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Lyapunov Spectrum and the Conjugate Pairing Rule for a Thermostatted Random
Lorentz Gas: Numerical Simulations
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(Received 26 September 1996)

We report on the numerical computation of the Lyapunov exponents and the Kolmogorov-Sina
entropy for a three-dimensional, dilute, random Lorentz gas both in equilibrium and in nonequilibrium
steady states. In our method the phase- and tangent-space dynamics are treated exactly. Furtherm
we propose a highly efficient stochastic technique for the computation of Lyapunov spectra of dilut
systems. Our results are in excellent agreement with analytical results of Latz, van Beijeren, an
Dorfman [preceding Letter, Phys. Rev. Lett.78, 207 (1997)]. [S0031-9007(96)02159-X]
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The field driven Lorentz gas is, arguably, the simple
model which still displays all the features character
tic for thermostatted nonequilibrium steady states [1,
Although its dynamics is governed by time-reversib
equations of motion, any phase-space volume elemen
continuously shrinking, and the invariant phase-space
tribution collapses onto a multifractal strange attractor w
information dimension strictly less than the phase space
mension. Nevertheless, the system is ergodic in the se
that a typical trajectory comes arbitrarily close to eve
point of the accessible phase space.

Recently, van Beijeren and Dorfman [3] used metho
based on the Boltzmann equation to derive analyti
expressions for the Lyapunov exponents of the dilute tw
dimensional Lorentz gas in equilibrium. Their method w
subsequently extended to treat also weak nonequilibr
steady states [4]. In the preceding Letter, Latz, v
Beijeren, and Dorfman [5] succeeded in generalizing t
kinetic theory to derive analytical expressions for the f
spectrum of Lyapunov exponents of the dilute, thre
dimensional, driven Lorentz gas up to second order in
applied field. To complement these results we pres
in this Letter numerical simulations of the full Lyapuno
spectrum and the Kolmogorov-Sinai entropy for the sa
model.

The random Lorentz gas considered here consists
point particle with massm and chargeq, moving in an in-
finite, three-dimensional, random array of nonoverlapp
scatterers. The scatterers are hard spheres with radiua,
on which the moving particle is elastically reflected. A
external field $E, acting on this charge, drives the sy
tem away from equilibrium. Between successive co
sions the motion of the moving particle is governed
the equations of motionÙ$r ­ $y, Ù$y ­ q $Eym 2 a $y, a ­
qs $E ? $ydymy2, where$r is the position and$y the velocity
of the particle andy ­ s $yd. Without loss of generality
the field $E ­ s0, 0, Ed is taken to point into the positive
z direction. The term2a $y is a Gaussian thermosta
ting force designed to maintain a constant kinetic ene
m $y2y2 for the moving particle. These equations are rea
ily integrated [1,6].
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Since the collisions are instantaneous and elastic, the
sition of the moving particle is unaffected by the collisio
whereas its velocity changes discontinuously according

$yf ­ $yi 2 2s $yi ? n̂dn̂ . (1)

Throughout, the subscriptsi andf refer to states immedi-
ately before or after a collision, respectively.̂n is a unit
vector pointing from the center of the scatterer to the c
lision point.

Consider a reference trajectory in phase space sp
fied by the vector$Gstd. The time evolution of the sys-
tem is given by$Gstd ­ Ftsss $Gs0dddd, whereFt is the phase
flow. An infinitesimal perturbation is specified by a tan
gent vectord $Gs0d and evolves according to the linearize
equationd $Gstd ­ ≠Fty≠ $G ? d $Gs0d. The Lyapunov expo-
nents [7]ll ­ limt!`

1
t lnjd $Glstdjyjd $Gls0dj, l ­ 1, Ùs, L,

measure the exponential growth or decay ofL initially
orthogonal perturbations in phase space.L is the phase-
space dimension. In the three-dimensional Lorentz g
two of the six exponents vanish due to the conservat
of kinetic energy and the nonexponential behavior in t
flow direction. Thus the Lyapunov spectrum consists
the ordered set of exponents

°
l

1
1 , l

1
2 , 0, 0, l

2
2 , l

2
1

¢
where,

at least for small fields,l1
1,2 . 0 andl

2
1,2 , 0.

