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Schwinger-Boson Approach to Quantum Spin Systems: Gaussian Fluctuations
in the “Natural” Gauge
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We compute the Gaussian-fluctuation corrections to the saddle-point Schwinger-boson results using
collective coordinate methods. Concrete application to investigate the frusfiatigcantiferromagnet
on the square lattice shows that, unlike the saddle-point predictions, there is a quantum nonmagnetic
phase for0.53 < J,/J; < 0.64. This result is obtained by considering the corrections to the spin
stiffness on large lattices and extrapolating to the thermodynamic limit, which avoids the infinite-lattice
infrared divergencies associated with Bose condensation. The very good agreement of our results
with exact numerical values on finite clusters lends support to the calculational scheme employed.
[S0031-9007(97)02739-7]
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In recent years there has been a lot of interest in the We will consider a general Heisenberg Hamil-
properties of quantum magnetic systems [1], particularlytonian, H = ¥, J;;S: - S;, where (ij) are links on a
frustrated quantum antiferromagnets (AF). Although thislattice. We write spin operators in terms of Schwinger
interest was initially related to the possible connectiongyosons [5]:5; = %a;f - & - a;, whereal = (ai’fT’alTl) is
between magnetism and superconductivity in the ceramig posonic spinorg is the vector of Pauli matrices, and
compounds, the current activity in the area is now wellpere is 4 hoson-number restrictidn, af,a;y = 25 on
beyond this original motivation. each site. With this faithful representation of the spin

Among the analytical r_nethods used to study qu"?mtu”élgebra, the rotational invariant spin-spin interaction
spin systems, the Schwinger-boson approach [2] is one

- 3o _.optp .t
of the most elegant and successful techniques. Contrafy " be written gsSi '_Sf o Bi-fBif L —AAy. We
to standard spin-wave theory, it does not rely on havingef'ne? the S() invariants A;; = 3., caisaz and
a magnetized ground state, which leads to nice rotationdt;; = 520 a,t,ajcr (¢ = —o,0 = *), and the notation
properties of the results and to the possibility of describ<O: indicates the normal order of operator
ing ordered and disordered phases in a unified treatment. Using boson coherent states to formulate the partition
However, this theory has the drawback of being definedunction, we formally integrate the Schwinger bosons by
in a constrained bosonic space, with unphysical configudecoupling the quartic terms i using two complex
rations being allowed when this constraint is treated as &lubbard-Stratonovich field#;;(r) (» = 1,2 correspond,
soft (average) restriction. This drawback can be in princitespectively, to the fields that couple to the ferromag-
ple corrected by including local fluctuations of the bosonnetic B and antiferromagnetiel channels). This leads
chemical potential [3]. to Z= [[DWDW][DAle A, where the measure

Despite the widespread use in the literature of th DWD W] =[], .(Ji;;/27i)dW;;(r)dW/;(r)  and
Schwinger-boson representation of quantum spin opergp )] = [.. dA;(r)/2#. Here W is the complex
tors, we are not aware of a complete calculation ofconjugate of and the effective action
Gaussian corrections to saddle-point results. In particular,
for frustrated quantum AF such calculations have been 8
sketched several times [2,4,5], but never fully undertaken. 7 — d7'< Z JiWi()W(r) + i2SZ/\i(r)>
In this work we fill up this gap by presenting the general 0 Gir ! ! ;
calculation of Gaussian fluctuations in the Schwinger- _
boson approach. Since the theory presents a lo¢al U + Fo(W, W, 2). 1)
symmetry, we use collective coordinate methods—as
developed in the context of relativistic lattice gaugeThe integration onA comes from the integral represen-
theories [6]—to handle the infinitely many zero modestation of the§ functions which force the boson number
associated to the local symmetry breaking in the saddlerestriction on each site. In (1, (W, W, )) is the free
point expansion. As a concrete application, we studyenergy of a boson gas coupled W, W. In a compact
the existence and location of the nonmagnetic quantumotation where siteif, Nambu §), and Matsubarar
phase predicted to occur as a consequence of quantumdices are summed over in the trace (Tr) operation, we
fluctuations and frustration in thg-J, model [7]. have F,(W,W,A) = Trin M (W, W, A). The dynamical
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matrix 3\41:;:?’(7-) is given by tification of this procedure has been given in the context
7. of relativistic lattice gauge theories [11]: The existence of
M =0, +iddy — W~ le.i) = -M2, saddle-point solutions connected by the continuo(s) U
2 gauge group makes thél® matrix to have infinitely
M2 = ﬂ(Wz_ - W) = M many zero modes, which are the Goldstone bosons associa-
17) 2 17) JU 1y’ . . . _
ted to the spurious local symmetry breaking. In particu

