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Vorticity Generation in Slow Cooling Flows
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We show that any generic nonadiabatic slow flow of ideal compressible fluid develops a significant
vorticity. As an example, an initially irrotational conductive cooling flow (CF) is considered. A
perturbation theory for the vorticity generation is developed that employs, as a zero order solution,
a novel two-dimensional similarity solution. Full gasdynamic simulations of this CF demonstrate the
vorticity generation and support the theory. The relevance of this problem to the experiments with the
“hot channels” is discussed. [S0031-9007(97)02688-4]

PACS numbers: 47.32.Cc, 47.40.Dc

The most general mechanism of the vorticity produc-gradients, intrinsic in the CF, result in a significant
tion in nonadiabatic flows of ideal compressible fluidsvorticity production.
relies on the misalignment of pressure and density gradi- The simplest conductive CF of a perfect gas is de-
ents [1]. Recent experiments with supersonic flows [2,3kcribed by the standard gasdynamic equations [11],
have clearly demonstrated the efficiency of this mechanism d
(which is called baroclinic). The baroclinic mechanism 0 4 pV-v=0, (1)
can also operate in slow gas flows, and its specific manifes- dt
tations in meteorology [1] and combustion [4] are known. 5 dv
The main objective of this Letter is to show that the vor- €p - =-Vp, (2)
ticity production represents a generic and significant prop-
erty of any slow nonadiabatic gas flow. y! dr +pV-v—V-(T'VT) =0, (3)

For concreteness, we will consider the conductive dt
cooling flows (CFs) and refer to the “hot channels”whered/dr = 9/t + v - V is the total derivative. The
produced in the air by lasers or electric discharges [5,6]distance is measured in the units of a characteristic
After pressure equilibration, these channels develop apatial scale of the problem, (see below), while the
significant vorticity and small scale turbulence and cooltime is measured in the units of the heat conduction
much faster than they would because of molecular thermalme 7o = y(y — 1)*1Rgp0r§K*1T0_”. Furthermore, the
conduction. Picone and Boris [7] interpreted these resultgas densityp and temperaturel’ are scaled by their
in terms of the baroclinic vorticity productioduring the  (presumably constant) values “at infinityd, and T,
rapid channel expansioffthat is, on the acoustic time the velocity v is scaled byry/7y, and the pressure
scale) [8]. Schlieren photographs of the hot channels [5,6p = pT is scaled by(R,/u)poTy. The nondimensional
clearly show that the most significant vorticity dynamicsparameter = ro/cs7o (Wherec? = R,Ty/u) represents
occurs on a much longer time scale. According to Picong¢he characteristic Mach number of the flow. Finally,
and Boris, “after pressure equilibration... vorticity is noR,,y, and u are the gas constant, adiabatic index, and
longer generated, however, significant residual vorticitymolar mass, respectively, while the heat conductivity is
exists” [7]. We wish to present an alternative scenaricassumed to be a powerlike function of the temperature:
which assumes that a significant vorticityci®atedon the 7" in the scaled unitsk = const. (For the molecular
long, heat-conduction time scale. The underlying physicgir, v = 1/2.)
is the following. After a few acoustic times, following the ~ We start with a perturbation theory that describes the
rapid energy release, the gas pressure becomes very cldaéial stage of the vorticity production. Then we report
to the (constant) ambient pressure, while the vorticityon numerical simulations with the full equations (1)—(3)
generated earlier is presumably damped out. As théhat show the vorticity generation in the same CF and
temperature inside the channel is still very high, asupport the theory.
low-Mach-number conductive CF develops that cools In the low-Mach-number regimee> < 1, the tem-
the channel by filling it with the cold gas from the perature and density contrasts can still be large, but
periphery. Slow conductive CFs were studied previouslpressure nonuniformities are already small(r,:) =
in the context of a “pointlike” energy release, such asl + €2 8p(r,t). Then, neglecting the smalip terms
a high-altitude explosion in the atmosphere [9] or ain Eq. (3) and equation of state, we obtaWh- (v —
“fireball” produced by a laser spark in front of condensed7’*VT) = 0 and pT = 1, respectively. It follows that
matter [10]. We will show that, unless the energyv = v, + vs, Wherev, = —p " 2Vp is the irrotational
release geometry isully symmetrical, small pressure component of the fluid velocity, ane is the solenoidal
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component:V - v, = 0. Substitution ofv into Eq. (1) A~ !'r¥f(¢), wherer and ¢ are the polar coordinates in