For the computation of these exponents we recen
proposed a generalization [8] of the classical method
Benettinet al. [7]. It requires the simultaneous compu
tation of the time evolution of a reference trajectory a
of L tangent vectors. Between successive collisions
analytical solution [1,6] is used. These explicit expre
sions, when differentiated, yield the time evolution of th
tangent vectors. When the particle collides with a fix
scatterer, the phase trajectory changes discontinuously
cording to (1). The corresponding discontinuous chan
of a tangent vector can be deduced from a general
malism outlined in Ref. [8]. In the following we merely
quote the results for an elastic collision of a point partic
with a fixed hard sphere.

When the moving particle collides with a scatterer, t
positional partd $r of a tangent vectord $G ­ sd $r , d $yd
© 1997 The American Physical Society 211
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suffers a specular reflection on the surface of the scatte

d $rf ­ d $ri 2 2sd $ri ? n̂dn̂ . (2)

The transformation rule for the velocity components
more involved:

d $yf ­ d $yi 2 2sd $yi ? n̂dn̂ 1 d $yc 1 d $yE . (3)

In addition to the specular-reflection terms, two oth
contributions arise in this equation. The third term on t
right-hand side,d $yc, is a consequence of the curvature
the scatterer surface. It is explicitly given by

d $yc ­ 22fs $yi ? dn̂d $n 1 s $yi ? n̂ddn̂g , (4)

wheredn̂ ; ≠n̂yd $r ? d $rc is the variation of the norma
vectorn̂, caused by the variational displacement

d $rc ­ d $ri 2
sd $ri ? n̂d
s $yi ? n̂d

(5)

of the collision point on the surface of the scatterer due
the perturbation. The last term on the right-hand side
(3),

d $yE ­
2q
m

sn̂ ? $Ed
d $qi ? n̂
$yi ? n̂

∑
n̂ 1

s $yi ? n̂d
y2

$yf

∏
, (6)

is a consequence of the applied field and of the th
mostatting force. In combination, Eqs. (2)–(6) enable
to obtain the exact time evolution of any tangent-spa
vector and, hence, to apply Benettin’s method for
computation of the full Lyapunov spectrum.

In our numerical work we measure distances in un
of a, time in units of ayy, Lyapunov exponents an
collision rates in units ofyya, and the external field
in units of my2yqa. The number density is defined a
n ; NyV , where N is the number of scatterers andV
is the volume of the simulation box. The scatterers
placed at random in a cubic simulation box with period
boundary conditions. To reduce the computational eff
the simulation box is divided into subcells containin
one scatterer on the average. The next collision poin
the moving particle with a scatterer or its crossing po
with the boundary of the current subcell is determin
numerically with an accuracy of10212. At each collision
the rules (1), and (2), (3) are applied to the referen
system and the tangent vectors, respectively. The full
of tangent vectors is periodically reorthonormalized us
the Gram-Schmidt method, and the Lyapunov expone
are obtained from the time average of the logarithms
the normalization factors [7].

Let us consider equilibrium systems (E ­ 0) first.
Figure 1 showsl1

1 andl
1
2 as a function of the scattere

density n for a system of105 scatterers. The standar
deviation of all points is better than0.15%. The negative
exponents are not shown. They may be obtained fr
the symmetry relationsl1

1 ­ 2l
2
1 and l

1
2 ­ 2l

2
2 ,
212
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FIG. 1. Lyapunov exponentsl1
1 (squares) andl1

2 (crosses)
of the three-dimensional random Lorentz gas in equilibrium
a function of the densityn.

which are a consequence of the symplectic nature of
equations of motion for the equilibrium systems [5,9
The solid line (l1

1 ) and the broken line (l
1
2 ) are the

kinetic-theory results of Latz, van Beijeren, and Dorfm
summarized in Eq. (6) of the accompanying paper [
Within the density range accessible to kinetic theo
[10], the agreement between our numerical results
the theoretical predictions is excellent. We note th
the maximum Lyapunov exponents for two- and thre
dimensional systems are very similar if taken as a funct
of the collision rate.