where we have suppressed thelependences to simplify lar, for translational-invariant saddle-point valu&s , =
notation. Itis important to stress that this formal result forWi—; 0, Aio = Ao, transforming to momentum-frequency
Jv must be understood as the limit of a discreteaesh  space there is a zero mode (k, w) = 5%(60)/860ks|sp
[8]. In the functional formulation such a procedure picksin everyk-w subspace. Herg(6) is the vector of gauge-
up the zero-point contributions to the energy coming fromransformed fields (notice thai is aright eigenvector of
the Bogoliubov transformation in the canonical approachthe non-Hermitian matri)CZl@)). To avoid the infinities as-
The action A is invariant under both local gauge sociated to these modes without restoring forces—which
transformationsW;; — W/;e!=%) (= for r = 1, + for  correspond to local symmetry transformations—we intro-
r=2), Ay = A — 9,0;, and global S() rotations of duce collective coordinates along the gauge orbit. Exact
the original bosonic spinors. Consequently, it wouldintegration of these coordinates eliminates the zero modes
be convenient to include external sourcgsn which  and restores the gauge symmetry (in the sense that nonin-
explicitly break the global SQ2) invariance:F, — F», —  variant operators average to zero) [11]. This program can
mM~'n. They are useful to study the spontaneousbe carried out by enforcing in (3) the so-called background
breaking of this symmetry & = 0 as a consequence of gauge condition or “natural” gauge [65(6)T - 3§ = 0.
Bose condensation, which signals the onset of magnetithis condition can be introduced into the functional mea-
long-range order in the ground state [5]. However, insure by means of the Faddeev-Popoff trick, and restricts the
order to avoid the infrared divergencies associated to thiktegration to field fluctuations which are orthogonal to the
symmetry breaking, in what follows we approach thecollective coordinates. At = 0, after carrying out the re-
thermodynamic limit by extrapolation of results on large maining integrations in (3) on the genuine fluctuations, we
but finite lattices. obtain the one-loop correction to the ground-state energy
Up to this point all the manipulations are exact. per site,
To proceed further we resort, as usual, to a saddle-

point expansion. Using the collective notation for the E = _ L deIn( App(K, @) >
fields ot = (W,w, ), the (static) saddle-point values 27 ) o m o] detjzl(f)(k )
WiioWijo and ;o are obtained from the extremal | 4)
equations

Here the Fadeev-Popoff determinamipp(k, w) =
_ ot IMo\ _ |66k, w) - 38k, 0)| (p&(k, ) is the left zero mode
by + Tr{ Go—= 0, () : @) . o
dPo of A® in thek-w subspace), andd | is the projection
of A®@ in the subspace orthogonal to the collective
coordinates.

We have particularized these results for a matkix
which couples a given site to its firstf;} and second
(J2) neighbors on a square lattice. This model with
frustrating J,,J> > 0 has been much studied in recent
years in connection with the physics of the lightly
) ) B I b 2 oy doped Cu@ planes (see [12], and references therein).
In this equationAy = B3 Jij(IWijol> = IWijol>) IS The main problems under discussion are the location
the effective action evaluated at the saddle point, A6d 4 physical properties of a possible nonclassical phase

dA

d¢
where g = (JW,,JWo,28i) and Gy = M, ' is the
bosonic Green function at saddle-point order [9]. After

expanding A to second order in the field fluctuations
around these saddle-point values, we end up with

SP

7= e—ﬂo[[D@T@gz]e*%W'W)‘Af?’. 3)

are the field fluctuations. The matrif ® is given by for intermediate frustratiorw = J»/J; ~ 1/2. In the
@ 92A OMy . M, ordered phases of this model [with magnetic wave vectors
A = W SP= J - Tr(Go a;pg Go—aéo ) Q = (m,m) for small @ and Q = (7,0) for a ~ 1]

