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Vorticity Generation in Slow Cooling Flows
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We show that any generic nonadiabatic slow flow of ideal compressible fluid develops a significan
vorticity. As an example, an initially irrotational conductive cooling flow (CF) is considered. A
perturbation theory for the vorticity generation is developed that employs, as a zero order solution
a novel two-dimensional similarity solution. Full gasdynamic simulations of this CF demonstrate the
vorticity generation and support the theory. The relevance of this problem to the experiments with th
“hot channels” is discussed. [S0031-9007(97)02688-4]

PACS numbers: 47.32.Cc, 47.40.Dc
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The most general mechanism of the vorticity produ
tion in nonadiabatic flows of ideal compressible fluid
relies on the misalignment of pressure and density gra
ents [1]. Recent experiments with supersonic flows [2
have clearly demonstrated the efficiency of this mechani
(which is called baroclinic). The baroclinic mechanism
can also operate in slow gas flows, and its specific manif
tations in meteorology [1] and combustion [4] are know
The main objective of this Letter is to show that the vo
ticity production represents a generic and significant pro
erty of anyslow nonadiabatic gas flow.

For concreteness, we will consider the conducti
cooling flows (CFs) and refer to the “hot channels
produced in the air by lasers or electric discharges [5,
After pressure equilibration, these channels develop
significant vorticity and small scale turbulence and co
much faster than they would because of molecular therm
conduction. Picone and Boris [7] interpreted these resu
in terms of the baroclinic vorticity productionduring the
rapid channel expansion(that is, on the acoustic time
scale) [8]. Schlieren photographs of the hot channels [5
clearly show that the most significant vorticity dynamic
occurs on a much longer time scale. According to Pico
and Boris, “after pressure equilibration... vorticity is n
longer generated, however, significant residual vortic
exists” [7]. We wish to present an alternative scenar
which assumes that a significant vorticity iscreatedon the
long, heat-conduction time scale. The underlying phys
is the following. After a few acoustic times, following the
rapid energy release, the gas pressure becomes very c
to the (constant) ambient pressure, while the vortic
generated earlier is presumably damped out. As
temperature inside the channel is still very high,
low-Mach-number conductive CF develops that coo
the channel by filling it with the cold gas from the
periphery. Slow conductive CFs were studied previous
in the context of a “pointlike” energy release, such a
a high-altitude explosion in the atmosphere [9] or
“fireball” produced by a laser spark in front of condense
matter [10]. We will show that, unless the energ
release geometry isfully symmetrical, small pressure
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gradients, intrinsic in the CF, result in a significan
vorticity production.

The simplest conductive CF of a perfect gas is d
scribed by the standard gasdynamic equations [11],

dr

dt
1 r= ? v ­ 0 , (1)

e2r
dv
dt

­ 2=p , (2)

g21 dp
dt

1 p= ? v 2 = ? sT n=T d ­ 0 , (3)

wheredydt ­ ≠y≠t 1 v ? = is the total derivative. The
distance is measured in the units of a characteris
spatial scale of the problemr0 (see below), while the
time is measured in the units of the heat conducti
timet0 ­ gsg 2 1d21Rgr0r2

0 k21T2n
0 . Furthermore, the

gas densityr and temperatureT are scaled by their
(presumably constant) values “at infinity”r0 and T0,
the velocity y is scaled byr0yt0, and the pressure
p ­ rT is scaled bysRgymdr0T0. The nondimensional
parametere ­ r0ycst0 (wherec2

s ­ RgT0ym) represents
the characteristic Mach number of the flow. Finally
Rg, g, and m are the gas constant, adiabatic index, a
molar mass, respectively, while the heat conductivity
assumed to be a powerlike function of the temperatu
kT n in the scaled units,k ­ const. (For the molecular
air, n ­ 1y2.)

We start with a perturbation theory that describes t
initial stage of the vorticity production. Then we repo
on numerical simulations with the full equations (1)–(3
that show the vorticity generation in the same CF a
support the theory.

In the low-Mach-number regime,e2 ø 1, the tem-
perature and density contrasts can still be large, b
pressure nonuniformities are already small:psr, td ­
1 1 e2 dpsr, td. Then, neglecting the smalldp terms
in Eq. (3) and equation of state, we obtain= ? sv 2

T n=T d ­ 0 and rT ­ 1, respectively. It follows that
v ­ vp 1 vs, wherevp ­ 2r2n22=r is the irrotational
component of the fluid velocity, andvs is the solenoidal
© 1997 The American Physical Society
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component:= ? vs ­ 0. Substitution ofv into Eq. (1)
yields a nonlinear transport equation,

≠r

≠t
1 svs ? =dr ­ = ? s r2n21=rd . (4)

An important additional equation follows from Eq. (2):

≠v

≠t
2 = 3 sv 3 vd ­

dv
dt

3
=r

r
, (5)

where v ­ = 3 v ; = 3 vs is the vorticity. Equa-
tion (5) is equivalent to the well-known vorticity equa-
tion [1], as its right-hand side can be rewritten as=r 3

=dpyr2. Note that Eq. (5) does not includee, therefore,
the vorticity production rate is, in general, of order unity.

