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We study interacting electrons in two dimensions moving in the lowest Landau level under the
condition that the Zeeman energy is much smaller than the Coulomb energy and the filling factor is
one. In this case, Skyrmion quasiparticles play an important role. Here, we present a simple and
transparent derivation of the corresponding effective Lagrangian. In its kinetic part, we find a nonzero
Hopf term, the prefactor of which we determine rigorously. In the Hamiltonian part, we calculate, by
means of a gradient expansion, the Skyrmion-Skyrmion interaction completely up to fourth order in
spatial derivatives. [S0031-9007(97)02620-3]
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Two-dimensional electron gases, as manufactured itron gas is equivalent to an isotropic itinerant ferromagnet.
GaAs heterostructures, show a rich variety of features ashe latter can then be described by a three-component
the strength of a magnetic field or the particle densityorder parameter in a 2D coordinate space, i.e., just by the
is varied. Most prominent among these are the quan©(3) nonlinear sigma model [7—9] in which one finds
tum Hall effects (QHES) at integer and fractional filling topologically nontrivial spin textures, the Skyrmions.
factorsv (v = N./Ng, whereN, and Ng are the num- Evidence for a realization of these unusual excitations in
ber of electrons and the orbital degeneracy of the Landaa 2D electron gas under a strong magnetic field has re-
level, respectively). The existence of a well-definedcently been uncovered in a number of experimental papers
single-particle spectrum of discrete, spin-split Landau lev{10—13] which use quite different techniques.
els allows one to explain the integer QHE. Until recently Recently, there has also been a lot of theoretical work
it was accepted that when in such a system the chadealing with the case of filing factar near and at 1,
acteristic Coulomb energy is less than the cyclotron ent.e., with two spin-split Landau sublevels; this case is of
ergy, the ordinary low-lying excitations are electron-holeinterest here. In the problem of a double-layer system,
pairs of opposite spins (spin excitons [1,2]). These havéntimately related to our case, several derivations of a La-
a nonzero kinetic energy with a strortgdispersion due grangian for the Skyrmions have been discussed in [14].
to the electron-electron interaction. In a completely filledror finite |» — 1|, a periodic arrangement, a crystal of
Landau level, the energy gap for creating a widely sepaskyrmions was studied [15]. Starting from a Lagrangian
rated quasielectron-quasihole pair, a large spin excitofescription, Ref. [16] discussed finite temperature prop-
(i.e., one withk — <), is apart from the Zeeman split- erties within a scaling theory. The many body pertur-
ting governed by the exchange energy associated with jgation theory approach was employed in [17] to study
hole, and is equal thg|upB + /3 . Heregistheef- the thermodynamics. A different line was followed by
fective Single particle Landé factor amg = (Ch/eB)l/Z one of the present authors [18] It builds on the obser-
is the magnetic length. This is in qualitative agreemenvation that the Hartree-Fock (HF) approximation is valid
with experiments on the temperature-dependent longitudfor a smallg factor, when the Skyrmions contain many
nal resistance in the thermally activated regime [3,4].  reversed spins. Then, the HF state is parametrized by a

Recent theoretical investigations [5,6] near filling fac- unit vectors(7) related to the spin density. The energy is
tor » = 1, however, revealed that the interplay betweeninvariant against a uniform rotation @ Expanding the
Zeeman and Coulomb interaction results in a more comHF energy in spatial derivatives leads to0d3) nonlin-
plex type of excitations with unusual spin order whichear sigma model with a topological term (describing the
can be described as Skyrmions. It was shown [5mapS; — S,). Here, the latter has eeal prefactor,in
that the energy gap required to create a widely separatg@markable contrast to other cases of physical realizations
Skyrmion—anti-Skyrmion pair, is only half of the gap re- of this model, e.g., the Heisenberg chain wherenaag-
quired to create a large spin exciton. Skyrmions appeareitary prefactordescribes the difference between integer
originally in condensed matter physics in the context ofand half-integer spin, cf. [9,19].
the Heisenberg ferromagnet as solutions of @@) non- There are two very important problems connected with
linear sigma model in two dimensions for nonzero val-the physics of Skyrmions. The first regards the interaction
ues of the topological charge [7]. Provided now that thebetween the Skyrmions. In order to describe this properly,
Zeeman energy is less than the Coulomb energy, the elethe gradient expansion of the energy functional [18] valid
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in the case of a very small Zeeman energy should be coriilling factor » = 1. We write the HF state alyr) =
tinued at least up to the fourth order in derivatives. TherA;f,IO> (denoted byl|) in [18]) where the creation

second problem lies in the dynamics of the Skyrmionsoperatorsif of the single particle HF states are given by
and their spin and statistics. These are determined in

the Lagrangian by the terms containing time derivatives. A, = Z(U,,,,,,&,,] + Vo by, 2
Now the main theoretical question is how derive the . P

corresponding macroscopic Lagrangian from the microWith . .