the Bose condensate breaks the global23ldymmetry
where J is a diagonal matrix containing the exchangeand its density gives the local magnetization [5]. The
couplings J;; along the diagonal, except for the entriesassociated physical Goldstone modek at 0, Q lead to
corresponding to-A derivatives that are zero. serious infrared divergencies of intermediate quantities,
We stress that the saddle-point expansion of the effeawvhich have to be cured by standard renormalization
tive action breaks the gauge invariance of the theory. Alprescriptions. In order to avoid these problems we have
though the spontaneous breaking of a local symmetry isomputed physical quantities (which are free of these
strictly forbidden by Elitzur's theorem [10], a possible jus- divergencies) on large but finite lattices, and finally
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extrapolated these values to the thermodynamic limit. Irsults [13] shows a good agreement, especially for the 20-
particular, we considered lattices of up @0 X 60 sites, site lattice. The extrapolation to the thermodynamic limit
and checked that the extrapolated values had no sensildleaves a window0.53 < « =< 0.61, where the stiffness
errors up to the digits presented. However, this procedureanishes and the magnetic order is melted by the combined
requires a careful numerical treatment, since finite resultaction of quantum fluctuations and frustration (see Fig. 3).
are obtained by cancellations among products of the veryhis result is in fairly good agreement with the second-
large entries of the matrixA®. order modified spin wave calculation of [17], which pre-
Equations (2)—(4) lead to a ground-state endtgy =  dicts a quantum disordered phase in the range (0.52—0.57).
Ey + E; as shown in Fig. 1. Figure 1 contains the re-Notice that our theory—valid also in the disordered re-
sult for the infinite lattice and also for finite lattices of gion—predicts that fo0.61 < « =< 0.64 the short-range
16 and 36 sites, which allow a comparison with exactAF order is energetically more favorable than the weak
results obtained by numerical diagonalization [13]. Thecollinear order (see dotted line in Fig. 1). However, the
addition of the Gaussian correctidiy [Eq. (4)] slightly  characterization of the true ground state in this region re-
improves the already very good saddle-point valye At  quires the consideration of possible nonmagnetaered
saddle-point order the theory predicts a first order transitiostates [4]. Finally, we have computed the spin-wave ve-
between the two magnetic ground states at some interméacity ¢ in the Néel phase using the finite-size formula
diate frustration¢ = 0.6), with no intervening disordered Egs(N) ~ Egs — a/N>/? and the relation: = 1.4372¢,
phase. This is in contradiction with numerical studies [14][18]. ForJ, = 0 we obtained:; = 1.52J, at saddle-point
and series expansion results [15], which found a disorderedrder, andc, = 1.37J; including the Gaussian fluctua-
purely quantum phase somewhere in the rahges o« <  tions. These values should be compared to the result of
0.6. However, it has been recently shown that these finiteexact diagonalization [13} = 1.28 — 1.44J,, which de-
lattice studies probably did not reach the scaling regiorpends on the cluster sizes considered to extrapolate. In
where the required extrapolation can be trusted [16]. IrFig. 3 we plot the scaling coefficient as a function of
our case, the existence or not of magnetic long-range ordérustration (in the collinear phase this coefficient should be
was investigated by considering the spin-stiffness tensgoroportional to some anisotropy-averaged velocity). Inthe
ps = 9°E(Q)/0Q0Q, whereEgs(Q) is the ground-state Néel phase the spin-wave velocity vanishesvat 0.54,
energy with twisted boundary conditions [14,16]. In par-slightly above the point where the stiffness goes to zero. In
ticular, the corrections to the saddle-point values obtainethe collinear phase the averaged velocity never vanishes,
in [16] lead to the results shown in Fig. 2. It gives the stiff- and actually it blows up at = 0.58. Notably, this is the
ness along one of the lattice directions in @e= (7, 7) value where the stronger stiffness in the AF direction of
phase at saddle-point and one-loop order, on lattices of 1#e collinear order vanishes. More details and a further
and 20 sites (according to numerical studies [14] the tiltedliscussion of these results will be given elsewhere.
20-site lattice has a stiffness closer to the thermodynamic Before closing, it is worth mentioning a few side ques-
limit than regular clusters). The comparison with exact retions we have considered while performing these cal-
culations. First, since the Hamiltonian commutes with
0.3 . . . . the local boson-number restrictions, we considered im-
posing them only through-independent Lagrange mul-
tipliers A;. This reduces the local gauge symmetry

0.3
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FIG. 1. Ground-state energper site Egs as a function of 01 1
J»/J; for lattices of (from top to bottom)V = «, 36, and 16 00 , ) , .
sites. The full and dashed lines give the fluctuation-corrected 00 01 02 03 04 05 06
and saddle-point results, respectively. Points are exact results AP

from Ref. [13]. The dotted line in the randges3 < J,/J; <

0.64 indicates the region without long-range magnetic orderFIG. 2. Spin stiffness, in the Néel phase for (a) a 16-site
Notice that for clarity the curves correspondingNo= « and lattice, and (b) a tilted 20-site lattice. Symbols and line types
36 have been shifted upwards in 0.1 and 0.05, respectively. are the same as in Fig. 1.
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T - T - point results using collective coordinate methods. As
a concrete application, we investigated the ground-state
structure of theJ,-J, model. By considering the spin
stiffness of this model we showed that, contrary to the
saddle-point predictions, there is a quantum nonmag-
netic phase that intervenes between the Néel)
and collinear(7,0) orders, as suggested by numerical
methods. Its stability region is, however, smaller than
predicted by these methods. Moreover, the comparison
with exact results on finite lattices lends support to our
calculations, which, in addition, have the advantage of

O =2 N W b~ O
7

0.0 . . a well-defined thermodynamic limit. Finally, the theory
00 02 04 | /‘?5 08 1.0 developed here can be easily extended to spiral phases,
21

[19] which would allow one to investigate, for instance,

FIG. 3. Scaling coefficient proportional to the spin-wave the ground-state order in triangular [20] arheégome
velocity (top panel) and spin stiffnesp, (bottom panel) lattices [21]. Work in this direction is in progress.
extrapolated to the thermodynamic limit. Line types are the

same as in Fig. 1.
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