Next we turn to stationary nonequilibrium system
with a homogeneous field acting on the moving pa
ticle. In Fig. 2 we show the deviation of the Lya
punov exponents from their equilibrium valueDl

6
i sEd ;

l
6
i sEd 2 l

6
i s0d for a densityn ­ 0.001a23 as a func-

tion of the square of the field. On the abscissa we
ẽ2yñ, where ẽ ­ qaEymy2 and ñ ­ npa3. The cor-
responding equilibrium exponentsl

1
1 s0d ­ 2l

2
1 s0d ­

s0.019 214 6 1 3 1026dyya and l
1
2 s0d ­ 2l

2
2 s0d2 ­

s0.018 034 6 1 3 1026dyya were carefully determined
from an average over100 configurations, each constructe
of 2 3 105 scatterers, and a total of470 3 106 collisions.
For the points at finite field the same parameters app
however, the total number of collisions which could b
followed was about40 3 106 per point. The resulting
standard deviation forDl

6
i sEd is indicated by the error

bars in Fig. 2. We defer the discussion of these res
and the comparison with theory to the end of the Letter

For thermostatted nonequilibrium steady-state syste
the respective transport coefficient is strictly proportion
to the sum of all Lyapunov exponents which, in tur
is proportional to the time-averaged thermostat varia
kal [9,11]. For the 3D-Lorentz gas the conductivit
s ; qkyElyE2, which for small fields is related to the
diffusion coefficientD through an Einstein relation, is
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FIG. 2. Deviation of the Lyapunov exponents from the
equilibrium value as a function of̃e2yñ at a densityn ­
0.001a23. The solid lines are the theoretical predictio
according to Eqs. (13) of Ref. [5]. The broken lines refer
the results obtained with the stochastic technique describe
the main text.

given by

s ­
q2D
kT

­ 2
my2

2E2

X
i

li ­
2
3

q2a
myñ

1 OsE2d . (7)

The last equality is derived by inserting the kineti
theory expressions (5) of Ref. [5]. In Fig. 3 the diamon
represent simulation results for the normalized diffus
coefficientDñyay as a function ofẽ2yñ for the density
n ­ 0.001a23. D was obtained from the conductivit
s via the first equality of (7), ands was computed
from its definition given above, the ratio of the tim
averaged current in field direction to the applied fie

FIG. 3. Dimensionless diffusion coefficientDñyay as a
function of ẽ2yñ at a densityn ­ 0.001a23. The broken line
refers to the results obtained with the stochastic techni
described in the main text. The square with error bar
ẽ2yñ ­ 0 is the equilibrium Green-Kubo result.
in

-
s
n

.

e
t

Alternatively, s (or D) can be obtained also from the
sum of all Lyapunov exponents as indicated by (7). O
the scale of Fig. 3 both methods give indistinguishab
results. The square with error bar atẽ2yñ ­ 0 was
obtained under equilibrium conditions from the Green
Kubo relationD ­

R`
0 kyxs0dyxstd dtl.

The method just described requires the precise loc
ization of the collision points and becomes inefficient fo
low densities. To overcome this limitation to accurac
in this density regime, we propose a stochastic meth
(SM), which is, in essence, a numerical method for sol
ing the Boltzmann equation. It is similar to the Mont
Carlo methods for the simulation of neutron transport
random media [12] and the direct simulation Monte Car
method [13]. The main idea is that the streaming motio
and the collisions are uncoupled for low-enough densitie
for which correlations of subsequent collisions are neg
gible. The dynamics of the system is modeled by appr
priate probability distributions of the collision parameter
and of the collision time.

The SM proceeds as follows. (a) The velocity of th
moving particle is initialized with random orientation
Since the streaming motion and the collisions are unco
pled, the particle position is irrelevant and need not be fo
lowed in time. (b) A collision timet is drawn from the
distributionpstd ­ n exps2ntd, wheren is the collision
rate. n or, equivalently, the mean free path, is an input p
rameter for the simulation. This exponential distributio
is a consequence of the random scatterer configuration
may be derived from the probability of a random event
occur after a timet. (c) The velocity of the moving par-
ticle is advanced fort yielding $yi for the next collision.
Also the tangent vectors are updated accordingly. (d) T
velocity vector and the tangent vectors are subjected t
random collision. Since a collision with a hard sphere
isotropic, the direction of$yf is uniformly distributed over
a sphere of radiusy. From $yi and $yf the unit vectorn̂
is determined, and the transformation rules (2) and (3) a
applied to all tangent vectors. (e) The steps (b)-(d) are
peated until the desired number of collisions is reached.
should be noted that, although the time evolution of the re
erence system is determined by stochastic events, tang
space dynamics is completely deterministic.

