fromearg.., while m vanishes linearlylm| ~ |g — g.|, with
a classical theory, describes the effects of temperaturepossibly a different slope on the two sides.

Combined with earlier results [2,3], our new results give a The model with/,~; = 0 is integrable [4], and all pa-
complete description of time-dependent correlations in altameters are known exactly: in units whelie= kz = 1
the distinct limiting regions of the Ising model, and exhibit,

simply and clearly, the crossovers in the roles of quantum

and thermal fluctuations in the relaxational dynamics. T| RENORMALIZED' ~ QUANTUM //‘

For the Ising chain with only nearest neighbor ex- CLASSICAL N CRITICAL -
change_, we also use the free—fermlon representation [4_,5] Long-rangeﬁrder AN }L'// g%gi\éTDUE'\gED
to obtain accurate, numerical data [6,7] for real time spin 0 >
correlations for systems with up to 512 spins: these results 9e
are in excellent agreement with the asymptotic theoreticat|G. 1. Finite7 phase diagram off;. The dashed lines are
results even at relatively short times and distances. crossover boundaries &t~ |mc?|.
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we haveg, =J;, No=[1— (g/J1)*]"/%, ande, =2[J7 +

g2 —2J1gcod pa)]'/?, whereq is the lattice spacing, so
mc?=2(J; — g). However, the existence of these stable
particles isota special feature of this integrable point. In-
deed, forg < g., a particle has the simple weak-coupling
interpretation as the boundary between domains with op-
posite orientations ifo?). Conversely, forg > ¢., the
ground states has all the spins oriented in-thedirection, FIG. 2. A typical semiclassical contribution to the double-
and the particle is ax spin hopping from site to site. We time path integral forlC(x, ). Full lines are thermally excited
expect that these interpretations remain correct at the lowpa'ticles which propagate forward and backward in time.

. . . he * signs are significant only fog < g. and denote the
est energies, as we approagchfrom either side, butnotat g jentation of the order parameter. For> g., the dashed

8 = 8c- line is a particle propagating only forward in time frof, 0)
In the above interpretations, the particles are evidentlyo (x, 7).
bosons. They have short-range repulsive interactions,
which, by an elementary calculation [1] implies that the
two-particle S-matrix S, approaches-1 for pa, p'a < of size L > |x|, and let it containV thermally excited
1. The integrable model has,, = —1 for all p, p/, particles; thenp = N/L. Let the probability that any
and this is often used to obtain a free-fermion descriptiorgiven trajectory intersect the dashed lireg; then the
after a nonlocal gauge transformation: we shall not us@robability only a given set of lines will intersect is=
this transformation in our analytical computations. g*(1 — ¢)N~k. Summing over all possibilities, we have
Our new analytical results are in the two lo® N
regimes on either side qf,, with 7 < |mc?|. Inthese  C(x,1) = N} Z(—l)"q"(l — @V ENVKIN — 0]
regimes [3], the densityp, of thermally excited particles k=0
~ ¢~ Imel/T is exponentially small; their mean spacing = N3(1 — 2¢9)¥ = NZe 2V, (3)
is much larger than their thermal de Broglie wavelength
~ (2lm|T)"Y2. These are the standard conditions for
classicalbehavior in whichp = [dp/Q2m)e /.
We now derive results in the “renormalized classical’
(RC) regiong < g., T < mc?. Consider the correlation
function

The last step holds because, as we shall nhow compute,
qg < 1. First, for t = 0, as the density of trajectories
along ther = 0 axis is uniform,q = |x|/L. For: # 0,
consider first all trajectories with a fixed momentym
they will intersect the dashed line if their intersection with

t = 0 axis is between ordinategs and x — v,t, and so
Clxi, 1) = Tr(e /Tt it g3y /7 (2) ¢ = |x — v,tl/L. Averaging over alp, and inserting in

wherex; = ia, Z = Tr e /T This can be evaluated in (3), we get one of our main results [9],

terms of the trajectories of the dilute gas of classical par- C(x,t) = N3R(x,1) (RC region), @
ticles noting that, since the particles physically represent
domain walls,c* changes sign every time a particle goesWhere
by. Observe that the classical trajectories remain straight dp _
lines across collisions because the momenta before and ~ R(x:1) = exp(—f e T - Uf’")' ©)
v

after the collision are the same ih= 1. This implies
that the trajectories are simply independently distributedNotice thatR(x,0) = ¢ M/¢ and R(0,7) = ¢~ !"/7, but
straight lines, placed with a uniform densjiyalong thex the general behavior is more complicated. The correla-
axis, with an inverse slope, = de,/dp, and with their ~ tion length § = 1/2p. Remarkably, we find from (5)
momenta chosen with the Boltzmann probability densitythat the correlation timer, is independent of the func-
e*fp/T/p (Fig. 2). tional form of €, and depends only on the gap:=