yields a nonlinear transport equation, the planexy, andA andk are constants. In the case of a
ap cylindrically symmetrid f(¢) = 1] explosion along the
Ei (ve - V)p =V - (p~""'Vp). (4)  axis, this profile withk = 2/(y — 1) represents the — 0

density asymptote that sets in at the end of the expansion
stage [14,15]. The functionf(¢) describes asymmetry.
Jo VX (VX o) = dv > Vo (5) In analogy to Ref. [9], we extend this initial condition to
ot dt p’ the whole CF region. This idealization is justified (see
where w =V X v =V X v, is the vorticity. Equa- Refs. [9,10] and gasdynamic simulations below) as long
tion (5) is equivalent to the well-known vorticity equa- as the density (temperature) contrast in the system remains
tion [1], as its right-hand side can be rewritten¥gs x  much larger than unity.
V&p/p?. Note that Eq. (5) does not include therefore, The initial condition yield$3 = (vk + k + 2)7!. Us-
the vorticity production rate is, in general, of order unity. ing Eq. (9), one arrives at a nonlinear elliptic equation for
In this Letter we address the vorticity production in the shape functio®(¢, n):
an initially curl-free flow. Accordingly, we assume that 9 _,_, OR 9 _,_, OR
vy < v, and, in the zero order, neglect the second Y VE + . R p +
. . . i n n
term in the left side of Eq. (4). The resulting nonlinear

An important additional equation follows from Eq. (2):

diffusion equation, (vk + k + 2)—1(§ % + 7 3—R - kR) =0 (10)
LY (p V) © ,
ot P Pl (we got rid of the constant by choosing = A'/%). We

describes such a curl-free CF completely [9,10]. Now weassume for simplicity that the initial density profile [and,
consider a first-order version of Eq. (5), rewritten in termshence,R(¢, n)] is symmetric with respect to each of the

of the vector fielda(r, r) = dvs/9¢: Cartesian axes, and solve Eq. (10) in the first quadrant
Vp |:an } Vp with the no-flux boundary conditions at thé and 7
VXa+ —Xa=|—+ (v Vv | X —, axes. In addition, we must require th&{& — o, n —
P ot p 6 ») = #¥f($), where? and ¢ are the polar coordinates

in the plane¢, n. Figure 1 showR (£, ) found numeri-
with p and v, given by the curl-free solution [12]. cally in a finite square fof(¢) =1+ aco2¢. We took
Again, Eq. (7) shows that for a generic CF the vorticity the usual valuesy =1.4 and »=0.5 for the molecu-
production rate is of order unity. Therefore, the solenoidalar air, and chosez = 0.6. (In this casep = 2/19,

part of the velocity field finally becomes comparable to itswhile the gas density at the channel axis grows in time
irrotational part (at which stage this perturbation schemeike 710/19))

breaks down). Now we return to Eq. (8). A similarity solution fqp

Let us concentrate on a two-dimensional (2D) flowimplies a similarity solution fory, that is, ¢ (x, y, 1) =
in the xy plane with noz dependence, where one can;=«W(¢, ), wherea = 2(vk + k + 1)/(vk + k + 2).
produce the first two “classes of asymmetries” of the
hot channels [7]: (i) off-center laser beam propagation
and (i) noncircular cross section of the beam. We
introduce a modified stream functiopi(x,y,?) so that 8 -
ay = —dy/dy anda, = dy/ox. Equation (7) becomes . -
a scalar equation fap, ] "

V- (pVy) = [(% + (vp - V)vp) X ij| ey,

225

1.5

(8) ] I
wheree, is the unit vector in the direction.

