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Precision Ginzburg-Landau Solution of Ideal Vortex Lattices
for Any Induction and Symmetry

Ernst Helmut Brandt

Max Planck Institute fir Metallforschung, Institut fur Physik, D-70506 Stuttgart, Germany
(Received 10 October 1996

A method is presented that solves the Ginzburg-Landau equations for the ideal Abrikosov vortex
lattice in type-ll superconductors with high precision for arbitrary induction, Ginzburg-Landau
parameter, and vortex lattice symmetry. This iteration procedure excels previous one-dimensional
circular cell methods and approximate variational methods, and is easily adapted to anisotropic and
unconventional superconductors. Selected results are given for the order parameter, the form factors
of the periodic magnetic field measurable by neutron scattering, reversible magnetization curves,
and the shear modulus of the vortex lattice, which could not be obtained by previous methods.
[S0031-9007(97)02718-X]

PACS numbers: 74.60.Ec, 74.20.De

After Abrikosov’s [1] famous solution of the Ginzburg- dimensional (1D) variational method was generalized to
Landau (GL) equations from which he predicted the exis{arger reduced inductions = B/B., by Haoet al. [5].
tence of a lattice of quantized magnetic vortices in type-IIThe Clem-HadB(x, y) atb << 1 andx > 1is an excellent
superconductors, much effort has been devoted to exterapproximation to the exact GL result obtained below.
Abrikosov’s approximate analytical solutions, valid at high A variational method, which, in principle, allows one
or low magnetic fields, to the entire field range. From histo compute the periodic GL solution to any desired ac-
periodic solution at3, = B = B, and the isolated vor- curacy, was developed in Ref. [6] by expressing the GL
tex solution atB, — B.;, B — 0, Abrikosov qualitatively ~ free energyF in terms of the real and periodic functions
obtained the magnetization curg¢B,) in the entire field B(x,y) and w(x,y) = | (x,y)|* [the complex GL func-
range and successfully explained the experiments. Herion ¢ (x,y) is not periodic and not gauge invariant] and
B, denotes the external fiel® = (B(x,y)) = ®,/S the  minimizing F with respect to a finite number of Fourier
spatially averaged magnetic fiel#(and B are alongz)  coefficients. At that time, computer efficiency allowed
with &y = h/2e (or &g = hc/2e) the quantum of flux only for a small number of variational parameters, one for
and S the area of the lattice celB., = ®,/(27£?) and  w and up to five forB, restricting such computations to
B.i = (Ink + 0.5)®y/(47A?) are the upper and lower b = B/B., = 0.1. The numerical effort of such a mini-
critical fields introduced by Abrikoso\¢ is the coherence mization of F increases with a high power of the number
length, andA the magnetic penetration depth of the GL of variational parameters, and it is not very precise due to
theory defining the GL parameter= A/£. Type-ll su-  rounding errors.
perconductors exhibit = 1/+/2. This Letter presents an iteration method which over-

A first analytical extension of theé3., solution was comes these restrictions and allows one to compute over
elaborated by Eilenberger [2], but this complex seriesl000 Fourier coefficients d#(x, y) andw(x, y) with high
expansion applies only in a narrow field range belowprecision even on a personal computer. The method ap-
B.». The numerical extension of ti&., (isolated vortex) plies down to very low inductiond0 3 = b < 1, to
solution by Ihle [3], approximating the hexagonal Wigner-arbitrary symmetry of the vortex lattice, and to all rele-
Seitz cell of the vortex lattice by a circle, applies to vant GL parameter$/+/2 = k < . This genuine two-
the entire field range and even yields the corrB¢t  dimensional (2D) method allows one to compute, for the
value. This circular cell method computes rather accuratérst time, the shear moduluse and the form factors of
magnetization curves, but, in principle, cannot give thethe triangular (and any other) vortex lattice in isotropic and
energy difference between various lattice symmetries, thanisotropic GL superconductors for any valuebadind «.
shear modulus of the triangular lattice, and the formHere we describe this method for conventional isotropic
factors (Fourier coefficients) of the periodic magnetic fieldGL superconductors and present some selected results.
B(x,y), which nearB., should have alternating signs. We start from the average GL free energy density
This restriction applies also to Clem’s [4] elegant method, , gl v 2 R
which atB < B, approximates the GL order parameter - =/ = <—|¢| + = ‘ <— - A>¢ +B >
l(x,y)|?> by the trial functionr?/(r> + £2) (r> = x> +
y?) that allows an analytic solution of the second GL (1)
equation forB(x,y); the vortex core radiug, is then inthe usual reduced unif/u, (or B /4) for f, /2 B.
determined by minimizing the GL free energy. This one-for B, and A for lengths, withB, = ®,/(\/8 &) the
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thermodynamic critical field A is the vector potential and although both terms diverge at the vortex positions; this

