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Electron Parametric Instabilities of Ultraintense Short Laser Pulses
Propagating in Plasmas
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A general dispersion relation is given for electron parametric instabilities of an ultraintens
circularly polarized wave propagating in a plasma. It is valid for any plasma density and wav
intensity and corresponds to a generalization of the Raman, relativistic modulational, relativis
filamentation, and two-plasmons instabilities. Its numerical resolution shows different zones
instability in the wave vector space. At high intensities, the zones extend and merge, with grow
rates equal to a fraction of the wave frequency. At close-to-critical density and high intensity th
instability leads to strong harmonic emission. Particle-in-cell simulations confirm the analytical resul
[S0031-9007(97)02675-6]
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Recent developments of high intensity lasers have
newed the interest in electromagnetic wave propagat
in the regime where the electron quiver velocity is rel
tivistic [1]. It is well known that laser propagation in
plasmas is subject to various instabilities [2], which cou
play an important role in advanced fusion concepts [
and advanced accelerators [4]. In this paper, we d
with ultrashort laser pulses for which ion motion ca
be neglected so that only electron instabilities have
be considered. At moderate intensities, these instab
ties are clearly identified as the stimulated Raman scat
ing (SRS), the relativistic modulational instability (RMI)
the relativistic filamentation instability (RFI), and the two
plasmons decay (TPD). In the weakly relativistic regim
[5–7] forward SRS and RMI have been shown to mer
in a rarefied plasma [5]. In the fully relativistic regime
the one-dimensional (1D) dispersion relation has been
tablished recently [8–10]. Its analytical and numeric
solution shows a wide variety of regimes depending
the parametersa0 and nync wherea0 ­ eA0ymc2 is the
normalized amplitude of the laser wave,n is the electron
plasma density, andnc ­ mv

2
0y4pe2 is the critical den-

sity corresponding to the laser frequencyv0 [9]. A study
of the fully relativistic 2D case was made by Sakharo
and Kirsanov in the underdense plasma case [11].
the other hand, the TPD which normally occurs at a de
sity n . ncy4 has never been studied in the relativist
regime.

In this Letter, we present the general 2D dispersion
lation for circularly polarized waves in a cold plasma
valid for any laser intensity and plasma density, whic
includes the SRS, RMI, RFI, and TPD instabilities as lim
iting cases at low intensities, and the previous relativis
1D results. The dispersion relation is obtained as an in
nite Hill determinant that we solve numerically. New a
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eas of instability are evidenced. Experimental signature
are proposed.

We use the Maxwell equations for the vector and
scalar potential, the density conservation equation, and t
equation of motion for the cold electron fluid [7,12],

≠p
≠t

­ e=f 1
e
c

≠A
≠t

2 =sgmc2d ,

where A and f are, respectively, the vector and
the scalar potential andg the Lorentz factor of the
electron. This system admits a zero order equ
librium solution [13] in the form of a circularly
polarized wave propagating in a uniform plasma
sn ­ n0d in the z direction,A0 ­ epA0eisk0z2v0td 1 c.c.,
f0 ­ 0, p0 ­ eA0yc g0 ­ s1 1 2e2A2

0ym2c4d1y2, with
ep ­ sex 6 ieydy

p
2 and v

2
0 ­ v

2
p0yg0 1 k2

0c2, where
vp0 ­ s4pn0e2ymd1y2. With these definitions,a0 ­ 1
corresponds to an intensity of5 3 1018 W cm22 for a
1.06 mm wavelength.

We perturb this equilibrium state with first order
perturbationsn1, p1, A1, and f1. We normalizeA !

eAymc2, f ! efymc2, p ! pymc, andn ! nyn0, and
we use the Lorentz gauges= ? A 1 c21≠fy≠t ­ 0d,
which allows us to eliminatef. This results in a linear
system of differential equations onn1, p1, A1, and f1.
Using Floquet’s theorem, we then expand each variablef
as a sum of plane waves,

f ­
1X̀

l­2`

fle
isk1lk0dr2isv1lv0dt 1 c.c., (1)

where k0 ­ k0ez. Our system thus transforms itself to
an infinite system of linear equations coupling differen
l’s which writes
v2
l spl 2 Ald 1 klskl ? Aldc2 ­

a0c
g0

vlsep
p ? pl11 1 ep ? pl21dkl , (2a)
© 1997 The American Physical Society
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vlnl 2
c

g0
kl ? pl 1

a2
0c

g
3
0

k' ? pl ­
a0c
g0

fsk' ? epdnl21 1 sk' ? ep
pdnl11g

2
a2

0c

g
3
0

fsk' ? epdep ? pl22 1 sk' ? ep
pdep

p ? pl12g , (2b)

sv2
l 2 k2

l c2dAl 2
v

2
p0

g0
pl 1

v
2
p0a2

0

g
3
0

pl' ­
v

2
p0a0

g0
snl11ep

p 1 nl21epd 2
v

2
p0a2

0

g
3
0

fspl12 ?ep
pdep

p 1 spl22 ? epdepg , (2c)
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with vl ­ v 1 lv0, kl ­ k' 1 skz 1 lk0dez . A simi-
lar set of equations was obtained in Ref. [11].

