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Droplet Fluctuations in the Morphology and Kinetics of Martensites
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We present a mode-coupling theory which describes the morphology and kinetics of the nuclea
of twinned martensite droplets within a parent crystal. This involves a “slow” vacancy field th
lives at the parent-product interface. Our theory suggests that aslow quench from the parent phase
produces an equilibrium product, while afast quench produces a metastable martensite. In tw
dimensions, the martensite nuclei grow as strips having alternating twin domains, with well-defined f
velocities. Several empirically known structural and kinetic relations drop out naturally from our theo
[S0031-9007(97)02674-4]
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In modern metallurgical parlance, amartensitic trans-
formation[1] has come to denote any diffusionless, stru
tural transformation resulting in a long-lived metastab
phase with a high degree of short-range order. For
stance, when adiabatically cooled belowTc  910 ±C, Fe
undergoes a first-order structural transition from an f
solid (austenite) to an equilibrium bcc solid (ferrite). A
faster quench produces, instead, a rapidly transform
metastable phase called themartensite. On nucleation,
martensite “plates” (, 1 mm) grow with a constant front
velocity (,105 cm s21) [2] ; fast compared to typical
atomic diffusion speeds. The plates consist of an altern
ing array of twin bcc crystals along the equatorial plan
A significant amount of empirical [2] and theoretical wor
[3–5] accrued over the years has added to our understa
ing of this complex phenomenon. However, as far as
know, a unified theoretical approach addressing both kin
ics and morphology, and capable of describing the me
stable martensiteas well asthe equilibrium ferrite, has not
emerged. In this Letter, we present a mode-coupling th
ory for the nucleation and growth of a product crystallin
droplet within a parent crystal. We show that for slo
quenches, the droplet grows diffusively as an equilibriu
ferrite inclusion, while for fast quenches, the droplet grow
ballistically, as a martensite having twinned internal su
structure, with a speed comparable to the sound veloci

Our mode-coupling dynamics involves “slow” variable
that change over time scales corresponding to the pro
gation of the nucleation front. The slow variables o
a solid undergoing a first-order structural transformati
are the displacement fieldusr, td and the momentum
densitygsr, td. Imagine, however, a droplet of the produc
nucleating within a parent crystal at timet  0. It is
clear [Fig. 1(a)] that an atomic mismatch is generated
the parent-product interface [2] as soon as the nucleu
formed. This mismatch appears as a discontinuity in t
normal component of the displacement field across
parent-product interface [6]Du ? n̂ ; f and leads to a
compression or dilation of the local atomic environmen
Fig. 1(b). Since the martensite front velocity is larg
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compared to atomic diffusion times, the vacancy field
fsr, td [7] appears as aslow variable, which relaxes
diffusively over a microscopic time scaletf.

A Langevin description of the dynamics of the transfor-
mation requires a free-energy functionalwhich describes
all intermediate configurations between an austenite and
a ferrite. Thus the usual elastic free-energy functional of
a solid,Fel, has to be augmented by an interfacial term,
describing the parent-product interface. As we see below
such droplet configurations do not affect equilibrium be-
havior, though their effect on dynamics is significant.

Nucleation of a droplet of the product of sizeL
and interfacial thicknessj results in a strained crystal.
The free-energy functional [8] of this strained crystal is
given by

F 
X

hR,R0j
c sjR 2 R0 1 usRd 2 usR0djd , (1)

where hRj represent the lattice vectors of the parent
crystal, usRd are the displacement fields, andcsjr 2

r0jd is the direct correlation function [9] of the liquid
at freezing. The above expression is exact atT  0;
corrections are of the order of the rms fluctuations of the
atoms about their perfect lattice positions, which are sma
in the solid phase [10].

FIG. 1. (a) Inclusion of a product (rhombus) in a parent
crystal, showing the discontinuity inu across the parent-product
interface att  0. (b) A 3D plot of the initial value offsx, yd
for the inclusion shown in (a). The four corners in (a) and (b)
are clearly marked.
© 1997 The American Physical Society
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Since the range ofc is of order j, the sum over
hR, R0j in Eq. (1) can be split into two parts, with
hR, R0j being on thesame or on either sideof the
interface. ExpandingusR0d about R in the first part
leads to the usual bulk elastic free-energy function
Fel [10]. However, as argued above, the assumption
continuity breaks down for the second part, and sosuch an
expansion cannot be carried out. In the limit jyL ø 1,
the interface can be parametrized by a sharp surf
G srd  0, with R and R0 lying infinitesimally close
to G  0. Across this interface, the normal compone
of u is discontinuous; limjR2R0j!0fusRd 2 usR0dg ? n̂ ;
su1 2 u2d ? n̂ ; f, where n̂ is the unit normal to
the interface. The discontinuityfsrd, which is simply
j srsrdjG0 2 r̄dyr̄, is the local vacancy field (r and
r̄ are the local and the average densities, respective
In the continuum limit, this leads to the free-energ
functional (to leading order in the discontinuity)