B = 2B = V X A the local field. In these units, one has relation follows from (6) and (7) using@ = ®,/S =

& =1/k, B, = k, and ®y = 277 /k. Writing the GL
function asy(x, y) = w(x,y)' > exdie(x,y)], with @ =
|¢|> = 1 and introducing the supervelocitQ(x,y) =
A(x,y) — Vo(x,y)/k, we may writef in terms of the
gauge invariant real functions(x, y) andQ(x, y),

27 /(kS). The useful formula (7) may be proven via the
complexB,, solutioni,(x,y); it means that neaB,, the
third and fourth terms irf [Eq. (2)] are equal.

Following previous ideas [6], one might compute ap-

proximate solutionsw and B by using a finite num-

ber of Fourier coefficientaix and bx and minimizing

+ wQ? + (V X Q)2>. f(B, k,ax, bx) with respect to these coefficients. How-
ever, a much faster and more accurate solution method is to

(2)  iterate the two GL equationf /6w = 0 andsf/6Q =

Without restriction of generality, using only the inversion O Written in an appropriate form.  Namely, the iteration

symmetry of the lattice and assuming obg per vortex, IS stzable and converges rapidly if one isolates a term
we may express, B, andQ as the Fourier series, (=V*= + cons) (w, B, Q) on the left-hand side and puts the
remaining terms to the right-hand side as a kind of “inho-

f=<—w + w? + (Vo)

2 )

w(r) = Z ax(1 — cosK - r) ) mogeneity” of such London-like equations, e.g.,
K
] (—V2 + 2K2)w =2k’Qw — w? — a)Q2 - g), 9)
BE) = B+ 3 bicosK -, @ ()0 = 0 — (0~ @)Qs. (10)
Q(r) = Qu(r) + Z bx # sinK -r, (5) With the abbreviationg = (Vw)*/(4x*w), Q» = Q —
K K Q4 VXQ,=B—B, and @ = (w) =Yg ax. In

(9) and (10) | introduced the “penetration depths”
(2k?) 12 = £/V2 and @~ '/2 = A/@'/? (in real units)
which stabilize the convergence. Acting on the Fourier
seriesw [Eq. (3)] and Q, [Eq. (5)], the LaplaciarV?

with r = (x,y); the sums are over aK,,, # 0. For
vortex positions R = R, = (mx; + nxa,ny;) (m,n
integer), the reciprocal lattice vectors ake= K,,, =
27 /S) (mys, nx; + mxy) with S = x;y, = ®y/B the ) A ) -
unit cell area. For the triangular lattice, one has=  Yiélds a factor—K~; this makes the inversion of (9) and
x1/2, y» = x1+/3/2, and for the square lattice, = 0,  (10) trivial. Using the orthogonality of the functions
v = x1. Qulx,y) is the supervelocity of the Abrikosov COSK - r, one obtains from Egs. (3) and (4k =

B., solution, which satisfies —2w(r)cosK - r) and bg = 2(B(r)cosK - r). The
convergence of the iteration is considerably improved by
adding a third equation which minimizgs[Eq. (2)] with
respect to the amplitude @é; this step gives the largest
decrease of. The resulting three iteration equations for
the parametergsg andbg read

VX Qu= [B — @y > &(r — R)}i, (6)
R

where 8,(r) = 8(x)8(y) is the 2D delta function. For-
mula (6) shows thaQ, is the velocity field of a lattice
of ideal vortex lines but with zero average rotation. Near

20(02 _ 2 .
each vortex center, one h@s (r) = z X r'/(2«r"?) and 4w 20 + 00" + g)cosK - 1)

ag = , 11
w(r) « r?withr’ = r — R. Q4(r) may be expressed as : K> + 2¢? -
a slowly converging Fourier series by integrating (6) using,, = 4x - (0 — w0? — g)/{(w?), (12)

divQ = divQs = 0 [6]. Itis, however, more convenient _
to takeQ, from the exact relation by = —2[wB + @(B — B) + p]cosK - r) (13)

VwA X Z K2 to ’
Qu(r) = PP (7) _

Kwa with p = (Vo X Q)2 = Q,0w/dy — Qydw/dx and

g = (Vw)?*/(4x’>w) = (V|y|/k)* as above.