This heuristic argument, based on the classical picture(,ﬂ/2T)e’”Cz/T. In the T — 0 scaling limit, in which
can be justified by taking the semiclassical (stationang = (7/2mT)"/2¢™<*/T | R(x,t) obeys the scaling form
phase) limit of the double-time (“Keldysh”) path integral R(x,7) = ¢(|x|/&,1t|/7), where the scaling functiorp
[8], in which each collision appears in both the forwardis given by

and backward paths [generated by thé”'’ and thee”! 3 o
in (2), respectively] and therefore contributes the factor Ing(x,7) = —x erf (_—_) — fe ¥/ (6)
|Spp’|2 = 1 I

ComputingC(x, t) is now an exercise in classical proba- Similar classical scaling forms have been discussed earlier
bilities. The value ofr%(0,0)c*(x, t) is the square of the [3], but it was incorrectly conjectured that the scaling
magnetization renormalized by quantum fluctuatiovig)(  functions would be those of the Glauber model [10];
times (—1) if the number of trajectories intersecting the Glauber dynamics does not conserve total energy and
dashed line in Fig. 2 is odd. Consider an Ising systenmomentum, and these conservation laws have played
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a crucial role in the kinematic constraints on particle~6(w — €,) associated with the stable particle. Higher

collisions. order corrections i /g, or the form factor expansion [11]
We have also investigated the nearest neighbor modeln the continuum theory valid close tQ, show that the

numerically by the mapping to free fermions [4,5]. We next contribution to the spectral density is a continuum

generalized an earlier study [6] of equal time propertiesabove the three-particle threshold. Here we will focus

to dynamical quantities [7] for the case of free boundaryexclusively on how the one-particle pole broadensras

conditions; details will be presented elsewhere. We findecomes nonzero. We defifdx,r) = C(x,t) atT = 0,

that in the RC regime the imaginary part 6fx,r) is  and dropping the multiparticle terms, we have

much smaller than its real part, which suggests that the dp o

dynamics is indeed classical as argued above. In Fig. 3 K(x,t) = f ED(P)e”’x e (7)

we show data forg = 0.6,7 = 0.3, andx =20 for a 00 D(p) is a form factor. For the general lattice

lattice sizeL = 256. . . S
- . 5 . _model, D(p) is not known; neglecting the multiparticle
We took/; =1 s0 g, =1 andme® = 2(1 — g) = terms, D(p) is seen from (7) to be the spatial Fourier

0.8. For comparison we show the theoretical predictiont ;
: . . transform ofC(x, 0), i.e., the structure factor. For the con-
from Egs. (4) and (5), in which we used the full lattice inuum theory, we haved(p) — Ac/2¢, where A is

d'?P?rS'O” rglatlon. The agreement is rem_arkably 900Ghe dimensionless guasiparticle amplitude [11] [for an un-
It is interesting to note that because there is a maxmuraerlying integrable lattice modeA — 2(|mc2|/J1)1/4]
velocity, v, (0N the lattice this is given by,,.x = 2J1¢ SOK(x.1) = AKo[lmlc(x® — c22)1/2]/27, with K, thé

for g < g, and v, = 2J; for g > g., whereas in the modifiéd Bessel function '

continuuMumax = ¢), EQ. (5) predicts thaf'(x, ) should Now we consideiT # 0 in the semiclassical approxi-

be ir}{jepﬁnde?rt]_affor I |< |)i|/v“_‘ﬁ’;’ a_nd t?e nltjr:nerical hmation. A typical set of paths contributing to the Keldysh
results show this very clearly. € Inset, with a muc path integral is still given by Fig. 2, but its physical in-

increased vertical scale, gives an idea of how small are thferpretation is now very different. The dashed line now
deviations between the theory and numerics. We find thartepresents the trajectory of a particle created(Can)

the agreement is also excellent evem &t 0, for r > 1. and annihilated atx, ), and + signs in the domains