In this Letter we address the vorticity production in
an initially curl-free flow. Accordingly, we assume tha
ys ø yp and, in the zero order, neglect the secon
term in the left side of Eq. (4). The resulting nonlinea
diffusion equation,

≠r

≠t
­ = ? s r2n21=rd , (6)

describes such a curl-free CF completely [9,10]. Now w
consider a first-order version of Eq. (5), rewritten in term
of the vector fieldasr, td ­ ≠vsy≠t:

= 3 a 1
=r

r
3 a ­

"
≠vp

≠t
1 svp ? =dvp

#
3

=r

r
,

(7)

with r and vp given by the curl-free solution [12].
Again, Eq. (7) shows that for a generic CF the vorticit
production rate is of order unity. Therefore, the solenoid
part of the velocity field finally becomes comparable to it
irrotational part (at which stage this perturbation schem
breaks down).

Let us concentrate on a two-dimensional (2D) flow
in the xy plane with noz dependence, where one can
produce the first two “classes of asymmetries” of th
hot channels [7]: (i) off-center laser beam propagatio
and (ii) noncircular cross section of the beam. W
introduce a modified stream functioncsx, y, td so that
ax ­ 2≠cy≠y anday ­ ≠cy≠x. Equation (7) becomes
a scalar equation forc ,

= ? s r=cd ­

"√
≠vp

≠t
1 svp ? =dvp

!
3 =r

#
? ez ,

(8)
whereez is the unit vector in thez direction.

One should, however, deal first with Eq. (6) and fin
the zero-order solutionsrsx, y, td and vpsx, y, td entering
Eq. (8). Remarkably, Eq. (6) has a family of 2D-similarity
solutions of the second kind,

rsx, y, td ­ ts122bdys11ndRsj, hd , (9)

where j ­ xytb , h ­ yytb , and b is an arbitrary real
parameter [13]. Selection of parameterb requires the
use of initial or boundary conditions. We shall adop
the following initial density profile: rsx, y, t ­ 0d ­
t
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A21rkfsfd, wherer and f are the polar coordinates in
the planexy, andA andk are constants. In the case of a
cylindrically symmetricf fsfd ­ 1g explosion along thez
axis, this profile withk ­ 2ysg 2 1d represents ther ! 0
density asymptote that sets in at the end of the expans
stage [14,15]. The functionfsfd describes asymmetry.
In analogy to Ref. [9], we extend this initial condition to
the whole CF region. This idealization is justified (se
Refs. [9,10] and gasdynamic simulations below) as lon
as the density (temperature) contrast in the system rema
much larger than unity.

The initial condition yieldsb ­ snk 1 k 1 2d21. Us-
ing Eq. (9), one arrives at a nonlinear elliptic equation fo
the shape functionRsj, hd:

≠

≠j

√
R212n ≠R

≠j

!
1

≠

≠h

√
R212n ≠R

≠h

!
1

snk 1 k 1 2d21

√
j

≠R
≠j

1 h
≠R
≠h

2 kR

!
­ 0 (10)

(we got rid of the constantA by choosingr0 ­ A1yk). We
assume for simplicity that the initial density profile [and
hence,Rsj, hd] is symmetric with respect to each of the
Cartesian axes, and solve Eq. (10) in the first quadra
with the no-flux boundary conditions at thej and h

axes. In addition, we must require thatRsj ! `, h !
`d ­ r̂kfsf̂d, where r̂ and f̂ are the polar coordinates
in the planej, h. Figure 1 showsRsj, hd found numeri-
cally in a finite square forfsf̂d ­ 1 1 a cos2f̂. We took
the usual valuesg ­ 1.4 and n ­ 0.5 for the molecu-
lar air, and chosea ­ 0.6. (In this caseb ­ 2y19,
while the gas density at the channel axis grows in tim
like t10y19.)

Now we return to Eq. (8). A similarity solution forr
implies a similarity solution forc, that is, csx, y, td ­
t2aCsj, hd, wherea ­ 2snk 1 k 1 1dysnk 1 k 1 2d.

FIG. 1. Contours of lgRsj, hd. On the inner line, lgR ­
0.25 and increases outwards in steps of 0.25. Also,Rs0, 0d ø
1.99.
2113
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FIG. 2. Contours ofCsj, hd. On the outer line,C ­ 1024

and increases inwards in steps of1024.

