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Schwinger-Boson Approach to Quantum Spin Systems: Gaussian Fluctuations
in the “Natural” Gauge
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We compute the Gaussian-fluctuation corrections to the saddle-point Schwinger-boson results using
collective coordinate methods. Concrete application to investigate the frustratedJ1-J2 antiferromagnet
on the square lattice shows that, unlike the saddle-point predictions, there is a quantum nonmagnetic
phase for0.53 & J2yJ1 & 0.64. This result is obtained by considering the corrections to the spin
stiffness on large lattices and extrapolating to the thermodynamic limit, which avoids the infinite-lattice
infrared divergencies associated with Bose condensation. The very good agreement of our results
with exact numerical values on finite clusters lends support to the calculational scheme employed.
[S0031-9007(97)02739-7]
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In recent years there has been a lot of interest in
properties of quantum magnetic systems [1], particula
frustrated quantum antiferromagnets (AF). Although th
interest was initially related to the possible connectio
between magnetism and superconductivity in the ceram
compounds, the current activity in the area is now we
beyond this original motivation.

Among the analytical methods used to study quantu
spin systems, the Schwinger-boson approach [2] is o
of the most elegant and successful techniques. Contr
to standard spin-wave theory, it does not rely on havi
a magnetized ground state, which leads to nice rotatio
properties of the results and to the possibility of descr
ing ordered and disordered phases in a unified treatm
However, this theory has the drawback of being defin
in a constrained bosonic space, with unphysical config
rations being allowed when this constraint is treated a
soft (average) restriction. This drawback can be in prin
ple corrected by including local fluctuations of the boso
chemical potential [3].

Despite the widespread use in the literature of t
Schwinger-boson representation of quantum spin ope
tors, we are not aware of a complete calculation
Gaussian corrections to saddle-point results. In particu
for frustrated quantum AF such calculations have be
sketched several times [2,4,5], but never fully undertake
In this work we fill up this gap by presenting the gener
calculation of Gaussian fluctuations in the Schwinge
boson approach. Since the theory presents a local Us1d
symmetry, we use collective coordinate methods—
developed in the context of relativistic lattice gaug
theories [6]—to handle the infinitely many zero mode
associated to the local symmetry breaking in the sadd
point expansion. As a concrete application, we stu
the existence and location of the nonmagnetic quant
phase predicted to occur as a consequence of quan
fluctuations and frustration in theJ1-J2 model [7].
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We will consider a general Heisenberg Hamil-
tonian, H ­

P
kijl Jij

$Si ? $Sj , where kijl are links on a
lattice. We write spin operators in terms of Schwinge
bosons [5]: $Si ­

1
2 ay

i ? $s ? ai , where ay
i ­ say

i", a
y
i#d is

a bosonic spinor,$s is the vector of Pauli matrices, and
there is a boson-number restriction

P
s a

y
isais ­ 2S on

each site. With this faithful representation of the spin
algebra, the rotational invariant spin-spin interaction
can be written as $Si ? $Sj ­: B

y
ijBij : 2A

y
ijAij . We

defined the SUs2d invariants Aij ­
1
2

P
s saisajs and

B
y
ij ­

1
2

P
s a

y
isajs ss ­ 2s, s ­ 6d, and the notation

:O: indicates the normal order of operatorO.
Using boson coherent states to formulate the partitio

function, we formally integrate the Schwinger bosons by
decoupling the quartic terms inH using two complex
Hubbard-Stratonovich fieldsWr

ijstd (r ­ 1, 2 correspond,
respectively, to the fields that couple to the ferromag
netic B and antiferromagneticA channels). This leads
to Z ­

R
fD WD W g fD lge2A, where the measure

fD WD W g ­
Q

kijl,r ,tsJijy2piddWr
ijstddWr

ijstd and
fD lg ­

Q
i,t dlistdy2p. Here W is the complex

conjugate ofW and the effective action

A ­
Z b

0
dt

µ X
kijl,r

JijW
r
ijstdWr

ijstd 1 i2S
X

i

listd
∂

1 FbsW , W , ld . (1)

The integration onl comes from the integral represen-
tation of thed functions which force the boson number
restriction on each site. In (1)FbsW , W , ld is the free
energy of a boson gas coupled toW , W . In a compact
notation where site (i), Nambu (s), and Matsubara (t)
indices are summed over in the trace (Tr) operation, w
haveFbsW , W , ld ­ Tr ln M sW , W , ld. The dynamical
© 1997 The American Physical Society
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matrix M
ss0

ij std is given by

M11
ij ­ ≠t 1 ilidij 2

Jij

2
sW1

ij 2 W1
jid ­ 2M22

ij ,

M12
ij ­

Jij

2
sW2

ij 2 W2
jid ­ M

21
ij ,

where we have suppressed thet dependences to simplify
notation. It is important to stress that this formal result f
Fb must be understood as the limit of a discrete-t mesh
[8]. In the functional formulation such a procedure pick
up the zero-point contributions to the energy coming fro
the Bogoliubov transformation in the canonical approac

