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Droplet Fluctuations in the Morphology and Kinetics of Martensites
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We present a mode-coupling theory which describes the morphology and kinetics of the nucleation
of twinned martensite droplets within a parent crystal. This involves a “slow” vacancy field that
lives at the parent-product interface. Our theory suggests tlsvaquench from the parent phase
produces an equilibrium product, while fast quench produces a metastable martensite. In two
dimensions, the martensite nuclei grow as strips having alternating twin domains, with well-defined front
velocities. Several empirically known structural and kinetic relations drop out naturally from our theory.
[S0031-9007(97)02674-4]

PACS numbers: 81.30.Kf, 63.70.th, 64.60.Qb, 64.70.Kb

In modern metallurgical parlance,raartensitic trans- compared to atomic diffusion times, the vacancy field
formation[1] has come to denote any diffusionless, struc-¢(r,r) [7] appears as alow variable which relaxes
tural transformation resulting in a long-lived metastablediffusively over a microscopic time scafe;.
phase with a high degree of short-range order. For in- A Langevin description of the dynamics of the transfor-
stance, when adiabatically cooled bel@w=910°C, Fe  mation requires a free-energy functiorvehich describes
undergoes a first-order structural transition from an fcall intermediate configurations between an austenite and
solid (austenit® to an equilibrium bcc solidférrite). A a ferrite. Thus the usual elastic free-energy functional of
faster quench produces, instead, a rapidly transformed solid, F.|, has to be augmented by an interfacial term,
metastable phase called theartensite On nucleation, describing the parent-product interface. As we see below,
martensite “plates”’€ 1 um) grow with a constant front such droplet configurations do not affect equilibrium be-
velocity (~10° cms™!) [2]; fast compared to typical havior, though their effect on dynamics is significant.
atomic diffusion speeds. The plates consist of an alternat- Nucleation of a droplet of the product of size
ing array of twin bcc crystals along the equatorial planeand interfacial thicknesg results in a strained crystal.
A significant amount of empirical [2] and theoretical work The free-energy functional [8] of this strained crystal is
[3—5] accrued over the years has added to our understandiven by
ing of this complex phenomenon. However, as far as we
know, a unified theoretical approach addressing both kinet- F=> c(R-—R +u® —u®)), (1)
ics and morphology, and capable of describing the meta- {R.R"}
stable martensitas well asthe equilibrium ferrite, has not where {R} represent the lattice vectors of the parent
emerged. In this Letter, we present a mode-coupling theerystal, u(R) are the displacement fields, and|r —
ory for the nucleation and growth of a product crystalliner’|) is the direct correlation function [9] of the liquid
droplet within a parent crystal. We show that for slowat freezing. The above expression is exactTat 0;
quenches, the droplet grows diffusively as an equilibriumcorrections are of the order of the rms fluctuations of the
ferrite inclusion, while for fast quenches, the droplet growsatoms about their perfect lattice positions, which are small
ballistically, as a martensite having twinned internal sub-n the solid phase [10].
structure, with a speed comparable to the sound velocity.

Our mode-coupling dynamics involves “slow” variables (a
that change over time scales corresponding to the propa
gation of the nucleation front. The slow variables of
a solid undergoing a first-order structural transformation
are the displacement field(r,s) and the momentum
densityg(r, t). Imagine, however, a droplet of the product
nucleating within a parent crystal at tinre= 0. It is
clear [Fig. 1(a)] that an atomic mismatch is generated al
the parent-product interface [2] as soon as the nucleus i
formed. This mismatch appears as a discontinuity in the

normal component of the displacement field across thE'G: 1. (a) Inclusion of a product (rhombus) in a parent

. A crystal, showing the discontinuity ¥ across the parent-product
parent-product interface [6hu - fi = ¢ and leads 10 & jnierface ar = 0. (b) A 3D plot of the initial value of(x, y)
compression or dilation of the local atomic environment,for the inclusion shown in (a). The four corners in (a) and (b)

Fig. 1(b). Since the martensite front velocity is largeare clearly marked.
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Since the range ot is of order &, the sum over tended to the tetragonal to orthorhombic transition (essen-
{R,R’} in Eqg. (1) can be split into two parts, with tially a 2D square to rectangular [3]), are of relevance to
{R,R’} being on thesame or on either sidef the structural transformations in alloys like In-Pb, In-Tl, and
interface. Expandingu(R’) about R in the first part Mn-Fe. This transformation involves a sheavolume
leads to the usual bulk elastic free-energy functionableformation, and so the strain order parametghas only
F¢ [10]. However, as argued above, the assumption obne nontrivial component; = (i, + uyy)/2.
continuity breaks down for the second part, angsch an We construct a bulk elastic free energy with three
expansion cannot be carried outn the limit £/L < 1,  minima—one corresponding to the undeformed square
the interface can be parametrized by a sharp surfaceell (e; =0) and the other two corresponding to the two
I'(r) =0, with R and R’ lying infinitesimally close variants of the rhombic cele§ = *¢;). The free-energy
to I' = 0. Across this interface, the normal componentfunctional, in dimensionless variables, is
of u is discontinuous; link—r/—o[u(R) — u(R")] - i =
(uy —u_)-h = ¢, where i is the unit normal to F=| aei—ei+e§+ (Ves)’ +y(dadses)’. (6)
the interface. The discontinuity (r), which is simply AR
£ (p()lr—o — p)/p, is the local vacancy fieldp( and The thrge minima of the homogeneous pachﬁltt2e3 =0
5 are the local and the average densities, respectivelyfaustenite) ande; = *eq = *[(1 + 1 —3a)/3] /2 (fer-

