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Electron Parametric Instabilities of Ultraintense Short Laser Pulses
Propagating in Plasmas
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A general dispersion relation is given for electron parametric instabilities of an ultraintense
circularly polarized wave propagating in a plasma. It is valid for any plasma density and wave
intensity and corresponds to a generalization of the Raman, relativistic modulational, relativistic
filamentation, and two-plasmons instabilities. Its numerical resolution shows different zones of
instability in the wave vector space. At high intensities, the zones extend and merge, with growth
rates equal to a fraction of the wave frequency. At close-to-critical density and high intensity the
instability leads to strong harmonic emission. Particle-in-cell simulations confirm the analytical results.
[S0031-9007(97)02675-6]
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Recent developments of high intensity lasers have reeas of instability are evidenced. Experimental signatures
newed the interest in electromagnetic wave propagatioare proposed.
in the regime where the electron quiver velocity is rela- We use the Maxwell equations for the vector and
tivistic [1]. It is well known that laser propagation in scalar potential, the density conservation equation, and the
plasmas is subject to various instabilities [2], which couldequation of motion for the cold electron fluid [7,12],
play an important role in advanced fusion concepts [3]
and advanced accelerators [4]. In this paper, we deal p e 0A )
with ultrashort laser pulses for which ion motion can 9 Vet o T Viyme?),
be neglected so that only electron instabilities have to )
be considered. At moderate intensities, these instabiliwhere A and ¢ are, respectively, the vector and
ties are clearly identified as the stimulated Raman scattef0€ Scalar potential and/ the Lorentz factor of the
ing (SRS), the relativistic modulational instability (RMI), €lectron. — This system admits a zero order equi-
the relativistic filamentation instability (RFI), and the two- liorium solution [13] in the form of a circularly
plasmons decay (TPD). In the weakly relativistic regimePolarized wave propagating in a uniform plasma
[5-7] forward SRS and RMI have been shown to mergd” = 7o) in thez direction, Ao = e,Age’ ") + c.c.,
in a rarefied plasma [5]. In the fully relativistic regime, %o = 0, Po = eAo/c yo = (I + 2¢*A3/m>c*)!/2, with
the one-dimensional (1D) dispersion relation has been e€, = (ex = ie,)/v2 and g = wpo/y0 + kjc?, where
tablished recently [8—10]. Its analytical and numericalw,o = (4mnoe?/m)"/2. With these definitionsay = 1
solution shows a wide variety of regimes depending orcorresponds to an intensity of x 10'® Wem™2 for a
the parametera, andn/n. whereay = eAy/mc? is the  1.06 um wavelength.
normalized amplitude of the laser waveijs the electron We perturb this equilibrium state with first order
plasma density, and, = mw{/4me? is the critical den-  perturbationsn;, p;, A;, and ¢;. We normalizeA —
sity corresponding to the laser frequensy[9]. A study eA/mc?, ¢ — edp/mc?, p — p/mc, andn — n/ny, and
of the fully relativistic 2D case was made by Sakharowe use the Lorentz gaugéV - A + ¢ 'a¢ /ot = 0),
and Kirsanov in the underdense plasma case [11]. Owhich allows us to eliminateb. This results in a linear
the other hand, the TPD which normally occurs at a densystem of differential equations on, p;, A;, and ¢;.
sity n = n./4 has never been studied in the relativistic Using Floquet's theorem, we then expand each varible

regime. as a sum of plane waves,
In this Letter, we present the general 2D dispersion re- oo
lation for circularly polarized waves in a cold plasma, f= Z freikFikor—iw oot 4 ¢ 1)

valid for any laser intensity and plasma density, which
includes the SRS, RMI, RFI, and TPD instabilities as lim-
iting cases at low intensities, and the previous relativistiovhere kg = kpe,. Our system thus transforms itself to
1D results. The dispersion relation is obtained as an infian infinite system of linear equations coupling different
nite Hill determinant that we solve numerically. New a(- I’'s which writes

|=—x

apc .
wi(pr — A) + ki(k; - Aj))c? = %wz(ep “Pr+1 e, - o)k, (2a)
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c apc
_Okl'pl+—3kL'pl

