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Lyapunov Spectrum and the Conjugate Pairing Rule for a Thermostatted Random
Lorentz Gas: Numerical Simulations
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We report on the numerical computation of the Lyapunov exponents and the Kolmogorov-Sinai
entropy for a three-dimensional, dilute, random Lorentz gas both in equilibrium and in nonequilibrium
steady states. In our method the phase- and tangent-space dynamics are treated exactly. Furthermore,
we propose a highly efficient stochastic technique for the computation of Lyapunov spectra of dilute
systems. Our results are in excellent agreement with analytical results of Latz, van Beijeren, and
Dorfman [preceding Letter, Phys. Rev. LetB, 207 (1997)]. [S0031-9007(96)02159-X]

PACS numbers: 05.45.+b, 02.70.Ns, 05.20.—y

The field driven Lorentz gas is, arguably, the simplest Since the collisions are instantaneous and elastic, the po-
model which still displays all the features characteris-sition of the moving particle is unaffected by the collision,
tic for thermostatted nonequilibrium steady states [1,2]whereas its velocity changes discontinuously according to
Although its dynamics is governed by time-reversible
equations of motion, any phase-space volume element is vy =10; — 2(0; - A)ir. (1)
C(_)ntirjuously shrinking, and the invariant phase-space qisl"hroughout, the subscripisand f refer to states immedi-
tribution collapses onto a multifractal strange attractor with,

. : ! X . ately before or after a collision, respectively. is a unit
information dimension strictly less than the phase space d(; y P "

mension. Nevertheless, the system is ergodic in the Sen?gctor pointing from the center of the scatterer to the col-

: ) L iSion point.
that a typical trajectory comes arbitrarily close to every X . : .
: ) Consider a reference trajectory in phase space speci-
point of the accessible phase space.

Recently, van Beijeren and Dorfman [3] used methoddi€d by the vector'(z). The time evolution of the sys-
based on the Boltzmann equation to derive analyticalem is given byl'(r) = ®'(I'(0)), where®’ is the phase
expressions for the Lyapunov exponents of the dilute twoflow. An infinitesimal perturbation is specified by a tan-
dimensional Lorentz gas in equilibrium. Their method wasgent vectors1"(0) and evolves according to the linearized
subsequently extended to treat also weak nonequilibriurgquationgr(t) = 9®'/aT - 8T(0). The Lyapunov expo-
steady states [4]. In the preceding Letter, Latz, vaments [7]A, = Iim,ﬁx% In|sT, ()1 /16 T,0), 1 = 1,5, L,
Beijeren, and Dorfman [5] succeeded in generalizing thisneasure the exponential growth or decayZofnitially
kinetic theory to derive analytical expressions for the f“”orthogonal perturbations in phase spadeis the phase-
spectrum of Lyapunov exponents of the dilute, threexpace dimension. In the three-dimensional Lorentz gas
dimensional, driven Lorentz gas up to second order in thgyo of the six exponents vanish due to the conservation
applied field. To complement these results we presens kinetic energy and the nonexponential behavior in the
in this Letter numerical simulations of the full Lyapunov fjow direction. Thus the Lyapunov spectrum consists of
spectrum and the Kolmogorov-Sinai entropy for the samene ordered set of exponer(ts;, A3, 0,0, A5, A ) where,
model. _ , at least for small fieldsd;, > 0 andA;, < 0.

The random Lorentz gas considered here consists of @ For the computation of these exponents we recently
point particle with mass: and charge;, moving inanin-  hroposed a generalization [8] of the classical method of
finite, three-dimensional, random array of nonoyerlappmg_:,enemnet al.[7]. It requires the simultaneous compu-
scatterers. The scatterers are hard spheres with radius ation of the time evolution of a reference trajectory and
on which the moving particle is elastically reflected. Anyf 7 tangent vectors. Between successive collisions the
external fieldE, acting on this charge, drives the sys-analytical solution [1,6] is used. These explicit expres-
tem away from equilibrium. Between successive colli-sions, when differentiated, yield the time evolution of the
sions the motion of the moving particle is governed bytangent vectors. When the particle collides with a fixed
the equations of motio = v,v = gE/m — av,@ =  scatterer, the phase trajectory changes discontinuously ac-
q(E - v)/mv?, wherer is the position and the velocity  cording to (1). The corresponding discontinuous change
of the particle andv = (9). Without loss of generality of a tangent vector can be deduced from a general for-
the field E = (0,0, E) is taken to point into the positive Mmalism outlined in Ref. [8]. In the following we merely
z direction. The term—a® is a Gaussian thermostat- quote the results for an elastic collision of a point particle
ting force designed to maintain a constant kinetic energyvith a fixed hard sphere.