F  Fel 1
g

2j2

Z dr
V0

f su1 2 u2 d ? n̂ g2 j dsGd , (2)

whereV0 is the unit cell volume of the parent. The coeffi
cient g ; V

21
0

P0
j2≠n≠ncsrd, where the prime denotes a

sum across the interface, is clearly thesurface compressi-
bility modulusof vacancies, whose magnitude is of the o
der of the bulk elastic moduli; it is, however, depende
on the local orientation of the parent-product interfac
Since the strainseij ; s≠iuj 1 ≠juidy2 are continuous
across the interface, we replace the delta function
Eq. (2) by a regulatorj21 f1 2 exps2j ≠neijd2g, so that
the final regulated free-energy functional which incorp
ratesall the slow variablesin the problem is

F  Fel 1
g

2V0

Z
dr f2 s≠n eij d2. (3)

At the initial time (t  0), the transformed region
(product) is simply obtained as a geometrical deform
tion of the parent, Fig. 1(a), which fixes the initial valu
of f [Fig. 1(b)]. Having created this discontinuityf at
the parent-product interface, it will diffuse over a m
croscopic timetf. The equations of motion describing
the linearized dynamics of the slow variablesui (noncon-
served) andf (conserved) can be written as

r

2
üi 2

dF

dui
 f=i

dF

df
2 nijkl=j Ùekl , (4)

Ùf 1
g
r

? =f 
1

tf

=2 dF

df
, (5)

where Ùeij is the time derivative of the strain tensoreij .
The inertial termüi (propagation of sound waves) an
solid viscosity tensornijkl (damping of sound waves
[6]) are obtained from the coupling ofu with the total
momentum densityg [11,12]. The second term in Eq. (5
is the Poisson bracket off andg.

We study the consequences of this dynamical theo
in the simple setting of a first-order structural transform
tion from a square (austenite) to a rhombic (ferrite) crys
in two dimensions. Our results, which can be easily e
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tended to the tetragonal to orthorhombic transition (esse
tially a 2D square to rectangular [3]), are of relevance t
structural transformations in alloys like In-Pb, In-Tl, and
Mn-Fe. This transformation involves a shear1 volume
deformation, and so the strain order parametereij has only
one nontrivial componente3  suxy 1 uyxdy2.

We construct a bulk elastic free energy with thre
minima—one corresponding to the undeformed squa
cell (e3  0) and the other two corresponding to the two
variants of the rhombic cell (e3  6e0). The free-energy
functional, in dimensionless variables, is

F 
Z

x,y
a e2

3 2 e4
3 1 e6

3 1 s=e3d2 1 g sf ≠ne3d2. (6)

The three minima of the homogeneous part ofF at e3  0
(austenite) ande3 ; 6e0  6fs1 1

p
1 2 3a dy3g1y2 (fer-

rite) are obtained in the parameter range0 , a , 1y3.
The parametera is the degree of undercoolingT 2 Tc.
The surface compressibilityg for an interface between the
square (e3  0) and the rhombus (e3  e0) positioned along
the y axis is given byg  fc00sld 1 c00sl 1 e0ld 1 c00sjl 2

e0ljdgy2, wherec00srd is the second derivative of a typi-
cal direct correlation function for a two-dimensional fluid
whose range is taken to be of the order of the distance b
tween next-nearest neighbors of the parent square latt
of spacingl.

There are two time scales relevant to our kinetics—th
quench ratet21  sdTydtdyT and the vacancy relaxation
time tf. Accordingly, two extreme dynamical limits
suggest themselves. Whent ¿ tf, the f fields relax
instantaneously tof  0, its equilibrium value. The only
surviving slow fields areui , which obey Eq. (4), with the
free-energy functionalF  Fel. Since we are interested
in the growth of the product nucleus in the parent matrix
it is appropriate to rewrite Eq. (4) in terms of the broke
symmetry variablee3sr, td, which takes the forme3sssr 2

Rstdddd, when the interface is sharp [Rstd is the position of
the interface]. The equation fore3 is purely dissipative,
Ùe3  2dFelyde3. Minimizing Fel with respect toe3,
subject to boundary conditionse3  0 at jrj ! ` ande3 
6e0 at jrj  0, obtains a ferrite nucleus, growing asR ,
t1y2 at late times [12].