scopic Hamiltonian of interacting electrons in two Spin-y, _ i/ cosie"‘z’/z, V= ¢ sin ie_,-(z,/z_ 3)

split Landau sublevels. The particular challenge here lies

in the quantum nature of the Skyrmion excitations. Their The matriced7 andV represent a transformation of
spin, e.g., is obtained from the action corresponding to aand j,, which respects the anticommutation rules. They
adiabatic rotation of a Skyrmion through an angle ofare parametrized by three Euler anglg&), 6(7), and
2w, as is explained nicely in [20]. The action for this 4(7) as follows. The elementg, ,, of the matrix
adiabatic rotation, now, is determined by the “Hopf term” gre to be calculated with the Landau states frpfii) as
[9,20] which is topological in nature and therefore, obvi-lpp’p, = [¢(#)],,, and correspondingly fof and . In
ously, cannot be found by a simple generalization of theyj| the calculations below, we shall use the techniques de-

classical model, but rather needs to be derived from th@ek)ped in [18] For each matrifdy define a Correspond-
microscopic Hamiltonian of the electrons. To draw thising function

connection constitutes the objective of the present work.

So far, it was unclear whether the prefactor of a Hopf term M(G) = Z e"‘f*"’“fy/z)Mprp . 4
in the action is nonzero and how it could be found from p

microscopic calculations. In a different, but related con-Then, e.g.,

text, the case of the quantum Heisenberg antiferromagnet _ _lqz d’r . i . d?r _ . igi
in two spatial dimensions, it has been shown that the eff(q) = ¢ 4 f Ey. 0(F)e = j Ey O(F)e "7
fective action doesot contain a Hopf term [21,22]. In 5)

this Letter, we set out to give for our case, i.e., for inter-
acting electrons completely filling just one of two spin-
split Landau sublevels, a complete derivation of all part

6(7) differs from 6(7) in that it is averaged over the area
Sof one flux quantum. Since we are interested in a gradient

of the effective action up to and including the fourth ordere?pﬁns'on n WhI'Ch ffl:ncr?ons vary ?Io_v(\;ly ﬁn the sclale
in derivatives. This is not a trivial task, since we are ex-O! the magnetic length, the renormalizéds the natura

pecting terms which are total derivatives as the Hopf ter anab_le in which we expect to EXpress our resul_ts. In the
[23] and thus can be easily overlooked. Our treatmen ollowing, we repeatedly need functions of matrices as in

reveals the full SU(2) symmetry of the problem which is 3). With.the definition (4) and using the compositiop rule
displayed by the kinetic part of the action. The Hamilton-Ed- (20) in [18] we get up to fourth order in gradients,
ian part, on the other hand, shows SU@f1) symmetry. €9~ —~
With our result, the statistics and the interaction of the [ d?q ;. 0. 4 0(7)
Skyrmions are then rigorously determined. As far as wel 25 ¢ {COSE}(‘]) =[1+O("]cos > ©
are aware, this is the first case in condensed matter theory =~ | ) )
in which one can calculate a nonzero Hopf term from the2nd similarly for the other functions in (3). _
microscopic model and thus determine the statistics of the We now proceed with our derivation of the effective
quasiparticles. Lagrangian. The HF approximation &f reads [18]

We study interacting electrons in the lowest Landau AN Tro o Cant o
level. Using the Landau gauge, the destruction operator (H) = Z{Z[V(Q) TE(@)IN(@N(=4)
of a spin up (down) electron with linear momentyms 1

denoted bya, (b,). Then, the Hamiltonia#/ reads —27E(q) Y. Sf(a)Sf(—zl)}. (7)
A 1 - - j=x.y.z
—_ — L .\'( 27 l) 2 ~ o > .
H = ) Z Vig)e!trr Here, E(g) = f(jT”)zV(p)e”"q, and the matrix cor-
@-pr-p2 responding to the HF expectation value of the charge-
x [a} al aya, + (a— b) + 2af bl b,a,].  densityN(g) is given by
(1) N=0'0+ ViV, (8)
Here, as in [18]V(q) = ¢ 972V (q), whereV(g) is the  while the matrices corresponding to the HF expectation
electron-electron interaction, ang = p; — ¢,,p> =  values of the vector components of the spin-denSity;)

p2 + gy. All lengths are measured here in units of theare
magnetic lengtiy. The scope of this paper is confined