In the continuum limit, this leads to the free-energy'it€) are obtained in the parameter rangea <1/3.

functional (to leading order in the discontinuity) The parameter is the degree of undercooling —T..
The surface compressibility for an interface between the

F=F,+ Lz dr [(uy —u_)-aP ¢8I, (2) squareé; =0)and the rhombusg = eo) positioned along
2¢ Qo the y axis is given byy =[c"(l) + ¢ (I + eol) + ¢ (|l —

where() is the unit cell volume of the parent. The coeffi- ¢,1])]/2, wherec”(r) is the second derivative of a typi-
cienty = Qg 'Y’ £29,0,c(r), where the prime denotes a cal direct correlation function for a two-dimensional fluid
sum across the interface, is clearly thaface compressi- whose range is taken to be of the order of the distance be-
bility modulusof vacancies, whose magnitude is of the or-tween next-nearest neighbors of the parent square lattice
der of the bulk elastic moduli; it is, however, dependentof spacing.
on the local orientation of the parent-product interface. There are two time scales relevant to our kinetics—the
Since the strainse;; = (d;u; + d,;u;)/2 are continuous quench rater~! = (dT/dt)/T and the vacancy relaxation
across the interface, we replace the delta function inime 4. Accordingly, two extreme dynamical limits
Eq. (2) by a regulatog ' [1 — exp(—¢£ 9, €;5)°], so that  suggest themselves. Whers 74, the ¢ fields relax
the final regulated free-energy functional which incorpo-instantaneously te) = 0, its equilibrium value. The only

ratesall the slow variablesn the problem is surviving slow fields arer;, which obey Eq. (4), with the
Y 5 5 free-energy functionalf = F.;. Since we are interested
F=Fa+t 2_90[ dr ¢~ (9, €;)". 3 inthe growth of the product nucleus in the parent matrix,

At the initial time ¢ = 0), the transformed region it is appropriate to rewrite Eq. (4) in terms of the broken

o : : try variablees(r, t), which takes the fornes(r —
(product) is simply obtained as a geometrical deformaSyYMMe . . ! >
tion of the parent, Fig. 1(a), which fixes the initial value R(t).)’ when the interface IS Sham’) Is the position of
of ¢ [Fig. 1(b)]. Having created this discontinuiy at t.he interface]. The equation fag is purely dissipative,
the parent-product interface, it will diffuse over a mi- e3b=. _,[?Fg/aea' M'n'rg'.f.mg }ielowitlhlresoro’ec'[dtoei’
croscopic timer,. The equations of motion describing iu Je(f[l (l)_%un batlry con fl '0.?5 - Ia rf—cean eﬂ?;
the linearized dynamics of the slow variables(noncon- ~ ~ 0 atiri =9, oblains a fefrite nucleus, growing

- 1'/2 at late times [12)].
served) andp (conserved) can be written as On the other hand, whem < 74, the ¢ fields are

P — 8F _ SF _ i Vi€ (4) frozen in the frame of reference of the nucleating front.
2 ou; ‘6 VR In this limit, ¢ is nonzero only at the parent-product in-
q.b + B Vo = vaﬁ 5) terface, and s@/p in Eq. (5) can be interpreted as the

I3 Ty O¢° local front velocity. In the front frameg obeys a diffu-

where ¢;; is the time derivative of the strain tensey;.  sion equation with the diffusion coefficient, = /v/74.

The inertial termii; (propagation of sound waves) and Recasting Eq. (4), in terms ef, leads again to a purely

solid viscosity tensorv;j; (damping of sound waves dissipative equation with the free-energy functiorfgl

[6]) are obtained from the coupling af with the total given by Eq. (6). To determine the structure of the prod-

momentum densitg [11,12]. The second term in Eq. (5) uct nucleus, we use a variational ansatz égr consis-

is the Poisson bracket @f andg. tent with boundary conditions mentioned above. Con-
We study the consequences of this dynamical theorysider a rectangular nucleus of length (along £) and

in the simple setting of a first-order structural transformawidth W (along $) divided into N twins [Fig. 2(inset)].

tion from a square (austenite) to a rhombic (ferrite) crystalThe N — 1 twin interfaces, all of thickness;, can be

in two dimensions. Our results, which can be easily exparametrized by; (x), which for theith interface takes
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values—eg at (i —1)L/N + n/2<x<iL/N —n/2 and terface varies linearly betwednat x < —£/2 and*e¢, at
epatiL/N +n/2<x<(i+1)L/N — n/2,connected by x> £&/2. The free energ¥(L, W) for the nucleus reads
a linear interpolation. The strain at the austenite-ferrite fn-