Very stable and fast convergence for angnd« value
is obtained by starting witlig = ak (8) andbx = 0,
then iterating Egs. (11), (12), (11), (12), etc., a few times
to relax w, and then allowing als® to relax by iterating
in general, andig = —(—1)" exp(—7vy/3) (v = m> +  (11), (12), (13),.., (11), (12), (13). After typically 25
mn + n?) for the triangular lattice. The, [Egs. (3) and  such triple steps, the solution stays constant to all 15 digits
(8)] is normalized tdw4(x, y)) = 1;thisyields the strange and the GL equations are thus satisfied.
relation Y ag =1 for any lattice symmetry. Another Figure 1 shows the resulting profiles af and B for
strange property of the Abrikosov solution [Egs. (3) andx = 1.5 since the spatial variation a8 is more visible
(8)] is that (Vws/wa)? — Viws/ws = 47/S = const, at low «, see also Fig. 3 below. The shape of the order

wherew,(x, y) is the AbrikosovB,, solution given by the
rapidly converging series (3) with the coefficients [7,8]

=~ e K, S8 ®)
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lattices coincide within line thickness and thus cannot be dis-

FIG. 1. Profiles of order parametex(x, y) and magnetic field tinguished in this plot.

B(x,y)/B., along thex axis (solid lines) andy axis (dashed

lines) for a triangular vortex lattice at reduced inductions

b =B/B, =0.9,0.8, 0.6,0.4, 0.2, 0.05, 0.01 for k = 1.5. zation curves obtained in this way are depicted in Fig. 2,

confirming the qualitative curves given, e.g., in the reviews
parametew is qualitatively the same for all/+/2 = x <  [10,11]. For comparison with muon-spin rotation experi-
o, with a narrower vortex core at smaller ments, the fieldB.x at the vortex centers, the minimum

For each set of parametebs «, x»/x;, andy,/x;, the field Buyjn, a[ld the externgl fiel®, are plotted in Fig. 3
computation takes a few seconds on a Pentium PC. Sind€rsusb = B/B., for various « values. Note that the
all terms in (11)—(13) are smooth periodic functionsrof field in the vortex center always exceeds the external field;
high accuracy is achieved on an equidistant 2D grid, e.g.,
X, = (l - I/Z)XI/NX (l = 1,...,Nx) and yj = (] -
1/2)y2/(2Ny) (j = 1,...,Ny,2Ny, = N.y»/x1). These
N = NN, = 100-1000 grid points fill the rectangular
basic areal0 = x = x;, 0 =y = y,/2, valid for any
parallelogram unit cell. Averaging..) then just means
summingN terms with constant weightt/N. | consider
all K,,, vectors in a half circle|K,,,| = Kmax With
K2, = 20N /S chosen such that the numbgf of the
K., is slightly less than the numbaf of grid points. The
M X N matrices coX - r and sirK - r are tabulated.

The high precision of this method may be checked with
the identityB(x, y)/B.» = 1 — w(x,y), which is valid at
k = 1/+/2 for all b; this is confirmed with errorx10°.

To obtain the equilibrium applied field, or reversible
magnetizationM = B — B,, one may use the relation
B, = df/dB. A much more convenient way, which
circumvents taking the numerical derivative of the free
energy densityf [Eq. (2)], is to use the virial theorem

Bmax, Bmin’ Bo

discovered recently by Doria, Gubernatis, and Rainer [9], c2
who found that (still in units of/2 B,) FIG. 3. The maximum magnetic fiel,.., (upper solid lines)
) ’ occurring at the vortex centers and the minimum fidlg;,
B, ={(w — w” + 2B*)/(2B). (14) (lower solid lines) of the triangular vortex lattice compared

) ) ] with the applied fieldB, (dashed lines) and average induction
This useful discovery shows that GL equations and thes (diagonal line) in unitsB,,, plotted versus» = B/B,, for

Abrikosov solution are still active. Reversible magneti-« = /0.5, 0.75, 0.85, 1, 1.2, 1.5, 2, 3, and5.
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TABLE I. The first five Fourier coefficientéx = b,,, (4) of
the triangular vortex lattice in the limik > 1 divided by the
London limitbx = B/(1 + K?A?).