On the other hand, whent ø tf, the f fields are
frozen in the frame of reference of the nucleating fron
In this limit, f is nonzero only at the parent-product in
terface, and sogyr in Eq. (5) can be interpreted as the
local front velocity. In the front frame,f obeys a diffu-

sion equation with the diffusion coefficientDf 
q

gytf.
Recasting Eq. (4), in terms ofe3, leads again to a purely
dissipative equation with the free-energy functionalF

given by Eq. (6). To determine the structure of the prod
uct nucleus, we use a variational ansatz fore3, consis-
tent with boundary conditions mentioned above. Con
sider a rectangular nucleus of lengthL (along x̂) and
width W (along ŷ) divided into N twins [Fig. 2(inset)].
The N 2 1 twin interfaces, all of thicknessh, can be
parametrized bye3 sxd, which for theith interface takes
2169
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in-
values2e0 at si 2 1dLyN 1 hy2 , x , iLyN 2 hy2 and
e0 at iLyN 1 hy2 , x , si 1 1dLyN 2 hy2, connected by
a linear interpolation. The strain at the austenite-ferrite
2170
terface varies linearly between0 at x , 2jy2 and6e0 at
x . jy2. The free energyEsL, W d for the nucleus reads
EsL, W d  f DFLW 1 s2I 2 DFd sLj 1 Wz d 1 sN 2 1d sI 2 DFdWh 1 2e2
0sLyj 1 Wyz d 1 4e2

0sN 2 1dWyhg

1 sge4
0yjd f 2L3N22y3 1 L2hsN22 2 N21d 1 Lh2s1y2 2 3N21y4d 2 LzN21sLN21 2 zy4 2 hy2dg

1 ge4
0z 21

°
2W3y3 2 W2j 1 Wj2y2

¢
. (7)
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In Eq. (7), DF ; ae2
0 2 e4

0 1 e6
0 is the difference be-

tween thebulk free energies of the austenite and the fe
rite, while I ; ae2

0y3 2 e4
0y5 1 e6

0y7. The structure of
the growing nucleus is obtained by minimizingEsL, W d
with respect to the order parameter profilee3 (both the
amplitude and phase). Within our variational scheme, th
amounts to minimizingEsL, W d with respect to the inter-
facial widthsh, j, andz and the phase of the order pa
rameterN.

Minimization yields the structural relation (see Fig. 2)

L
N

, Ws . (8)

The exponents , 1y2 with tiny deviations for large
W . The exponents is empirically known [3] to lie
between 0.4 and 0.5. Note that our theory suggests
that Eq. (8) holds at all timesduring the growth of a
martensite as a consequence oflocal equilibrium. Our
prediction for LyN can be verified fromin situ high
resolution transmission electron microscopy studies
growing martensite fronts.

Twinning is a consequence of thef term which is
confined to the parent-product interface. Whent ø tf,
the quench nucleates an inclusion which initially grow

FIG. 2. Plot ofLyN vs W1y2 for a twinned rectangular strip of
lengthL and widthW havingN twins, obtained by minimizing
EsL, Wd, for a  0.01, g  0.001. The inset shows the
variational profile fore3, with interfacial widthsj, z , and h.
The 1 and2 denote regions wheree3  6e0, respectively.
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as a ferrite. Further growth as a single-domain ferrit
is discouraged since the energy cost at the interface
proportional to the square of the discontinuity inu. The
growing nucleus gets around this by creating a twin
Though this costs interfacial energy due tos=e3d2 (which
is small), the contribution fromf is identically zero at the
twin interface, due to symmetry.