mv? /2 for the moving particle. These equations are read- When the moving particle collides with a scatterer, the
ily integrated [1,6]. positional parté7 of a tangent vectoST' = (67, 6v)
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suffers a specular reflection on the surface of the scatterer F ' ' ' a

L 24

- - - i Afs g >

8Fp = 86 — 2(67; - )i . (2) o ¥

01 i E

The transformation rule for the velocity components is ; ]
more involved: . [ i

i L 4

80y = 80; — 2(80; - A + 8D + v, () = 001 b

In addition to the specular-reflection terms, two other
contributions arise in this equation. The third term on the
right-hand sidepv.., is a consequence of the curvature of 0.001
the scatterer surface. It is explicitly given by

80, = —2[(v; - dA)n + (U; - A)SA], (4) 0.00001 0.0001 0.001 0.01
3

where i = 9a/8F - 87, is the variation of the normal na

vector7, caused by the variational displacement FIG. 1. Lyapunov exponenta; (squares) and\; (crosses)
(57 - ) of the three-dimensional random Lorentz gas in equilibrium as
ri - n

- . a function of the density.
8 = 87 = = (5) v
1

of the collision point on the surface of the scatterer due tQuhich are a consequence of the symplectic nature of the
the perturbation. The last term on the right-hand side Oéquations of motion for the equi”brium Systems [5,9]
), The solid line @) and the broken line ;) are the
2 . =.8G;i-Aa[.  (@i-h). kinetic-theory results of Latz, van Beijeren, and Dorfman
( [ + 2 Ufi|» (6 summarized in Eqg. (6) of the accompanying paper [5].
Within the density range accessible to kinetic theory
is a consequence of the applied field and of the therf10], the agreement between our numerical results and
mostatting force. In combination, Eqgs. (2)—(6) enable ughe theoretical predictions is excellent. We note that
to obtain the exact time evolution of any tangent-spaceghe maximum Lyapunov exponents for two- and three-
vector and, hence, to apply Benettin’s method for thedimensional systems are very similar if taken as a function
computation of the full Lyapunov spectrum. of the collision rate.

In our numerical work we measure distances in units Next we turn to stationary nonequilibrium systems
of a, time in units of a/v, Lyapunov exponents and with a homogeneous field acting on the moving par-
collision rates in units ofv/a, and the external field ticle. In Fig. 2 we show the deviation of the Lya-
in units of mv?/ga. The number density is defined as punov exponents from their equilibrium value\; (E) =
n = N/V, whereN is the number of scatterers and  A; (E) — A; (0) for a densityn = 0.00la > as a func-
is the volume of the simulation box. The scatterers ardion of the square of the field. On the abscissa we use
placed at random in a cubic simulation box with periodicé?/ii, where é = gaE/mv? and ii = nwa’. The cor-
boundary conditions. To reduce the computational effortresponding equilibrium exponents A (0) = —A; (0) =
the simulation box is divided into subcells containing (0.019214 = 1 X 107 %v/a and A; (0) = —A; (0)— =
one scatterer on the average. The next collision point 0f0.018034 + 1 X 10~ ®)wv/a were carefully determined
the moving particle with a scatterer or its crossing pointfrom an average ovei00 configurations, each constructed
with the boundary of the current subcell is determinedof 2 X 103 scatterers, and a total 470 X 10° collisions.
numerically with an accuracy di0~'2. At each collision ~ For the points at finite field the same parameters apply;
the rules (1), and (2), (3) are applied to the referencéowever, the total number of collisions which could be
system and the tangent vectors, respectively. The full sébllowed was abou#0 X 10° per point. The resulting
of tangent vectors is periodically reorthonormalized usingstandard deviation foAA; (E) is indicated by the error
the Gram-Schmidt method, and the Lyapunov exponentbars in Fig. 2. We defer the discussion of these results
are obtained from the time average of the logarithms ofind the comparison with theory to the end of the Letter.
the normalization factors [7]. For thermostatted nonequilibrium steady-state systems