The action A is invariant under both local gauge
transformations,Wr

ij ! Wr
ijeisui6uj d (2 for r ­ 1, 1 for

r ­ 2), li ! li 2 ≠tui , and global SUs2d rotations of
the original bosonic spinors. Consequently, it wou
be convenient to include external sourcesh, h which
explicitly break the global SUs2d invariance:Fb ! Fb 2

hM21h. They are useful to study the spontaneo
breaking of this symmetry atT ­ 0 as a consequence o
Bose condensation, which signals the onset of magne
long-range order in the ground state [5]. However,
order to avoid the infrared divergencies associated to t
symmetry breaking, in what follows we approach th
thermodynamic limit by extrapolation of results on larg
but finite lattices.

Up to this point all the manipulations are exac
To proceed further we resort, as usual, to a sadd
point expansion. Using the collective notation for th
fields $wy ; sW , W , ld, the (static) saddle-point values
W

r
ij,0, Wr

ij,0 and li,0 are obtained from the extrema
equations

≠A

≠ $w

Ç
SP

­ $c
y
0 1 Tr

µ
G0

≠M0

≠ $w0

∂
­ 0 , (2)

where $c
y
0 ­ sJW0, JW0, 2Sid and G0 ­ M

21
0 is the

bosonic Green function at saddle-point order [9]. Afte
expandingA to second order in the field fluctuation
around these saddle-point values, we end up with

Z > e2A0

Z
fD $wyD $wge2 1

2
D $wy?As2d?D $w . (3)

In this equationA0 ­ b
P

kijl JijsjW1
ij,0j

2 2 jW2
ij,0j

2d is
the effective action evaluated at the saddle point, andD $w
are the field fluctuations. The matrixAs2d is given by

As2d ;
≠2A

≠ $wy≠ $w

Ç
SP

­ J 2 Tr

µ
G0

≠M0

≠ $w
y
0

G0
≠M0

≠ $w0

∂
,

where J is a diagonal matrix containing the exchang
couplingsJij along the diagonal, except for the entrie
corresponding tol-l derivatives that are zero.

We stress that the saddle-point expansion of the eff
tive action breaks the gauge invariance of the theory. A
though the spontaneous breaking of a local symmetry
strictly forbidden by Elitzur’s theorem [10], a possible jus
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tification of this procedure has been given in the conte
of relativistic lattice gauge theories [11]: The existence o
saddle-point solutions connected by the continuous Us1d
gauge group makes theAs2d matrix to have infinitely
many zero modes, which are the Goldstone bosons asso
ted to the spurious local symmetry breaking. In particu
lar, for translational-invariant saddle-point valuesWr

ij,0 ­
Wr

i2j,0, li,0 ­ l0, transforming to momentum-frequency
space there is a zero mode$wR

0 sk, vd ­ d $wsudydukvjSP

in everyk-v subspace. Here$wsud is the vector of gauge-
transformed fields (notice that$fR

0 is aright eigenvector of
the non-Hermitian matrixAs2d). To avoid the infinities as-
sociated to these modes without restoring forces—whic
correspond to local symmetry transformations—we intro
duce collective coordinates along the gauge orbit. Exa
integration of these coordinates eliminates the zero mod
and restores the gauge symmetry (in the sense that non
variant operators average to zero) [11]. This program ca
be carried out by enforcing in (3) the so-called backgroun
gauge condition or “natural” gauge [6],$wsudy ? $wR

0 ­ 0.
This condition can be introduced into the functional mea
sure by means of the Faddeev-Popoff trick, and restricts t
integration to field fluctuations which are orthogonal to th
collective coordinates. AtT ­ 0, after carrying out the re-
maining integrations in (3) on the genuine fluctuations, w
obtain the one-loop correction to the ground-state ener
per site,

E1 ­ 2
1

2p

Z `

2`

dv
X
k

ln

µ
DFP sk, vd

jvj

q
detA

s2d
' sk, vd

∂
.