From the contour plots of the optimized free energy
plotted in Figs. 3(a) and 3(b), one observes a minimum
in W for largeg , O s1d [Fig. 3(b)]. Since we find that
Wmin , L, the free energy is minimized by thin rectangu-
lar strips reminiscent of “hard” acicular martensites see
in Fe-Ni or Fe-C systems. For smallg , O s1023d, there
is no such minimum inW . As we shall see below, growth
alongL is much faster than alongW , and so the marten-
site traverses the entire extent of the sample alongL,
whereupon growth proceeds alongW . Such single inter-
face growth is indeed seen in soft solids, like In-Tl and
Au-Cd alloys [13]. The critical nucleus is obtained by
locating the saddle point in each of these free energy su
faces. Taking the curvature at the cornersk 

p
jzyLW

as a measure of the sharpness of the growing nucleu
we find the critical nucleus to be diffuse for bothg  1
(k  0.4) andg  1023 (k  1.43). Once past the criti-
cal size, the martensite droplet grows. As growth pro
ceeds the interfacial widths shrink andk rapidly reduces
to a microscopic value. A well-defined front velocity now
emerges. We can determine the late time growth beha
ior of the martensite droplet by requiring that the rate
of energy change, computed from the time derivative o
EsL, W , N , LyWsd, equals the energy dissipation from

FIG. 3. Contour plots of the minimizedEsL, W d in the L 2
W plane for a  0.01 and (a)g  0.001 and (b) g  1. A
comparison of our value forh with typical experimental values
yields a unit of length of 1–2 Å.
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the local evolution of the order parametere3 [14]. Since
e3 follows a purely dissipative dynamics,

ÙE sL, W , N , LyWsd  n
Z

Ùe2
3dx dy . (9)

The time derivative ofe3 can be easily computed from
our ansatz and leads to the following form for the en
ergy dissipation,ne2

0s ÙL2Wyz 1 ÙW2Lyjd. It is easy to
determine the asymptotic solutions forL andW from the
resulting first-order, nonlinear, ordinary differential equa
tion (ODE). AssumingLstd  yLta and W std  yW tb

ast ! ` (a, b . 0), and equating the dominant singula
contributions on either side of Eq. (9), we obtaina  1
andb  1y2. The nonlinear ODE also gives the velocit
yL , p

g. Sinceg is of the order of typical elastic moduli,
the martensite grows with a constant velocity close to t
velocity of sound, in the direction perpendicular to th
twinning plane. Parallel to the twinning planes, the fron
moves diffusively [15].

Thus the martensite nucleus grows inL with velocity
yL, until it collides with other growing nuclei, where-
upon the high elastic energy barriers prevent coalesce
[16]. Growth inW proceeds slowly, up to a point where
W  Wmin (for largeg). Wheng is small, growth inW
proceeds unimpeded, unless pinned by other nuclei or
purities. The solid is now trapped as a metastable mart
site and requires large thermal activation to transform
the equilibrium ferrite. The martensite can thereafter r
duce interfacial energy by deforming the crystal such th
the discontinuity inu (and hencef) vanishes. In addi-
tion, growth can terminate, iff is made to relax (say, by
raisingT), leading to thermal arrest of martensites [2].

A more detailed account will explore a “morphology
phase diagram” as a function of kinetic and structur
parameters. In three dimensions, the possibility of seve
twin variants would lead to interesting stacking pattern
Indeed, hard martensites like Fe-Ni are “lens shape
plates. From our 2D ansatz, we see that the interfac
energy at either end of the rectangular strip can be furth
reduced by decreasingWsx  Ld and W sx  0d, thus
forming a “lens.”

Conventional analysis of the structure and kinetics
martensites [3,5] forces the condition thatu be continu-
ous across the parent-product interface. This boundary
constraint, once imposed, gives rise to long-range str
fields. Minimization of the total elastic energy leads to
twinned product. Demanding this boundary constraint
all times generates a dynamics which is complicated
the fact that it involves moving boundary conditions, a
lowing for analytic solutions only in 1D [5]. Moreover,
conventional analysis [3,5] does not explain why a fe
rite rather than a martensite nucleates for slower rates
cooling. On the other hand, our nonequilibrium statistic
mechanics approach can describe, in principle, the ferr
martensite, as well as all intermediate scenarios result
from different quench rates. Further, our dynamics do
not require imposition of the moving boundary constrain
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since thef field, which lives at the interface, naturally
leads to this boundary condition at late times.

Before we close, we would like to point out some im
portant features not included in our theory. When th
surface compressibilityg is large, the product might pre-
fer to generate dislocations at the parent-product interfac
producing instead internal slip bands [2]. Moreover, fo
solids with low thermal conductivity, transport of hea
across the interface might significantly alter the shape
grains. We are currently working on these refinements
the theory.

We thank S. G. Mishra, T. V. Ramakrishnan, an
S. Banerjee for discussions and encouragement.
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