Let us consider equilibrium system& & 0) first.  the respective transport coefficient is strictly proportional
Figure 1 shows\;” and A; as a function of the scatterer to the sum of all Lyapunov exponents which, in turn,
density n for a system ofl03 scatterers. The standard is proportional to the time-averaged thermostat variable
deviation of all points is better thah15%. The negative <(a) [9,11]. For the 3D-Lorentz gas the conductivity
exponents are not shown. They may be obtained frono- = ¢(vE)/E?, which for small fields is related to the
the symmetry relationsA\{ = —A; and Ay = —A5, diffusion coefficientD through an Einstein relation, is
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Alternatively, o (or D) can be obtained also from the

0.00000 sum of all Lyapunov exponents as indicated by (7). On
-0.00002 the scale of Fig. 3 both_ methods give indistinguishable
= results. The square with error bar &t/i = 0 was
3_000004 obtained under equilibrium conditions from the Green-
e Kubo relationD = [;(v,(0)v,(¢) dt).
| 0.00006 The method just described requires the precise local-
- ization of the collision points and becomes inefficient for

-0.00008

-0.00010

-0.00012

0.0001

2/a

0.0002

0.0003

low densities. To overcome this limitation to accuracy
in this density regime, we propose a stochastic method
(SM), which is, in essence, a numerical method for solv-
ing the Boltzmann equation. It is similar to the Monte
Carlo methods for the simulation of neutron transport in
random media [12] and the direct simulation Monte Carlo
method [13]. The main idea is that the streaming motion
and the collisions are uncoupled for low-enough densities,

FIG. 2. Deviation of the Lyapunov exponents from their for which correlations of subsequent collisions are negli-
equilibrium value as a function o&?/ii at a densityn =

0.001a73.

the main text.

given by

gible. The dynamics of the system is modeled by appro-

. The solid lines are the theoretical predictions priate probability distributions of the collision parameters
according to Eqgs. (13) of Ref. [5]. The broken lines refer to

the results obtained with the stochastic technique described in

and of the collision time.

The SM proceeds as follows. (a) The velocity of the
moving particle is initialized with random orientation.
Since the streaming motion and the collisions are uncou-

2p M2 > ia pled, the particle position is irrelevant and need not be fol-
S Z/\ 249 O(E?). (7) lowed intime. (b) A collision timer is drawn from the

i 3 my distribution p(7) = v exp(—v7), wherev is the collision
L . . . ... rate. v or, equivalently, the mean free path, is an input pa-
The last equality is derived by inserting the kinetic- rameter for the simulation. This exponential distribution

theory expressions (5) of Ref. [5]. In Fig. 3 the dlamondsls a consequence of the random scatterer configuration and

represent simulation results for the normalized diffusionmay be derived from the probability of a random event to
coefficientDii/av as a function ofé?/7 for the density occur after a time. (c) The velocity of the moving par-

_ 73 . . .
n=0001g"". D was obtained from the conductivity ticle is advanced for yielding o; for the next collision.

o via the fl_rs_t. eq“"?‘"ty of (7), andy was comput_ed Also the tangent vectors are updated accordingly. (d) The
from its definition given ab_ove,. the ratio of the time- velocity vector and the tangent vectors are subjected to a
averaged current in field direction to the applied f'eld'random collision. Since a collision with a hard sphere is

isotropic, the direction of ; is uniformly distributed over

a sphere of radius. Fromo; and v, the unit vectori

N

0.33 |

(av)

= 032

031 -

is determined, and the transformation rules (2) and (3) are
applied to all tangent vectors. (e) The steps (b)-(d) are re-
peated until the desired number of collisions is reached. It
should be noted that, although the time evolution of the ref-
erence system is determined by stochastic events, tangent-
space dynamics is completely deterministic.