apc *
wn; — = —[(ky - ep)n—1 + (ki - e))nq]
Yo Yo
2
apc * *
Y [(ky -eple, - pi—2 + (ki - e,)e, - pria], (2b)
0
2 ) a)p() wf,oa(z) a)lz,()a() s« wlz,oa(z) " "
(wj — kjc)A;———pi + 3 PiL= (nz+1e,, + ni—1ep) — ——5—[(p1+2 ‘e,,)e,, + (pi—2-eple,], (2¢)
Y0 Yo Yo Y0

with w; = w + lwg, k; =k + (k, + lko)e,. A simi- | N(wX) + PX = 0, whereN andP are independent ab.
lar set of equations was obtained in Ref. [11]. We end up with an eigenvalue problem,
In the following, for any vectoru we write u = 0 1 X X
ute, + u"e* + ue,. As the problem is globally in- <P N><wX> = w(wX)' 5)
variant under rotation al(*)ng theaxis, we choos&, = Therefore, for given physical parametegsandn, the
kie, = (_ki/*/z) (_ep +ep). system will be parametrically unstable to perturbations at
If we first restrict ourselves to the 1D cafe, =0),  wave vectok if the matrix on the left-hand side of (5) has
the variablesX; = (A1, pi+1,Ai, ni, piAi-1, Pi-1) @€ complex eigenvalues. Because of the symmetry between
coupled together but decoupled from the other onespe termsl and/ + 1 already pointed out, there will be
I\/_Ior_eover, the equations for the variapl)é;al areexactly > 4 1 such eigenvalues, with real parts spacedahy
similar to the ones for the séf;, provided one replaces (in the limit L large). By continuity with the 1D case, we
@ by @ — wo and k; by k. — k. We can therefore ggject the one whose real part lies between 0 and 1. The
specialize to the seX,, in which we recognize the cqrresponding eigenvector gives us the relative amplitude
familiar Stokes and anti-Stokes components of the vectogs ihe different modes
potential and the perturbation of electronic density and \ye first verified that we recover the known results
scalar potential, together with their accompanying effect, the case of underdens@, < 1) plasmas and of
on the electrons momentum. The system may then bgoi 190 high (ay < 0.1) intensities of the laser [5]
solved analytically, and after some algebra, one recovergith slight modifications due to the circular polarization.
the 1D relativistic fully dlspers_lon relation [8—10]. At low density and higher intensities, we found new
We now focus our attention on the general three-,qneg of instability in theék,, ) plane. Their shape is

dimensional case, e.gc, _9& 0. All sets of variable§ are  semicircular and well described by the equatidn —
now coupled through a five term recurrence relation tha}VkO)z + k2 = N%(wo/c)®, N =2, as can be seen in

we write in matricial form,

AX;—» + B X;-1 +CX; + D X;41 + EX;42=0, (3)
whereA, B;, C;, D;, andE are7 X 7 matrices, withA,
B;, D;,, andE =0 if k;, = 0. The coefficients of the
5 matrices are functions of the parametessng, o, k.,
andk,. They can be deduced from (2).

Fig. 1(a), for whichay = 1.46 and ny/n. = 5 X 1073,
Each lobe corresponds to a resonance with a different
harmonic of the vector potential through a three-wave
process, as pointed out by Sakharov and Kirsanov [11].
This is seen in Fig. 2 (curvA), which shows the relative
intensities of the different components of the vector

To numerically solve (3), we truncate the recurrencepotential [see Eq. (1)] in the Coulomb gauge for a mode

neglecting all terms withh > L or! < —L. (The numeri-
cal values of the result are independent.ads soon a&
is large enough.L = 7 is sufficient for the ranges df,

k taken in the third lobé(k,c/wo, k1 c/wo) = (5,2.2)].
The Coulomb gaugdAc = A; — (k - A k/[k|?] is
convenient for the separation of the electrostatic (ES)

andk, considered in this paper. The numerical absolute@nd electromagnetic (EM) parts of the products of the

error [14] was found to be smaller thdf—%.) We thus
have to solve

MX =0, (4)
where X is a 7 X (2L + 1) vector andM a [7 X
(2L + 1)J? matrix,

X*L C—L DfL E (0)
X = X andM = A B, C, Dy E
XL (0) A B, C

We then first multiply each line iM that comes from (2b)

instability. HereA. and A, correspond to the vector
potential in the Coulomb and Lorentz gauge, respectively.
We also plot in Fig. 3 the exact maximum growth rate in
the first and second lobes as a function of the scattering
angle of the radiated electromagnetic wave, and we find
a good agreement with the estimated ones given in
Ref. [11].