We tested SM for the same densityn ­ 0.001a23

as was used before. It corresponds to a mean f
pathl ­ 317.0a. For each field4 3 108 collisions were
computed. The positive equilibrium exponents obtain
with this method,l1s0d ­ s0.019 197 6 1 3 1026dyya
and l1s0d ­ s0.018020 6 1 3 1026dyya, differ from
the numbers quoted above by,0.1%. This discrepancy
is an indication of the systematic errors at this density d
to the statistical assumptions for the stochastic meth
However, even this small error cancels to a large exten
the differenceDl

6
i sEd ; l

6
i sEd 2 l

6
i s0d is computed,

as is the case shown in Fig. 2. All points for 20 differen
fields are on top of two smooth dashed lines shown in t
figure for clarity. They do not show any noticeable scatt
213
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with respect to these curves on the scale of the fig
This lack of scatter is achieved only if thesamesequence
of random numbers is used for the computation ofl

6
i sEd

and l
6
i s0d. The statistical fluctuations are effective

reduced by the difference. The convergence ofDl
6
i sEd

to their asymptotic values is about 100 times faster th
with a computation using different sequences of rand
numbers.

We find very good agreement in Fig. 2 for the resu
of the stochastic method (dashed curves) forDl

6
i sEd with

the points obtained with the more conventional algorith
discussed before. The same is true also for the redu
diffusion coefficient as a function of the squared field
Fig. 3, where the dashed curve (no fit) again refers to the
results of SM.

The field dependence of the two positive Lyapun
exponents is numerically found to be identical includi
terms to at least fourth order in the field, as is obvio
from the upper dashed curve in Fig. 2 which conta
the points forDl

6
1,2sEd. Likewise, the field dependenc

of the two negative exponents is also identical a
is depicted by the lower dashed curve in the figu
The solid lines are the kinetic-theory results predic
by Eq. (6) of the preceding Letter [5]. According t
this theory accurate to second order in the field,
two positive and the two negative exponents have
same field dependence. This is in agreement with
experimental results. Furthermore, the slopes of
theoretical curves are in perfect agreement with our S
simulation results in the vanishing-field limit.

Two remarks are in order: First, the negative expone
vary more strongly with the square of the field th
the positive exponents. This is in contrast to the tw
dimensional Lorentz gas, for which the (single) positi
exponent varies more strongly withE2 than the (single)
negative [4]. Second, deviations from the quadra
field dependence are observed in Fig. 2. They indic
that contributions ofOsE4d to the Lyapunov exponent
become important already for such small fields as
included in the range of the figure.

Finally, we compare our simulation results for the d
fusion coefficient with the predictions of the kinetic th
ory. According to Eq. (5) of Ref. [5] a field-independe
constant forDñ is obtained, indicated by the dotted hor
zontal line in Fig. 3. The slope of our numerical da
points to the significance ofOsE4d terms in the sum of
all Lyapunov exponents not included in the theory. F
thermore, the small discrepancy of less than1% for van-
ishing field is due to the omission of higher-order term
of the form ñ 1 bñ2 ln ñ by the theory. Introduction of
the next-order correction known, however, only for t
random Lorentz gas with scatterer overlap permitted [1
reduces this discrepancy to about0.5%.
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We conclude by stressing again the remarkable agre
ment of our numerical results with the theoretical predic
tions of [5]. We have shown that the accuracy obtainabl
by deterministic and stochastic simulation techniques a
lows detailed numerical predictions for all field-dependen
Lyapunov exponents of the random Lorentz gas. The de
velopment of a very efficient stochastic method make
also very low-density systems accessible to simulation
Similar techniques have been used recently also for th
study of many-body hard-disk and hard-sphere [15] sys
tems in two and three dimensions, respectively.
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