We tested SM for the same density= 0.001a 3
as was used before. It corresponds to a mean free
path! = 317.0a. For each fieldt X 10® collisions were
computed. The positive equilibrium exponents obtained
with this method, A" (0) = (0.019197 = 1 X 107 %)v/a

and AT(0) = (0.018020 = 1 X 10 ®)v/a, differ from

the numbers quoted above by0.1%. This discrepancy

is an indication of the systematic errors at this density due
to the statistical assumptions for the stochastic method.
However, even this small error cancgls to a large extent if
function of €2/7 at a densityn = 0.001a 3. The broken line the differenceAA; (E) = A (E) — A; (0) is computed,
refers to the results obtained with the stochastic techniqué_lS is the case shown in Fig. 2. All pomt_s for 20 dlﬁgrent
described in the main text. The square with error bar afi€lds are on top of two smooth dashed lines shown in the
&2/ii = 0 is the equilibrium Green-Kubo result. figure for clarity. They do not show any noticeable scatter
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with respect to these curves on the scale of the figure. We conclude by stressing again the remarkable agree-
This lack of scatter is achieved only if tesamesequence ment of our numerical results with the theoretical predic-
of random numbers is used for the computatiompfE)  tions of [5]. We have shown that the accuracy obtainable
and A; (0). The statistical fluctuations are effectively by deterministic and stochastic simulation techniques al-
reduced by the difference. The convergence\af (E)  lows detailed numerical predictions for all field-dependent
to their asymptotic values is about 100 times faster thahyapunov exponents of the random Lorentz gas. The de-
with a computation using different sequences of randonvelopment of a very efficient stochastic method makes
numbers. also very low-density systems accessible to simulation.
We find very good agreement in Fig. 2 for the resultsSimilar techniques have been used recently also for the
of the stochastic method (dashed curves)Xaf (E) with  study of many-body hard-disk and hard-sphere [15] sys-
the points obtained with the more conventional algorithmtems in two and three dimensions, respectively.
discussed before. The same is true also for the reduced We would like to thank Professor H.v. Beijeren, Pro-
diffusion coefficient as a function of the squared field infessor J. R. Dorfman, Dr. A. Latz, and Professor W.G.
Fig. 3, where the dashed curveo(fif) again refers to the Hoover for stimulating discussions and cooperation on
results of SM. this and related work. The authors gratefully acknowl-
The field dependence of the two positive Lyapunovedge the financial support from t@nds zur Férderung
exponents is numerically found to be identical includingder wissenschaftlichen Forschungrant No. P09677,
terms to at least fourth order in the field, as is obviousand the generous allocation of computer resources by the
from the upper dashed curve in Fig. 2 which containsComputer Center of the University of Vienna.
the points forAA;,(E). Likewise, the field dependence
of the two negative exponents is also identical and
is depicted by the lower dashed curve in the figure.
The solid lines are the kinetic-theory results predicted
by Eg. (6) of the preceding Letter [5]. According to
this theory accurate to second order in the field, the
two positive and the two negative exponents have the 4817 (1995)
same_ﬂeld dependence. This is in agreement with OUr[3] H, van Beijeren and J.R. Dorfman, Phys. Rev. L&,
experimental results. Furthermore, the slopes of the  ~ 1319 (1995).
theoretical curves are in perfect agreement with our SM-[4] H. van Beijeren, J.R. Dorfman, E.G.D. Cohen, H.A.
simulation results in the vanishing-field limit. Posch, and Ch. Dellago, Phys. Rev. L&, 1974 (1996).
Two remarks are in order: First, the negative exponents[5] A. Latz, J.R. Dorfman, and H. van Beijeren, preceding
vary more strongly with the square of the field than Letter, Phys. Rev. LetZ8, 207 (1997).
the positive exponents. This is in contrast to the two- [6] C.P. Dettmann, G.P. Morriss, and L. Rondoni, Phys. Rev.
dimensional Lorentz gas, for which the (single) positive _ E 52, R5746 (1995). o
exponent varies more strongly wit? than the (single) [7] G. Benett, in L. Galgani, A. Giorgilli, and J.-M. Strelcyn,
negative [4]. Second, deviations from the quadratic ~ Meccanicals 9 (1980); A. Wolf, J.B. Swift, H.L.

field dependence are observed in Fig. 2. They indicate gg\/}\gn(rlegég)?nd J. A Vastano, Physica (Amsterdai6p,

that contributions ofO(E*) to the Lyapunov exponents [8] Ch. Dellago, H.A. Posch, and W.G. Hoover, Phys. Rev.

become important already for such small fields as are” " g 53 1485 (1996).

included in the range of the figure. [9] H.A. Posch and W.G. Hoover, Phys. Rev. 28, 473
Finally, we compare our simulation results for the dif- (1988).

fusion coefficient with the predictions of the kinetic the- [10] Ch. Dellago and H.A. Posch, Phys. Rev. E (to be
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