In the following, for any vectoru we write u ­
u1ep 1 u2ep

p 1 uzez . As the problem is globally in-
variant under rotation along thez axis, we choosek' ­
k'ex ­ sk'y

p
2 d sep 1 ep

pd.
If we first restrict ourselves to the 1D casesk' ­ 0d,

the variablesXl ­ sA1
l11, p1

l11, Az
l , nl, pz

l , A2
l21, p2

l21d are
coupled together but decoupled from the other on
Moreover, the equations for the variablesXl11 are exactly
similar to the ones for the setXl, provided one replaces
v by v 2 v0 and kz by kz 2 k0. We can therefore
specialize to the setX0, in which we recognize the
familiar Stokes and anti-Stokes components of the vec
potential and the perturbation of electronic density a
scalar potential, together with their accompanying effe
on the electrons momentum. The system may then
solved analytically, and after some algebra, one recov
the 1D relativistic fully dispersion relation [8–10].

We now focus our attention on the general thre
dimensional case, e.g.,k' fi 0. All sets of variables are
now coupled through a five term recurrence relation th
we write in matricial form,

AXl22 1 BlXl21 1 ClXl 1 DlXl11 1 EXl12 ­ 0 , (3)

whereA, Bl, Cl, Dl , andE are 7 3 7 matrices, withA,
Bl , Dl , and E ­ 0 if k' ­ 0. The coefficients of the
5 matrices are functions of the parametersa0, n0, v, kz ,
andk'. They can be deduced from (2).

To numerically solve (3), we truncate the recurrenc
neglecting all terms withl . L or l , 2L. (The numeri-
cal values of the result are independent ofL as soon asL
is large enough.L ­ 7 is sufficient for the ranges ofkz

andk' considered in this paper. The numerical absolu
error [14] was found to be smaller than1026.) We thus
have to solve

MX ­ 0 , (4)

where X is a 7 3 s2L 1 1d vector and M a f7 3
s2L 1 1dg2 matrix,

X ­

0BBBBBBBB@
X2L

...
Xl
...

XL

1CCCCCCCCA andM ­

0BBBBBBBB@
C2L D2L E s0d

...
A Bl Cl Dl E

.. .
s0d A BL CL

1CCCCCCCCA .

We then first multiply each line inM that comes from (2b)
by vl, we add (2c) to (2a), and we collect terms with th
same power ofv, so that (4) now writes2'svXdv 1
s.

tor
d
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NsvXd 1 PX ­ 0, whereN andP are independent ofv.
We end up with an eigenvalue problem,µ

0 '
P N

∂ µ
X

vX

∂
­ v

µ
X

vX

∂
. (5)

Therefore, for given physical parametersa0 andn0, the
system will be parametrically unstable to perturbations
wave vectork if the matrix on the left-hand side of (5) ha
complex eigenvalues. Because of the symmetry betw
the termsl and l 1 1 already pointed out, there will be
2L 1 1 such eigenvalues, with real parts spaced byv0
(in the limit L large). By continuity with the 1D case, we
select the one whose real part lies between 0 and 1.
corresponding eigenvector gives us the relative amplitu
of the different modesl.

We first verified that we recover the known resul
in the case of underdensesn0 ø 1d plasmas and of
not too high sa0 & 0.1d intensities of the laser [5]
with slight modifications due to the circular polarization
At low density and higher intensities, we found ne
zones of instability in theskz , k'd plane. Their shape is
semicircular and well described by the equationskz 2