For the shape functionCsj, hd one obtains a linear
elliptic equation= ? sR=Cd ­ sW 3 =Rd ? ez, where

W ­ 2 snk 1 k 1 2d21

3

∑
snk 1 k 1 1dV 1 j

≠V
≠j

1 h
≠V
≠h

∏
1 sV ? =dV ,

V ­ 2R2n22=R, and the = operator now involves
differentiation with respect toj and h. This equation
should be solved in the first quadrant with the Dirichle
boundary condition. We solved it numerically using th
0
FIG. 3. Density and velocity fields att ­ 0 (a) andt ­ 3 3 1023 (b). The velocity field (arrows) is scaled by 3000 (a) and 10
(b). On the inner density isolines,r ­ 0.1 and increases outwards in steps of 0.1.
2114
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shape functionR found earlier (in this casea ­ 34y19 ø
1.79). The result is shown in Fig. 2. Now we can
evaluate the vorticityv ­ vsx, y, td ez, using the relation
s≠vy≠tdx,y ­ =2c. Following Picone and Boris [7], we
calculate the vorticity fluxV through the first quadrant
as a function of time. The growth rate of this quantity
dVydt, is equal toZ `

0

Z `

0
dxdy =2c ­

I
C

s=c ? nddl , (11)

whereC is the contour going from infinity to zero along
the y axis and continuing to infinity along thex axis,
and n is the external normal. Employing the similarity
solution forc, we obtain

dV

dt
­ 2st 1 t0d2a

"Z `

0

≠C

≠j
sj ­ 0, hd dh

1
Z `

0

≠C

≠h
sj, h ­ 0ddj

#
, (12)

where we have used the invariance of the similarit
solution with respect to a time shift and introducedt0, the
only fitting parameter of the theory. Integrating Eq. (12
with a zero initial condition, we arrive at

jVstdj ­ jBjsa 2 1d21ft12a
0 2 st 1 t0d12ag , (13)

where B is the constant given by the expression in th
square brackets in Eq. (12). Equation (13) predicts
linear growth ofV with time followed by saturation at
a constant valuejBjsa 2 1d21t12a

0 .
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Now we report on the 2D-numerical simulations wi
Eqs. (1)–(3). We employed an extended version of
codeVULCAN [16] that uses flexible moving grids and ca
operate in any combination of Eulerian and Lagrang
modes. In the rezoning stage we used the scheme of
Leer [17] that preserves second order accuracy. The c
could work in an implicit mode, thus eliminating th
Courant-Friedrichs-Lewy restriction on the time step. T
initial conditions were

rsr , f, t ­ 0d ; rin ­
d 1 rks1 1 acos2fd
1 1 rks1 1 acos2fd

(14)

for the density,vsr , f, t ­ 0d ­ 2r
2n22
in =rin for the ve-

locity, and unity for the pressure. Ford ø 1, the ini-
tial density profile has an extended part described
rks1 1 acos2fd (which yields the 2D-similarity solution).
On the other hand,rin is nonzero atr ­ 0 and ap-
proaches unity atr ! `, as it should. In most of the
simulations we tookd ­ 1022, a ­ 0.6, ande in the range
of 1026 to 1025. Simulations show that the density histo
at the channel axis is described very well by the simil
ity scaling 1.99st 1 4.2 3 1025d10y19 until the late stage,
when the density contrast is reduced. However, the
locity field [that was curl free in the beginning, Fig. 3(a
develops a noticeable vorticity whose spatial structure
similar to that shown in Fig. 2. Finally, a distinctive vo
tex, advected towards the origin by the overdense gas
flow, appears [Fig. 3(b)]. Since the problem is symmet
with respect to each of the axes, the corresponding “fu
flow develops four symmetric vortices. Figure 4 shows t
time history of the vorticity flux through the first quadran
V, as found from the simulations. It is seen that the v

FIG. 4. Vorticity flux through the first quadrant vs time, a
predicted by the full simulations, and by Eq. (13) with differe
values oft0.
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ticity reaches a significant value. One can also see that
perturbation theory [Eq. (13)] underestimates the satura
vorticity flux. This is understandable, as the perturbatio
scheme fails at large times. Interestingly, the agreem
improves for a smaller value oft0.

In summary, we claim that any generic nonadiaba
gas flow develops a significant vorticity. For the low
Mach-number conductive CF that we have consider
in detail, the further vorticity dynamics (instability?)
is apparently sensitive to geometry (as in the Picon
Boris scenario). We did not observe turbulence or oth
significant modification of the bulk transport properties i
this (still highly symmetric) 2D flow. Correspondingly,
the “hot channel” riddle requires further investigation
One can expect turbulence to show up in a less symme
3D situation, when perturbations along the channel a
are introduced.

B. M. acknowledges a valuable discussion with P. V
Sasorov.
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