(4)

Here the Fadeev-Popoff determinantDFP sk, vd ­
j $wL

0 sk, vd ? $wR
0 sk, vdj ( $wL

0 sk, vd is the left zero mode
of As2d in the k-v subspace), andA

s2d
' is the projection

of As2d in the subspace orthogonal to the collective
coordinates.

We have particularized these results for a matrixJij

which couples a given site to its first (J1) and second
(J2) neighbors on a square lattice. This model with
frustrating J1, J2 . 0 has been much studied in recen
years in connection with the physics of the lightly
doped CuO2 planes (see [12], and references therein
The main problems under discussion are the locatio
and physical properties of a possible nonclassical pha
for intermediate frustrationa ­ J2yJ1 , 1y2. In the
ordered phases of this model [with magnetic wave vecto
Q ­ sp , pd for small a and Q ­ sp , 0d for a , 1]
the Bose condensate breaks the global SUs2d symmetry
and its density gives the local magnetization [5]. Th
associated physical Goldstone modes atk ­ 0, Q lead to
serious infrared divergencies of intermediate quantitie
which have to be cured by standard renormalizatio
prescriptions. In order to avoid these problems we hav
computed physical quantities (which are free of thes
divergencies) on large but finite lattices, and finally
2217
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extrapolated these values to the thermodynamic limit.
particular, we considered lattices of up to60 3 60 sites,
and checked that the extrapolated values had no sens
errors up to the digits presented. However, this procedu
requires a careful numerical treatment, since finite resu
are obtained by cancellations among products of the ve
large entries of the matrixAs2d.

Equations (2)–(4) lead to a ground-state energyEGS ­
E0 1 E1 as shown in Fig. 1. Figure 1 contains the re
sult for the infinite lattice and also for finite lattices o
16 and 36 sites, which allow a comparison with exa
results obtained by numerical diagonalization [13]. Th
addition of the Gaussian correctionE1 [Eq. (4)] slightly
improves the already very good saddle-point valueE0. At
saddle-point order the theory predicts a first order transiti
between the two magnetic ground states at some interm
diate frustration (a . 0.6), with no intervening disordered
phase. This is in contradiction with numerical studies [14
and series expansion results [15], which found a disorder
purely quantum phase somewhere in the range0.3 & a &

0.6. However, it has been recently shown that these finit
lattice studies probably did not reach the scaling regio
where the required extrapolation can be trusted [16].
our case, the existence or not of magnetic long-range or
was investigated by considering the spin-stiffness tens
rs ­ ≠2EsQdy≠Q≠Q, whereEGSsQd is the ground-state
energy with twisted boundary conditions [14,16]. In par
ticular, the corrections to the saddle-point values obtain
in [16] lead to the results shown in Fig. 2. It gives the stiff
ness along one of the lattice directions in theQ ­ sp , pd
phase at saddle-point and one-loop order, on lattices of
and 20 sites (according to numerical studies [14] the tilte
20-site lattice has a stiffness closer to the thermodynam
limit than regular clusters). The comparison with exact r

FIG. 1. Ground-state energyper site EGS as a function of
J2yJ1 for lattices of (from top to bottom)N ­ `, 36, and 16
sites. The full and dashed lines give the fluctuation-correct
and saddle-point results, respectively. Points are exact res
from Ref. [13]. The dotted line in the range0.53 & J2yJ1 &
0.64 indicates the region without long-range magnetic orde
Notice that for clarity the curves corresponding toN ­ ` and
36 have been shifted upwards in 0.1 and 0.05, respectively.
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sults [13] shows a good agreement, especially for the 2
site lattice. The extrapolation to the thermodynamic lim
leaves a window0.53 & a & 0.61, where the stiffness
vanishes and the magnetic order is melted by the combin
action of quantum fluctuations and frustration (see Fig. 3
This result is in fairly good agreement with the secon
order modified spin wave calculation of [17], which pre
dicts a quantum disordered phase in the range (0.52–0.
Notice that our theory—valid also in the disordered re
gion—predicts that for0.61 & a & 0.64 the short-range
AF order is energetically more favorable than the wea
collinear order (see dotted line in Fig. 1). However, th
characterization of the true ground state in this region r
quires the consideration of possible nonmagneticordered
states [4]. Finally, we have computed the spin-wave v
locity cs in the Néel phase using the finite-size formul
EGSsNd , EGS 2 ayN3y2 and the relationa ­ 1.4372cs
[18]. ForJ2 ­ 0 we obtainedcs . 1.52J1 at saddle-point
order, andcs . 1.37J1 including the Gaussian fluctua-
tions. These values should be compared to the result
exact diagonalization [13],cs . 1.28 2 1.44J1, which de-
pends on the cluster sizes considered to extrapolate.
Fig. 3 we plot the scaling coefficienta as a function of
frustration (in the collinear phase this coefficient should b
proportional to some anisotropy-averaged velocity). In t
Néel phase the spin-wave velocity vanishes ata . 0.54,
slightly above the point where the stiffness goes to zero.
the collinear phase the averaged velocity never vanish
and actually it blows up ata . 0.58. Notably, this is the
value where the stronger stiffness in the AF direction
the collinear order vanishes. More details and a furth
discussion of these results will be given elsewhere.

