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One-Dimensional Kondo Lattice at Partial Band Filling
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An effective Hamiltonian for the localized spins in the one-dimensional Kondo lattice model is
derived via a unitary transformation involving a bosonizatiordeliocalizedconduction electrons. The
effective Hamiltonian is shown to reproduce all the features of the model as identified in various
numerical simulations, and provides much new information on the ferromagnetic to paramagnetic phase
transition and the paramagnetic phase. [S0031-9007(97)02679-3]

PACS numbers: 71.27.+a, 71.28.+d, 75.20.Hr

The Kondo lattice model (KLM) describes the interac-to the quantum random transverse-field Ising spin chain
tion between a conduction band and a half-filled narrownear the FM-PM boundary, and using extensive work on
f band, and is thought to capture the essential physics dhis interesting model by Fisher [7], we can obtain a vast
some of the rare-earth compounds [1]. Although inten-amount of information on the transition and the properties
sively studied for two decades, the KLM is still far from of the model near it, as well as information on the PM
being completely understood. Even in the simple onephase.
dimensional (1D) model, and with the conduction band The Hamiltonian of the 1D KLM is given by
less than half filled, there are only two limits in which the
behavior has been analyzed successfully; in the limit of H = —tZ(c}L(,chg + H.c) + JZSf_,- “Seis (1)
vanishing conduction electron (CE) density, and for an- jo J
tiferromagnetic Kondo couplingg > 0, the f electrons
(f spins) form a ferromagnetic (FM) ground state [2]; in 1 f
the strong-coupling limi# — o, and for any filling of the = @o.0'¢fja’s Scj = 1200 Cjo0o.0'Ciol, an? o are the
conduction band, the unpairgdspins are again found to Pauli spin matrices. Fermi operatarg,, ¢j, with sub-
be FM [3]. The intermediate to weak coupling regime,script f refer to localizedf spins, those without re-
away from half filling but at finite CE density, has proved fer to the CEs. We consider antiferromagnetic Kondo
particularly difficult to analyze [3]. couplings/ > 0 and assume the conduction band filling

From the known limiting behavior [2,3], together with n = N./2N < % with N. the number of CEs ani¥ the
a consensus of recent numerical simulations using theumber of sites.
density-matrix renormalization group, exact numerical di- From the strong-coupling expansion [3], it is clear that
agonalization, and quantum Monte Carlo [4-6], a sucthe infinite / on-site spin singlets, in which a CE is
cessful theory of the less than half-filled 1D KLM will strictly localized with anf spin, are magnetically inert:
account for the following ground-state behavior of the The strong-coupling FM appears only at large but finite
spins: (i) At strong to intermediate coupling the unpaired/ via CE hopping to neighboring unpaired sites, with a
f spins are FM at all fillings and show behavior in ac-preferred spin orientation due to broken spin-singlet sym-
cord with the strong-coupling expansion [3]. (ii) As the metry. The interaction identified in the strong-coupling
coupling is lowered, and for finite CE density, the sys-expansion is the Zener double-exchange mechanism. This
tem undergoes a transition to a paramagnetic (PM) statenotivates us to introduce delocalization lengthw > a
with a filling dependent critical coupling in the weak to (a the lattice spacing) which limits the minimum spatial
intermediate range. (iii) At weak coupling, the system isspread of the CEs. The delocalization length models the
characterized by a strong peak in thespin structure fac- qualitative difference between largeand infiniteJ be-
tor at2kr of the CEs. haviors, and has its physical basis in the energy gain for

In this Letter we derive an effective Hamiltonidhsy  CE hopping to unpaireg spins whenever > 0. It re-
from the 1D KLM which reproduceall the observed be- lates to the average spatial spread of the CEs engaged
havior in the intermediate to weak coupling regimH.¢s  in the double exchange process. For example, the delo-
treats thef spins exactly while the CEs are treated usingcalization length in the one CE KLM corresponds to the
bosonization techniques. The essential new ingredient iaffective spread of the spin polaron [2]. For simplicity,
our work is an emphasis on describing delocalized CEs, asg will be taken as an average applying uniformly to the
these are responsible for the observed magnetic behavi@Es. It is important to emphasize thatlimits only the
of the f spins. The problem of accessing the intermediateninimumspread of the CEs and does not significantly af-
to weak coupling regime nonperturbatively is solved usindgect the weak coupling behavior, although it is essential in
a unitary transformation. The effective Hamiltonian mapsorder to describe the strong-coupling FM.