Our analytical calculation also describes the TPD, as
can be seen from (2) taken in the nonrelativistic limit: for
wy = 2w p0, We only need to consider the resonant 0
and/ = —1 terms, and a straightforward calculation gives
the well-known formula for the growth rate [2]. In the
relativistic regime(ag = 0.5), the TPD unstable region in

by w;, we add (2c) to (2a), and we collect terms with thethe (k,, k) plane breaks into different zones reminiscent

same power ofw, so that (4) now writes-1(wX)w +

of the half circle zones described earlier, while the domain
2133
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the successive lobes remain a significant fraction of the
pump wave frequency, even for larfe|l [y = 0.3w, for
(k;c/wo, ki c/wo) = (2.7,1.2) in Fig. 1(b)].

In the induced transparency regime [1@]. = ny <
von.), the different zones of instability already described
tend to merge and new lobes appear that extend ik,the
0 region [see Fig. 1(c) for whichy = /3/2 andng/n. =
1.5]. The successive lobes in the wave-vector plane are
no more associated with a single harmonic as in the very
underdense case [11], but a wide range of harmonics are
simultaneously excited, as shown in Fig. 2, cuBygvhich
corresponds t¢k,c/wo, k| c/wo) = (2.08,2.1). Note that
2 4 6 the real part of the frequency associated with these har-

kc/og monics ish(w;) = |MN(w) + lwel, with R(w) = 0.4w
FIG. 1. Contour plot of the growth rate as a function of for the parameters of Fig. 2, cuni AS. n Flg'. 1(b),
the wave numbetk.,k ). The parameters are (a) — 1.46  We have verified that the products of the instability have a
and ng/n, = 5 X 1073, (b) ap = /3/2 and no/n. = 0.5, (c)  Mixed feature (ES/EM). In all regimes, the growth rate is
ap = +/3/2 and ng/n. = 1.5. (d) shows the growth rate for Maximum on axis, but takes significant values for high
the same parameters as (b) but calculated from tfieen2D This harmonic generation could provide an experimen-
extension of Refs. [8—10]. There are 10 contours on each plotg| signature of the instability. For the parameters of

the minimum and maximum being, respectively, (a) 0.01, 0.1;-; ; ;
(b) and (d) 0.04, 0.4; (c) 0.035, 0.35. The crosses correspond tlglgs. 1(c) and 2, curvé@, the dominant electromagnetic

the points used to draw Fig. 2. The grey areas are the domaif@0de corresponds t6= —3 and has a real frequency
of wave vector used to draw Fig. 4. N(w;) = 2.6wy. It represents a backscattered wave prop-

agating at an angle df = 105° with respect tdk, in the

N ) lasma, which will be able to escape the interaction re-
of densities where TPD occurs extends widely aroumgion and be detected. If we also consider the other com-
no = yonc/4. A typical result is shown in Fig. 1(b), ponents with high enough frequency to escape from the
which corresponds tag = y/3/2 andno/n. = 0.5 (i.e.,  plasma, one should observe as well side scattered har-
no/yone = 0.25). We emphasize here that thé vea2D  monics with frequencies$.4wg, 1.6wo, 2.4wo, and3.4w,
extension of the 1D fU”y relativistic diSperSion relation Corresponding’ respectively’ fo=1, —2, 2, and 3 and
[8—10] (in which one simply replacek.e; by k) does g — 39° 117°,34°, and 30. It must be stressed here
not predict any of the successive TPD lobes, as cathat this instability produces backscattered light even for
be clearly seen in Fig. 1(d) which shows the growthp2s < pny/yon. < 1, an effect which has no equivalent