SR ot
to the case of one completely filled Landau sublevel, [0TU = VIV]. (9)

P
§ 48 =V, 8=
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N and$/ and thus (7) do not involve the anglewhich, anglesé and ¢, cf. [25]. The ¢ degree of freedom
therefore, was not taken into account in [18]. Here, itdecouples in this part of the action. Since it also
will be necessary to keep the transformation as general aies not enter the definition of the spin and charge
in (3) as will become clear in the sequel. density, cf. [18], one would have a model with symmetry
After having defined the Hamiltonian and the HF state,SU(2)/U(1) for 7, if it were not for the second patf,*”
proceeding now to evaluating the effective action, wewhich we derived here for the first time.
consider time dependent HF statdg;r) parametrized by~ £,°" contains, first, a nonzero Hopf term and also
W(7,1), 6(7,1), and ¢ (7,1). Then, our task is to expand an additional total derivative in time. The Hopf term is
the effective Lagrangian (real time) the linking coefficient of a smooth mag; — S, [26].

L o= (Wyplio,|Vyr) — (Vyp|HIW,p) (10) Usually, it is expressed as [23]

with respect to gradients in the fields 6, and ¢ up to Ho o = e fd2 " (49 ) (9.9 16
and including fourth order. Hopf = 472 rdie?"(270,2) (0,270,2).. (16)

Kinetic part—In calculating Taking for the spinot

_ . _ Ao At Lo 7 =
Ly = (Yurplio | VYur) ;<0|Apl3tA,,|0> ;= <65(¢*¢) Cos%,ei(‘“"” sin%), (17)

= D> AUy pid U, + Vppid Vi b (1) then the unit vectoi = z*5+ (o’ are the Pauli matrices),

_ P . _ ~and we identifyHyopr With the first term in brackets of
there is a delicate point. After taking the derivatives,oyr result (14). Its prefactor is such that tk angle
one should not use such properties of the trace agescribing the statistics of the Skyrmions in Ref. [20] is
cyclic permutations, since the sums in question do nogqual tosr. Thus, in the language of [20], the Skyrmions
converge ab_solutely. Disregarding this, one would mis%arry spin % The microscopic derivation of this is
total derivatives and hence an important part of thene first of the main results of the present paper. The
result. Consequently, we first get the functiofig,?)  aqditional term in (14) finds a quite natural explanation:
corresponding td/, ,,, etc., and then calculate It enters in such a way that this part of the density of

d’q ~ . .. . the effective Lagrangian becomedadal spatial gradient
Ly = f E{U(_q’t)’alU (¢,0) + (U= V)}. (12)  (still including a time derivative) without any total time
derivative.

Using again the composition rule Eq. (20) in [18] we Hamiltonian part—Next we proceed to calculate the
find up to fourth order in gradient£; = £ + thop second part in the effective Lagrangian (10). Using the
(a spurious imaginary term iff; turns out to be the time methods described abov&(§) and N(§) = 278(q) +
derivative of the topological charge and hence vanishe§N(g) are expanded in gradients of the fields and also

[24]), E(q) is expanded ing up to fourth order. (We omit
o 1 o — _ . . the time argument which is unnecessary in this part.) In
Le=— [ d=rlo,4(r,1) + cosO(r,1)d,¢(F,1)] lowest order, the spin density in real space is given by
(13) Si(F) = L (7). (18)
and a4
rlop _ -1 f d2r{a($, cosh, ¢) From#, the charge density is determined as
e ey () = 2= i) - 0.7() X ayi(F).  (19)
— SN(#) = — n(¥) - 0,n(F) X d,n(r). 19
_ 4 x )
- at[cosa M}} (14) T
a(x,y)

The next order in the gradient expansion, i.e., second
Here, the symbolg( f1,...)/d(x1,...) denote the Jaco- for §/ and fourth forN, vanishes, and one is left with the
bian determinant déif;/dx;) for three and two variables, calculation of the fourtrl order fa§/. Collecting all terms
respectively. Only the parf, of £, contributes to the together, we findWyr|H|Wyr) = Ly + O(V°) [24]
equations of motion, sincé, " is a total derivative in the EO [ , [1 . )
action. As expected, we find from the kinetics ofa £# = % [ 4 r{z D (0ai) = it + 9y X ay”}

877 a=x,y
system of spin%. L can be expressed in several ways; 3E(0) ’)
N . - ) i B o
here it is given in a form explicitly depending on our rep S ] d*r(An)
resentation of the unit vectar 2m
n = (sinf cos¢,sind sing,cosh) , (15) + 1 Z V(g)|SN@)I~. (20)
which describes the spin in terms of the renormalized 2 F]
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