Now we turn to the qgantufr:w dlsordereo! ﬂ(.QD) region should be ignored. In the absence of any other particles
8 = 8y < g T < |mc?|. The operatov flips spins 4o ched line would contribute(x, ) to C(x, 7). The
between the_x directions, and th7e _Iargeg picture, scattering off the background particles (the full lines in
noted earlier, then suggests that is the sum of Fig. 2) introduces factors of thg-matrix elements,,;
a creation and annihilation operator for 'the parpclesas the dashed line only propagates forward in time, the
;‘Ar\(s)matfzgsllzjgijr'itcl;]refra;s?o:quneOE‘F()SC:)raL;SegSgghtﬁEﬁ:gﬁd S-matrix elements for collisions between the dashed and
i full lines (andonly these) are not neutralized by a com-
plex conjugate partner. Using the low momentum value
Sppr = —1, we see that the contribution ©(x, r) equals

1 SARRARRRES LALALRARL) RARRRRLRN ARRRMLIL (=1)™K(x,t) whereng is the number of full lines inter-
- 0.6 & ] secting the dashed line. Tlie-1)" is precisely the term
0.59 ] that appeared in the RC region, although for very different

0.58 i reasons. We can carry out the averaging over all trajecto-
S ries as before, and obtain our main result

10 15 20 25 C(x,t) = K(x,t)R(x,1)  (QDregion,  (8)

whereK (x, r) is given by Eq. (7) andk(x, ¢) by Eq. (5).
While (7) is valid for allx, ¢, relaxation due to classical
particles makes sense only within the “light cone,” and so
strictly speaking, (8) requirest > x. Outside the light
cone, K(x,t) decays exponentially to zero on the short
length scale~1/mc at which R = 1 and T-dependent

0 50 100 150 200 effects are not expected to be large: so it is reasonable

t to use (8) except, perhaps, fors extremely small.

FIG. 3. The points show numerical data for the nearest The result(8) clearly displays the separation in scales at
neighbor model, in the RC region, obtained for a lattice sizewhich quantum and thermal effects act. Quantum fluctua-
L =256 with free boundary conditions. This is compared tions determine the oscillatory, complex functiix, 7),
with the theoretical prediction in Egs. (4) and (5), in which \\nich gives thel' = 0 value of C(x,¢). Exponential re-
the full lattice dispersione,, was used. In the numerics, the . . . K
two sites were chosen to be as close as possible to the cenﬂé\xat_'on of spin correlations occurs atilonger SC@"“-?ST’
of the lattice. The inset shows the earlier time data with an@nd is controlled by the classical motion of particles and a
enlarged scale. purely real relaxation functioR (x, ¢).

— Theory
e Numerics

Re C(20,t)

0.1 = g=06, T=0.3
T L=256, x=20
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In Fig. 4 we compare the predictions of Eq. (8) with C(x,¢) was given earlier [2,3], and has exponential decay
numerical results on a lattice of siZe= 512. at a single-time scale-1/T in both its real and imaginary
The theoretical curve was determined from the continparts. There is no clear separation between the contribu-
uum expression foK (x, r), but the full lattice form fore,  tions of thermal and quantum fluctuations since both are
was used in Eq. (5) to determiiéx, r). With the parame- effective at this scale. Hence there can be no effective
ters used|mc?| = 0.2, which is greater thaff (=0.1) as  classical model describing relaxation [12]. For complete-
required to be in the QD region. The theory predicts thaness, we also note the nonuniversal lattice Higregion
Im C(x,t) = 0 for |7] < |x|/vmax, With a singularity in T > Ji, g; time-dependent correlators At= « were ob-
both real and imaginary partslat = |x|/vmax. Atlonger tained earlier [2] and show a Gaussian decay in time.
time both parts oscillate and decay. Part of this decay Before concluding, we emphasize that, although we
comes from thel /\/t decay of the Bessel functions, but compared the analytical results with numerical data on
for |t| > 7 this is dominated by the exponential decay froman integrable model, the main result does not depend on
R(x,t). The theory agrees well with the numerics; someintegrability. The simplification of the integrable model
differences are visible for small, outside the light cone, is that the parameters in the theomy,c, A, and Ny,
but this is outside the domain of validity of (8). are known exactly, whereas in general, they would be
Precisely the same semiclassical arguments can also pbenomenological parameters of a low energy theory.
applied to thed = 1 impenetrable gas of bosons of massThe equality of the classical relaxation functions in the
mp, in a chemical potentigh < 0, with T < |u|. This RC and QD regions is surely related to the self-duality of

system hasS-matrix elements§,,, = —1, and its single the Ising critical theory, and is a special feature of this
particle propagator will be given by (8), (5), and (7), with model. Finally, it is interesting to speculate that Eq. (8)
€, = —p + p?/2mp and D(p) = 1. This propagator may also be true fod > 1 because of the separation of

has also been computed by the inverse scattering methdithe scales between the quantum and thermal fluctuations.
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