rate as predicted by this ivas extension for the same in terms of classical theory of Raman backscattering.
parameters as Fig. 1(b). Correlatively, the ES character of The RFI (for k, = 0), which is hardly visible in

the instability evolves towards a mixed EM/ES characterrig. 1(a), gets a significant growth rate at high density
Although they decrease witlk|, the growth rates on jn the relativistic regime [Figs. 1(b) and 1(c)], with
large values oft,. For the parameters of Fig. 1(c) the
growth of this filamentation instability reach@d4w for

kyc/o

l\l)(t)-bo—*l\)w-h(n
- f

k_LC/(l) 0

—_
1

o
1

4 .
> 107 ki c/wo = 1.5. The growth rate curve as a function/of
G q02 | shows a succession of narrow peaks aroknd/wo =
2 3 1.5,2,2.5,2.9, etc., with a slow decrease.
= 100 :_
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FIG. 2. Relative intensities of the different components of §« 03 |- 7
the vector potential in the Coulomb gauge. All components = 02 |
are normalized to thé = —1 one which corresponds to the 01 L
Stokes wave. Both curves are taken on the third lobe of 0 [
the instable region, respectively, cume aq = 1.46, ny/n. = 0 4 n/'z 37;/2 T

5 X 1073, and (k,c/wo, k. c/wy) = (5,2.2), curve B: qy = o
J3/2,n9/n. = 1.5, and(k.c/wg, k c/wg) = (2.08,2.1). Data

on curveB have been multiplied by Foto make the reading FIG. 3. Maximum growth rate as a function the scattering
more convenient. Full lines are guides for the eyes. The reahngle for the case of Fig. 1(a), in the first (cur#® and
parts of the frequency are, respectively045w0, for A and  second (curveB) lobes. The corresponding parameies/c
0.4w, for B. of Ref. [11] is 0.9.
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We were able to confirm these results using:h;- par- larly polarized electromagnetic waves valid for any laser
ticle in cell (pic) code with periodic boundary conditions. intensity and plasma density. At high density and inten-
The system was chosen to b28c/wo X 128c/wy, with  sity, the instability extends to large with strong growth
dx = dz ~ 0.17¢/wq, allowing a sufficient number of rates and is associated with the excitation of a wide range
modes ink space and the correct handling of modes withof harmonics. Fast filamentation is expected at high den-
large wave numbers up tb ~ 4wo/c. The simulation sity and intensity with transverse size of the order of the
used ten particles per cell and abouk 10° particles in  laser wavelength. We expect the linearly polarized case
the system. The initial temperature was 2 keV. We set alto be more complex but to present the same global charac-
t = 0 in the whole simulation box a circularly polarized teristics. Further developments would imply finite pulse
plane wave propagating in tizedirection and correspond- size effects [6,8,10,16], which are out of the scope of the
ing to the zero order solution [13] given above. The physpresent paper. However, oric simulation shows that in
ical parameters are, = +/3/2 andng/n. = 0.5, which  the homogeneous case the instability is saturated as soon
corresponds to Fig. 1(b). aswot = 20, which corresponds to= 10 fs fora 1 um

The results of the simulation are illustrated in Fig. 4,wavelength. This value is much smaller than typical ul-
which shows the time evolution of the scalar potentialtraintense pulses duration, so that we expect that for such
averaged over two different zones of the wave-vectopulses the saturation will occur in the body of the pulse.
space corresponding to the first two lobes in Fig. 1(b).
The unstable modes grow out of the numerical noise. The
development of electrostatic perturbations with growth
rates in close agreement with our calculation is a clear
signature of the instability. Note also that the'veal
2D extension of Refs. [8—10] pred_icts a much smaller 2] J.F. Drakeet al., Phys. Fluids17, 778 (1974); W.L.
growth rate f(_)r the zone corresponding to our second lobe Kruer, The Physics of Laser Plasma Interactions
(v = 0.06w, instead ofy = 0.28w). _ (Addison-Wesley, New York, 1988).
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