Nk0d2 1 k2
' ­ N2sv0ycd2, N $ 2, as can be seen in

Fig. 1(a), for whicha0 ­ 1.46 and n0ync ­ 5 3 1023.
Each lobe corresponds to a resonance with a differ
harmonic of the vector potential through a three-wa
process, as pointed out by Sakharov and Kirsanov [1
This is seen in Fig. 2 (curveA), which shows the relative
intensities of the different components of the vect
potential [see Eq. (1)] in the Coulomb gauge for a mo
k taken in the third lobefskzcyv0, k'cyv0d ­ s5, 2.2dg.
The Coulomb gaugefAC ­ AL 2 sk ? ALdkyjkj2g is
convenient for the separation of the electrostatic (E
and electromagnetic (EM) parts of the products of t
instability. HereAC and AL correspond to the vector
potential in the Coulomb and Lorentz gauge, respective
We also plot in Fig. 3 the exact maximum growth rate
the first and second lobes as a function of the scatter
angle of the radiated electromagnetic wave, and we fi
a good agreement with the estimated ones given
Ref. [11].

Our analytical calculation also describes the TPD,
can be seen from (2) taken in the nonrelativistic limit: f
v0 ­ 2vp0, we only need to consider the resonantl ­ 0
andl ­ 21 terms, and a straightforward calculation give
the well-known formula for the growth rate [2]. In the
relativistic regimesa0 * 0.5d, the TPD unstable region in
the skz , k'd plane breaks into different zones reminisce
of the half circle zones described earlier, while the doma
2133
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FIG. 1. Contour plot of the growth rate as a function
the wave numberskz , k'd. The parameters are (a)a0 ­ 1.46
and n0ync ­ 5 3 1023, (b) a0 ­

p
3y2 and n0ync ­ 0.5, (c)

a0 ­
p

3y2 and n0ync ­ 1.5. (d) shows the growth rate fo
the same parameters as (b) but calculated from the naı¨ve 2D
extension of Refs. [8–10]. There are 10 contours on each p
the minimum and maximum being, respectively, (a) 0.01, 0
(b) and (d) 0.04, 0.4; (c) 0.035, 0.35. The crosses correspon
the points used to draw Fig. 2. The grey areas are the dom
of wave vector used to draw Fig. 4.

of densities where TPD occurs extends widely arou
n0 ­ g0ncy4. A typical result is shown in Fig. 1(b)
which corresponds toa0 ­

p
3y2 and n0ync ­ 0.5 (i.e.,

n0yg0nc ­ 0.25). We emphasize here that the naı¨ve 2D
extension of the 1D fully relativistic dispersion relatio
[8–10] (in which one simply replaceskzez by k) does
not predict any of the successive TPD lobes, as
be clearly seen in Fig. 1(d) which shows the grow
rate as predicted by this naı¨ve extension for the same
parameters as Fig. 1(b). Correlatively, the ES characte
the instability evolves towards a mixed EM/ES charact
Although they decrease withjkj, the growth rates on

FIG. 2. Relative intensities of the different components
the vector potential in the Coulomb gauge. All compone
are normalized to thel ­ 21 one which corresponds to th
Stokes wave. Both curves are taken on the third lobe
the instable region, respectively, curveA: a0 ­ 1.46, n0ync ­
5 3 1023, and skzcyv0, k'cyv0d ­ s5, 2.2d, curve B: a0 ­p

3y2, n0ync ­ 1.5, andskzcyv0, k'cyv0d ­ s2.08, 2.1d. Data
on curveB have been multiplied by 103 to make the reading
more convenient. Full lines are guides for the eyes. The r
parts of the frequency are, respectively,0.045v0 for A and
0.4v0 for B.
2134
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the successive lobes remain a significant fraction of
pump wave frequency, even for largejkj [g ­ 0.3v0 for
skzcyv0, k'cyv0d ­ s2.7, 1.2d in Fig. 1(b)].

In the induced transparency regime [15]snc # n0 ,

g0ncd, the different zones of instability already describ
tend to merge and new lobes appear that extend in thekz ,

0 region [see Fig. 1(c) for whicha0 ­
p

3y2 andn0ync ­
1.5]. The successive lobes in the wave-vector plane
no more associated with a single harmonic as in the v
underdense case [11], but a wide range of harmonics
simultaneously excited, as shown in Fig. 2, curveB, which
corresponds toskzcyv0, k'cyv0d ­ s2.08, 2.1d. Note that
the real part of the frequency associated with these
monics isRsvld ­ jRsvd 1 lv0j, with Rsvd ­ 0.4v0

for the parameters of Fig. 2, curveB. As in Fig. 1(b),
we have verified that the products of the instability hav
mixed feature (ES/EM). In all regimes, the growth rate
maximum on axis, but takes significant values for highk'.