where t >0 is the CE hopping,Sf.,:%ZU,U, c}jg X
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It is well known that 1D electrons may be representedk| < 1/a and A(k) = 0 otherwise, is needed in the Bose
using bosonization techniques. The Bose descriptiofields to ensure that delocalized CEs are described. The
is usually based on the Luttinger model due to its for-normalization factor’N' (a) depends on both the cutoff
mal rigor, but this is not essential. In the present casand the cutoff function, and can be determined only
it is essentialnot to use the Luttinger model, as will asymptotically. Equation (2) will, of course, fail if it is
become clear. Two facts, peculiar to 1D, form theused to calculate number operator,s,l,zci,-gc,ja.. In
basis of bosonization for realistic 1D systems. Thethis case a Fourier expansion gives
first is Tomonaga’s observation [8] that the number
fluctuation operators satisfy Bose-like commutation re- _a . . . .
lations [p,q (k), prg(K')] = P I, rkL/2m on Nrjo = _Eax{¢p(1) + rap(]) + ol () +r0,()]}

a weak coupling long-wavelength subspace, where the 3
right-moving ¢ = +) and left-moving { = —) number
fluctuations to an additive constant. The separate form for the number
operators is manifest also in the Luttinger model and is
pro(k) = Z c:_g(,C,,Jrgg accounted for there with a carefully constructed normal
0<rp<m/a ’ ordering convention and a prescription for the correct

with L = Na. The second is the fact that these numbeitaking of limits [10].

fluctuations generate the 1D state space [9]. The main To derive an effective interaction between thespins
result from bosonization needed here is the representatidrom the bosonized Hamiltonian [obtained by substituting
of the Fermi site operators;, in terms of the bosonic Egs. (2) and (3) into Eqg. (1)], it is sufficient to change
number fluctuationg,, (k). Itis convenientto decompose to a basis of states in which the CEs are coupled to
the site operators into right- and left-moving componentghe f spins. This is achieved using a unitary transfor-

Cio = Do Crjo mation thh U=i(aJ/2.7er)Zj S_}j 0,(j), and .Where
1 o vrp =2atsin(7n). A variant of this transformation was
Crie = 7y Z e ey s first used by Emery and Kivelson for the single-impurity
kp— = <rk<kp+s- Kondo problem, and later generalized to the 1D KLM

with kr = 7n/a, and where the momentum cutoff comes[12]- The usage here is different; indeed the FRiterm _
from Fourier analysis. In the Luttinger model the BoselSe€ EQ. (4) below], whicl was designed to generate, is
representation may be formulated as an operator identitgntirely absent in the previous work. The reason is that a
[10]. For the realistic system we must be satisfied with-uttinger model bosonization will miss anfspin effec-

an approximate representation, but one which generatd&® interaction which is due to theonlocal character of
asymptotically exact results [11]. (Trexistenceof the the CEs. Formally, in the Luttinger model the Bose fields

representation is guaranteed by the completeness of tier(/) and IT,(j) = —a.6,(j) are canonically conjugate
Bose states.) In the thermodynamic limit, and their commutator strictly vanishes unless they are at

the same site. In our system the fields are smeared over
Crjo a rangea and their commutator is finite over roughly

where the Bose fields fow =p,o are defined by 2ma: [¢,(j),11,/(0)]=2id,, Ji(a), where Jij(a)=
P, (j)=i(m /L)Y s0 €™ [vyi(k) = v_(k)]JA(k)/k, with  [; codkja)A*(k)dk. As examples, a Gaussiah(k) =