Before closing, it is worth mentioning a few side ques
tions we have considered while performing these ca
culations. First, since the Hamiltonian commutes wi
the local boson-number restrictions, we considered i
posing them only throught-independent Lagrange mul-
tipliers li . This reduces the local gauge symmetr

FIG. 2. Spin stiffnessrs in the Néel phase for (a) a 16-site
lattice, and (b) a tilted 20-site lattice. Symbols and line type
are the same as in Fig. 1.
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FIG. 3. Scaling coefficienta proportional to the spin-wave
velocity (top panel) and spin stiffnessrs (bottom panel)
extrapolated to the thermodynamic limit. Line types are th
same as in Fig. 1.

to static transformations and, consequently,As2d con-
tains zero modes only in thev ­ 0 subspace. For
the calculation of the ground-state energy—which in
volves an integration overv —it is then allowed to
simply forget about these modes and computeE1 ­

1
4p

R`
2` dv

P
k ln detA

s2d
truncsk, vd, whereA

s2d
trunc is equal

to As2d with the column and row corresponding to th
(static) l fluctuations deleted. In this case there is n
need forDFP and (4) is equivalent to the RPA result fo
the bosonic theory withl0 taken as a chemical poten
tial. We checked that this procedure gives the same res
as (4), although the numerical evaluation requires ex
care because of the divergencies nearv ­ 0. Second,
in most works in the literature on Schwinger bosons th
identity :B

y
ijBij: 1A

y
ijAij ; S2 (which holds because of

the constraint) is used to simplify the Hamiltonian, leav
ing only the ferromagneticB or the antiferromagneticA
channel in the formulation. In a previous publication [19
we warned that at saddle-point order this produces lar
errors in the ground-state energy, since the above iden
is largely violated when the constraint is imposed on
on average. We proved that this remains true even
ter the inclusion of fluctuations, with the contributions o
both channels being important. Third, in (4) we can wri
ln detA

s2d
' ; Tr ln A

s2d
' ­ 2

P`
n­1

1
n TrsI 2 A

s2d
' dn. If

only the first termsn ­ 1d is added to the saddle-poin
energy E0, the result is equivalent to the energy ob
tained in a full Hartree-Fock-Bogoliubov decoupling o
the quartic boson interactions inH. Moreover, it can be
proved thatEHFB ­ E0 1 En­1 ­

3
2 E0. That is, a fully

self-consistent treatment takes advantage of the unph
cal enlargement of Fock space to lower the energy t
much. The inclusion of terms withn $ 2 correctsEHFB

in nearly 50%.
In conclusion, we have computed the Gaussia

fluctuation corrections to the Schwinger-boson sadd
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point results using collective coordinate methods. A
a concrete application, we investigated the ground-sta
structure of theJ1-J2 model. By considering the spin
stiffness of this model we showed that, contrary to th
saddle-point predictions, there is a quantum nonma
netic phase that intervenes between the Néelsp , pd
and collinearsp , 0d orders, as suggested by numerica
methods. Its stability region is, however, smaller tha
predicted by these methods. Moreover, the comparis
with exact results on finite lattices lends support to ou
calculations, which, in addition, have the advantage
a well-defined thermodynamic limit. Finally, the theory
developed here can be easily extended to spiral phas
[19] which would allow one to investigate, for instance
the ground-state order in triangular [20] andkagomé
lattices [21]. Work in this direction is in progress.
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