This harmonic generation could provide an experim
tal signature of the instability. For the parameters
Figs. 1(c) and 2, curveB, the dominant electromagneti
mode corresponds tol ­ 23 and has a real frequenc
Rsvld ­ 2.6v0. It represents a backscattered wave pr
agating at an angle ofu ­ 105± with respect tok0 in the
plasma, which will be able to escape the interaction
gion and be detected. If we also consider the other c
ponents with high enough frequency to escape from
plasma, one should observe as well side scattered
monics with frequencies1.4v0, 1.6v0, 2.4v0, and3.4v0

corresponding, respectively, tol ­ 1, 22, 2, and 3 and
u ­ 39±, 117±, 34±, and 30±. It must be stressed her
that this instability produces backscattered light even
0.25 , n0yg0nc , 1, an effect which has no equivalen
in terms of classical theory of Raman backscattering.

The RFI (for kz ­ 0), which is hardly visible in
Fig. 1(a), gets a significant growth rate at high dens
in the relativistic regime [Figs. 1(b) and 1(c)], wit
large values ofk'. For the parameters of Fig. 1(c) th
growth of this filamentation instability reaches0.14v0 for
k'cyv0 ­ 1.5. The growth rate curve as a function ofk'

shows a succession of narrow peaks aroundk'cyv0 ­
1.5, 2, 2.5, 2.9, etc., with a slow decrease.

FIG. 3. Maximum growth rate as a function the scatteri
angle for the case of Fig. 1(a), in the first (curveA) and
second (curveB) lobes. The corresponding parameteryEyc
of Ref. [11] is 0.9.
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We were able to confirm these results using a2D 1
2 par-

ticle in cell (PIC) code with periodic boundary conditions
The system was chosen to be128cyv0 3 128cyv0, with
dx ­ dz , 0.17cyv0, allowing a sufficient number of
modes ink space and the correct handling of modes wi
large wave numbers up tok , 4v0yc. The simulation
used ten particles per cell and about6 3 106 particles in
the system. The initial temperature was 2 keV. We set
t ­ 0 in the whole simulation box a circularly polarized
plane wave propagating in thez direction and correspond-
ing to the zero order solution [13] given above. The phy
ical parameters area0 ­

p
3y2 and n0ync ­ 0.5, which

corresponds to Fig. 1(b).
The results of the simulation are illustrated in Fig.

which shows the time evolution of the scalar potenti
averaged over two different zones of the wave-vec
space corresponding to the first two lobes in Fig. 1(b
The unstable modes grow out of the numerical noise. T
development of electrostatic perturbations with grow
rates in close agreement with our calculation is a cle
signature of the instability. Note also that the naı¨ve
2D extension of Refs. [8–10] predicts a much small
growth rate for the zone corresponding to our second lo
(g ­ 0.06v0 instead ofg ­ 0.28v0).

For v0t . 20, the nonlinear effects of the saturatio
of the instability cannot be ignored. They lead to a
important heating of the electrons, which temperatu
reaches 100 keV at timev0t ­ 30. Such a high value of
the temperature is not surprising, as the initial jitter ener
of an electron in the field of the pump wave is 500 keV.

In conclusion, we present the first calculation of th
growth rate of electron parametric instabilities of circu

FIG. 4. Time evolution of the scalar potential in two differen
zones of the wave-vector plane in thePIC simulation for
a0 ­

p
3y2 and n0ync ­ 0.5. Solid line: 1.5 # kzcyv0 # 2

and0 # k'cyv0 # 0.25. Dotted line:2.5 # kzcyv0 # 3 and
1 # k'cyv0 # 1.3. The corresponding domains are shown
grey areas on Fig. 1. The slopes of the straight lines corresp
to the theoretical value of the growth rate, respectively,0.38v0
and 0.28v0. The dashed line corresponds to the simple 2
extension of Refs. [8–10] for the second domain. Its slope
0.06v0.
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larly polarized electromagnetic waves valid for any las
intensity and plasma density. At high density and inte
sity, the instability extends to largek' with strong growth
rates and is associated with the excitation of a wide ran
of harmonics. Fast filamentation is expected at high d
sity and intensity with transverse size of the order of t
laser wavelength. We expect the linearly polarized ca
to be more complex but to present the same global cha
teristics. Further developments would imply finite puls
size effects [6,8,10,16], which are out of the scope of t
present paper. However, ourPIC simulation shows that in
the homogeneous case the instability is saturated as s
asv0t ­ 20, which corresponds tot ­ 10 fs for a 1mm
wavelength. This value is much smaller than typical u
traintense pulses duration, so that we expect that for s
pulses the saturation will occur in the body of the pulse
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