E(L,W) =[ AFLW + (I — AF)(Lé + W) + (N — 1)(I — AR)Wn +2e3(L/é + W/{) +4ed(N — 1)W /7]
+ (yeg/O[2L’N?/3 + L*n(N"2 = N ") + Ly*(1/2 = 3N"'/4) = L{NT' LN = £/4 = 1/2)]
+ el QW33 — W+ WER/2). @)

In Eq. (7), AF = aej — e§ + ¢§ is the difference be- as a ferrite. Further growth as a single-domain ferrite
tween thebulk free energies of the austenite and the fer-is discouraged since the energy cost at the interface is
rite, while I = ae3/3 — ef/5 + €5/7. The structure of proportional to the square of the discontinuitydn The

the growing nucleus is obtained by minimizidg(L, W)  growing nucleus gets around this by creating a twin.
with respect to the order parameter profile (both the  Though this costs interfacial energy due(¥;)? (which
amplitude and phase). Within our variational scheme, thigs small), the contribution frong is identically zero at the
amounts to minimizingZ (L, W) with respect to the inter- twin interface, due to symmetry.

facial widthsn, &, and¢ and the phase of the order pa- From the contour plots of the optimized free energy

rametern. plotted in Figs. 3(a) and 3(b), one observes a minimum
Minimization yields the structural relation (see Fig. 2) in W for largey ~ O (1) [Fig. 3(b)]. Since we find that

L Wnin < L, the free energy is minimized by thin rectangu-

N w7, (8) lar strips reminiscent of “hard” acicular martensites seen

in Fe-Ni or Fe-C systems. For small~ O (1073), there

is no such minimum ifwW. As we shall see below, growth
along L is much faster than alon®, and so the marten-
site traverses the entire extent of the sample alang
whereupon growth proceeds alolg Such single inter-
prediction for L/N can be verified fromin situ high face growth is indeed seen in soft solids, like In-Tl and

resolution transmission electron microscopy studies oﬁu_Cd alloys [13].  The critical nucleus is obtained by
) . Py ocating the saddle point in each of these free energy sur-
growing martensite fronts.

Twinning is a consequence of the term which is faces. Taking the curvature at the cornerss \/£{/LW

confined to the parent-product interface. Wherk 74, as a measure of the sharpness of the growing nucleus,

the quench nucleates an inclusion which initially grows - find the critical nucleus to be diffuse for bogh= 1
q y 9 (k = 0.4)andy = 1073 (x = 1.43). Once past the criti-

The exponento ~ 1/2 with tiny deviations for large
W. The exponents is empirically known [3] to lie
between0.4 and 0.5. Note that our theory suggests
that Eq. (8)holds at all timesduring the growth of a
martensite as a consequencelatal equilibrium Our

800 . ' . . . : cal size, the martensite droplet grows. As growth pro-
4 ceeds the interfacial widths shrink ardrapidly reduces
o | to a microscopic value. A well-defined front velocity now
‘ i i emerges. We can determine the late time growth behav-
wi *+ - + - ior of the martensite droplet by requiring that the rate
600 - l T of energy change, computed from the time derivative of
‘”__ 3 TF’ E(L,W,N ~ L/W?), equals the energy dissipation from
500 |- n 00?
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FIG. 2. Plot ofL/N vs W'/2 for a twinned rectangular strip of
length L and widthW having N twins, obtained by minimizing FIG. 3. Contour plots of the minimize# (L, W) in the L —
E(L,W), for a =0.01, v =0.001. The inset shows the W plane fora = 0.01 and (&)y = 0.001 and (b)y =1. A
variational profile fores, with interfacial widths¢, £, and 7. comparison of our value fon with typical experimental values
The + and — denote regions where; = *e,, respectively. yields a unit of length of 1-2 A.
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the local evolution of the order parameter[14]. Since since the¢ field, which lives at the interface, naturally

e3 follows a purely dissipative dynamics, leads to this boundary condition at late times.
' Before we close, we would like to point out some im-
E(L,W,N ~ L/W?) = vf e3dx dy . (9) portant features not included in our theory. When the

surface compressibility is large, the product might pre-

The time derivative ofe; can be easily computed from fer to generate dislocations at the parent-product interface,
our ansatz and leads to the following form for the en-producing instead internal slip bands [2]. Moreover, for
ergy dissipationyed(L2W/¢ + W2L/£). It is easy to  solids with low thermal conductivity, transport of heat
determine the asymptotic solutions forand W from the  across the interface might significantly alter the shape of
resulting first-order, nonlinear, ordinary differential equa-grains. We are currently working on these refinements to
tion (ODE). AssumingL(t) = v t® and W(t) = vyt?  the theory.
ast — « (a, B8 > 0), and equating the dominant singular We thank S.G. Mishra, T.V. Ramakrishnan, and
contributions on either side of Eq. (9), we obtain=1 S. Banerjee for discussions and encouragement.
andB = 1/2. The nonlinear ODE also gives the velocity
vy ~ /¥. Sincey is of the order of typical elastic moduli, - - _
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