B/B.» byo by by by b3

0.990 0.0051 0.0004 —-0.00009 0.00000 0.00000
0.950 0.0256 0.0021 —-0.00038 0.00000 0.00000 i
0.900 0.0514 0.0045 —0.00061 0.00002 0.00000  °g.02
0.800 0.1036 0.0099 —-0.00052 0.00009 0.00000 3
0.700 0.1570 0.0168 0.00058 0.00025 0.00002
0.600 0.2121 0.0259 0.00319 0.00059 0.00008
0.500 0.2699 0.0382 0.00826 0.00133 0.00026
0.400 0.3322 0.0563 0.01767 0.00297 0.00078
0.300 0.4026 0.0853 0.03572 0.00703 0.00239
0.200 0.4901 0.1394 0.07475 0.01914 0.00828 0.00 0 — y
0.100 0.6241 0.2710 0.18558 0.07250 0.04152 B/Bc2
0.050 0.7415 0.4391 0.34751 0.18871 0.13119
0.020 0.8579 0.6564 0.58224 0.42135 0.34628FIG. 4. The shear modulus, of the triangular vortex lattice
0.010 0.9139 0.7805 0.72679 0.59793 053028"'] unitsB%/,uo, plot'_[ed versug for k = 0.75, 0.85, 1, 1.2, 1.5,
0.005 09483 0.8630  0.82677 0.73408 0.68164% 3 5> and30, equivalent tox = o.
0.002 0.9718 0.9238 0.90252 0.84514 0.81050
0.001 0.9796 0.9471 0.93201 0.89037 0.86524
exp(—consf+/b), at k 2 K b < 1: ¢ = b/4, and at
b = 0.7: ces = 0.177(1 — b)? in units B2/ uo, in agree-
ment with the analytic result [7,13,14].

In conclusion, our novel iteration method to obtain the
the magnetization — B, — M « 1 — b. is larger. 2D periodic solutions of the isotropic or anisotropic GL

I list now some new results which could not be obtainedequatlons supplements the 1D circular cell method [3] and

by previous methods. Note that so far our knowledge ofoUrpasses in precision the 2D variational method [6]. It

the broperties of the vortex lattice was almost entirel allows one, for the first time, to calculate in the entire field
prop ; ) i S yrangeO < B < B, the form factors of magnetic field and
based on the low field and high field approximations,

o e .. ~rorder parameter, and the free energy and shear modulus
whose accuracy was not known in principle. One striking

example is discussed in Ref. [12], namely, the pronounce f vortex lattices Wl.th given symmetry. 'DISCUSS.IOH Of.
cusplikeB dependence of thé forr’n factolvé at very low hese results, analy_tlc flts,_ and the extension to anisotropic
inductionsB < B.,, where the London theory predichs superconductors will be given elsewhere.
independence.
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. . [9] M. M. Doria, J.E. Gubernatis, and D. Rainer, Phys. Rev.
tinuously, then the free energy is found to vary almost B 39, 9573 (1989):41 6335 (1990): U. Klein and

exactly sinusoidally, €.9£(x2) = fo + [1 + cod2mxa/ g pgtinger, Phys. Rev. B4, 7704 (1991).

x1)]1f1 for the triangular Iattlge. Thezshear modulus of this 0] A L. Fetter and P.C. Hohenberg, Buperconductivity,

vortex lattice is thuses = y29%f/dx; = 3m2f; or edited by R.D. Parks (Marcel Dekker, New York, 1969),
ces = B3m°/2)[f(x2 =0) — flxa = x1/2)].  (15) p. 817,
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15% smaller. Fork = 10, one has ab < k2 cg5 [14] R. Labusch, Phys. Status Solig, 439 (1969).

2211