+ corresponding to the number fieldsy, =¢, exp—a?k?/2) gives Ji(a) = (V7 /2a)exd—(ja/2a)*],

and— to the current fields¢, =6,. The charge and the Luttinger cutoff exp-alk|/2) gives

and spin number fluctuationg, (k) =Y, p,»(k), and  J;(a) = a/[a® + (ja)*]. The Luttinger modeb function

o (k)=>,0p,-(k). Equation (2) has the same form is obtained by takinge — 0 in the last. The effect of this

as in the Luttinger model but with one crucial difference.difference on the transformed Hamiltonigh= ¢~V HeV

The even cut-off functiom\(k), satisfying A(k) =1 for | is dramatic. Keeping all terms,

LS @SS + TN Y F s He]
Amlyp & DIy @) Le fi -
I i

~ N (@)eir™ria o0, Fro, (ol () +ro, ()2 (2)

7 _ QUF 2/ AT21
H="- %{HV(J) + [0:¢, ()]}

X {codK(j) = ¢o(j)] + cod2kpja + ¢,()]} + ZJWZ(Q)ZSWK(J') = do(PDIsin2krja + ¢,(j)1S7;.(4)
J

where K (j) = —i(aJ /2mvr) 3 ;[ ¢.,(). 0,()ISF;. A | system is FM at intermediate coupling at all fillings.
condition for the derivation of Eq. (4) is that the cutoff be The physical basis for the interaction is quite simple.
not too soft. A CE spread over more than one lattice site will carry

The new term in Eq. (4) is the second. SinSg  the same spin over these sites. Because of the term
is not transformed undet/, it is immediate that the J3 ;(n,;; — n.))S}; in Eq. (1), this will tend to align
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the relevantf spins. This interpretation also makes it rated. Following analogous treatments in spin glasses
clear that the interactior/;(«) is short range provided [15], this behavior is well described by taking ¢y ja)
a is finite. We may therefore approximate the FM termas a random variable. The factor multiplying}; in
by its nearest-neighbor form-Jegs Zj S},»S}jﬂ, Jetf = Eq. (5) is then replaced by;, where#h; is drawn inde-
(a?J?/272vp) Ji(a). Although formally this term will pendently from the displaced cosine distributipth)dh
give FM at strong coupling as well, it is important to wherep(h) = (1/C7){1 — [(h/C) — 1}/ andC =
recall that the bosonization describes delocalized CEs. BJN?(a). Note that fluctuations in the Bose charge-
J is too large then there will be significant CE localization number fields¢,(j) offer further support for this inter-
and our approximation is less satisfactory. Note that it ippretation. The behavior of thg spins at and near the
in principle possible to include these effects as well withdestruction of the FM phase is then governed by the
a less crude measure of CE delocalization and with thguantum random transverse-field Ising spin Hamiltonian
sum over; in the FM term restricted to sites containing Herie = —Jetr 2.; S7;87+1 — 2.j h;Sy;. Using extensive
unpairedf spins only. Such alterations will not affect our real space renormalization-group work on this model by
conclusions, except to further support them. Fisher [7] (to whom we refer the reader for details), we

An effective Hamiltonian for thef spins is obtained determine the location of the quantum critical line describ-
from Eq. (4) by replacing the CE Bose fields by theiring the order-disorder transition at
expectation values in the noninteracting ground-state. This J _4m*Na) .

R, . = sin(wn). (6)

step may be justified for the Bose charge-number field ot aJi(a ]
$,(j) by noting that at weak coupling, which is the only The numerical predictive powers . are res_trlcted
regime where any of the fields affect Eq. (4), the chargdy lack of knowledge of N'(a). We would like to
structure factor is free electron like [6]. For the spin fieldsemphasize that such problems besely bosonization
there is less justification, though note that at weak coupling€scription in which physical quantities are found to
these fields will be relatively smooth and will enter Eq. (4)depend on this factor, and are not due to our particular
as simple parameters. Thus while this approximation mafosonization. — Accordingly, the coefficient of &im)
affect the quantitative predictions of the theory, it would!n EQ. (6) is used as a fitting parameter to numerically
not be expected to affect the qualitative behavior. (Furthepbtained critical points [4—6]. A good fit is obtained
evidence for this view was recently provided in a numericaWith J/¢ = 2.5sin(7rn), as shown in Fig. 1. Note that
simulation in which the same general behavior for thethis ignores any functional dependencenobn J or n.
f spins was seen with+J interacting CEs [13].) The For the following discussion, it is convenient to in-