One should, however, deal first with Eq. (6) and find
the zero-order solutiong(x,y,7) andv,(x,y, ) entering
Eqg. (8). Remarkably, Eq. (6) has a family of 2D-similarity
solutions of the second kind,

pr,y, 1) = t12IR(E 7). 9) ' i
where ¢ = x/tP, n = y/t#, and B8 is an arbitrary real So- T T T Tol7s T T 1St T T T22s

parameter [13]. Selection of paramet@rrequires the 6 1 contours of IR (£, 7). On the inner line, Ik =

use of initial or boundary conditions. We shall adopt( .25 and increases outwards in steps of 0.25. AR),0) ~
the following initial density profile: p(x,y,t =0) = 1.99.
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FIG. 2. Contours of¥’(¢, 7). On the outer line¥ = 10~*
and increases inwards in stepslof*.

For the shape functionV(&, ) one obtains a linear
elliptic equationV - (RVW¥) = (W X VR) - e,, where

W=—(vk+k+2)7"

oV oV
X|:(Vk+k+1)V+§E+T]%i|
+(V-V)V,

V = —R ""2VR, and the V operator now involves
differentiation with respect t& and . This equation

shape functiork found earlier (in this case = 34/19 =
1.79). The result is shown in Fig. 2. Now we can
evaluate the vorticitye = w(x, y, ) e,, using the relation
(0w /dt),, = V*¢. Following Picone and Boris [7], we
calculate the vorticity flux() through the first quadrant
as a function of time. The growth rate of this quantity,
dQ/dt, is equal to

]0* Lmdxdy V2 = fc (Vi - n)dl, (11)

whereC is the contour going from infinity to zero along
the y axis and continuing to infinity along the axis,
andn is the external normal. Employing the similarity
solution fory, we obtain

a0 v
IZ—(f+to) |:f0 E(f—oﬁl)dﬂ

z 9w
+]0 %(f,n—o)df}, (12)

where we have used the invariance of the similarity
solution with respect to a time shift and introduaggdthe
only fitting parameter of the theory. Integrating Eq. (12)
with a zero initial condition, we arrive at

Q)] = [Bl(a — D)7 '[15™* — (t +19)' %], (13)
where B is the constant given by the expression in the
square brackets in Eg. (12). Equation (13) predicts a

should be solved in the first quadrant with the Dirichletlinear growth of() with time followed by saturation at

boundary condition. We solved it numerically using thea constant valugB|(a — 1) !¢,
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FIG. 3. Density and velocity fields at= 0 (a) andr = 3 X 1073 (b). The velocity field (arrows) is scaled by 3000 (a) and 100
(b). On the inner density isolinep, = 0.1 and increases outwards in steps of 0.1.
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Now we report on the 2D-numerical simulations with ticity reaches a significant value. One can also see that the
Egs. (1)-(3). We employed an extended version of theerturbation theory [Eq. (13)] underestimates the saturated
codeVULCAN [16] that uses flexible moving grids and can vorticity flux. This is understandable, as the perturbation
operate in any combination of Eulerian and Lagrangiarscheme fails at large times. Interestingly, the agreement
modes. In the rezoning stage we used the scheme of Vamproves for a smaller value a§.

Leer [17] that preserves second order accuracy. The codeIn summary, we claim that any generic nonadiabatic
could work in an implicit mode, thus eliminating the gas flow develops a significant vorticity. For the low-
Courant-Friedrichs-Lewy restriction on the time step. TheMach-number conductive CF that we have considered
initial conditions were in detail, the further vorticity dynamics (instability?)
8 + rf(1 + acoLe) is apparently sensitive to geometry (as in the Picone-
p(r,d,t =0) = py, = [+ % (14)  Boris scenario). We did not observe turbulence or other
rk(1 + aco¢) T L o]
significant modification of the bulk transport properties in
for the densityy(r, ¢,t = 0) = —pin” *Vpiy for the ve-  this (still highly symmetric) 2D flow. Correspondingly,
locity, and unity for the pressure. F@& < 1, the ini- the “hot channel” riddle requires further investigation.
tial density profile has an extended part described byDne can expect turbulence to show up in a less symmetric
r*(1 + aco¢) (which yields the 2D-similarity solution). 3D situation, when perturbations along the channel axis
On the other handp;, is nonzero atr = 0 and ap- are introduced.
proaches unity at — o0, as it should. In most of the B. M. acknowledges a valuable discussion with P.V.
simulations we toolé = 1072, a = 0.6, ande in the range  Sasorov.
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