effective Hamiltonian is then troduce a measure of deviation from criticality o
IN[272 N 2(a)vr/a*J Ji(a)] [7], which for the obtained
—Hetr = Jetr 0555541 fitis & o In[2.5¢sin(arn)/J].
i The behavior described h#f. is simply understood

in terms ofclustersof orderedf spins. Reducing from
intermediate values in the FM phase, the infinite cluster
characterizing strong FM is broken up into several large
+ 2IN () ZsinK(j)sin(kaja)S,%j, (5) clusters as the quantum fluctuatiols controlled by the

j ‘ spin-flip interactions, become stronger. The individual
and the spin directions have been reversed for later corglusters are the spin polarons. The system is weakly
venience. Equation (5) is our main result. The remaindefrdered and exists for-0.7 < 6 < 0 with the boundary
of this Letter is concerned with a brief analysisif; to ~ determined by/esr = maxh;}, as shown in Fig. 1. This
show that it gives all the required behavior. Details will iS not a true transition line, but rather marks the onset of
be presented in a paper to follow [14]. a Griffiths phase [16] characterized by singularities in the

To describe the destruction of the FM phase, e free energy over the whole range & For smalls the

in K(j) may be replaced by their eigenvalueg(j) is  correlation length ig ~ 572, beyondlwh!ch the system is
then a long-range object which counts the tof3lto ~ ordered. The spontaneous magnetizafigne: |5|7 with
the left of j and subtracts from that the totsf to the B = (3 — v/5)/2 = 0.38, while for small applied fields
right. (The effects of the non-Luttinger bosonization areH the magnetizationM (H) = Mo[1 + O (H*?!sInH)];
not important heref¢,(j’), 0,(0)] — iw sgr(j’) at large  the susceptibility is infinite with a continuously variable
j') Near the FM phase boundary, and in the thermoexponent. The mean correlation functiGsy;S7; ) —
dynamic limit, it follows thatk(j) = 0 and any transi- Mg = |8|2(&/x)%/%e */¢exd —3(mwx/£)'/3] for x > ¢
tion is described by the first two terms Hi;, with the  and where the averaging is oveth) [7].
second term responsible for spin flips. For incommensu- Further lowering/, we reach the true phase transition
rate fillings, cofkrja) oscillates unsystematically with Eq. (6). The correlation length is infinite, the magnetiza-
respect to the lattice. The large values(@agja) =~ 1, tion M(H) = |InH| # for smallH, and the mean correla-
which are responsible for spin flips, are then widely sepation function(S7;S7;+.) « x 7.

+ 2J:7\f2(a)Z[cosK(j) + cog2kpja)lS};
J
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FIG. 1. Ground-state phase diagram of the 1D KLM. The

solid (critical) line is from Eq. (6) withd7m> N 2(a)/a Ji(a)
used as a fitting parameter to numerically determined points:
the square is density-matrix renormalization-group data of a 75

0.5

disorder increases, the third term Hi.¢ is no longer
negligible. At very lowJ, the last two terms inHgs

will dominate; this corresponds to free spins in a field
with dominant correlations afkr of the conduction
band, and is responsible for the observed peak in the
f-spin structure factor [4—6]. No clusters remain. This
strongly disordered conventional PM phase is indicated
schematically in Fig. 1.

In summary we have derived an effective Hamiltonian
for the f spins in the 1D KLM which reproduces all the
behavior seen in numerical simulations in the intermediate
to weak coupling regime: (if.s; presents a FM phase
at intermediate coupling due to “forward” scattering by
delocalized CEs, and is consistent with known limiting
behavior [2,3]. (i) AsJ is lowered this phase is
gradually disordered due to spin-flip interactions between
the CEs and th¢g spins. A sharp quantum order-disorder
transition occurs to a PM phase at a critical coupling given
in Eqg. (6). (iii) The backscattering interactions leave a
residue correlation &k in the f spins at weak coupling.
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