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Decay of High Order Optical Vortices in Anisotropic Nonlinear Optical Media
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We present an experimental and theoretical study of the decay of high order optical vortices in media
with an anisotropic nonlocal nonlinearity. Vortices with chargen decay into an aligned array ofn
vortices of unit charge. [S0031-9007(97)02727-0]
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Vortical excitations with quantized circulation appea
in superfluids, superconductors, and nonlinear optics
the presence of a repulsive or self-defocusing nonlineari
The nonlinear Schrödinger equation with cubic nonlinea
ity has been used extensively to describe vortex solitons
two transverse dimensions, as was done first in the cont
of vortex lines in superfluids by Ginzburg and Pitaevsk
[1]. Much recent attention has been attracted by vortic
and vortex solitons in nonlinear optics [2,3]. Idealize
Kerr-type optical media with a cubic, isotropic, and loca
nonlinearity have been shown experimentally to suppo
stables2 1 1dD vortex solitons [4].

While vortices with unit topological charge have bee
studied extensively much less is known about higher o
der vortices. The cubic nonlinear Schrödinger equatio
f≠y≠x 2 siy2d=2gBs$rd ­ 2ijBj2Bs$rd has vortex solu-
tions with integer chargem of the formBs$rd , fsrdeimu ,
wherer is the radius,u is the azimuthal angle, andfsrd ,
r jmj as r ! 0 and fsrd , 1 2 m2y2r2 for r ! `. As
was shown in Ref. [1] a high order vortex of chargem
is energetically unfavorable compared tom vortices of
unit charge. It is therefore often assumed that high o
der vortices will always decay. Nonetheless, the mod
of decay of a high order vortex has not been establishe
and recent calculations suggest that in the context of t
cubic nonlinear Schrödinger equation high order vortice
are metastable [5]. The nonlinear metastability of hig
order vortices in Kerr media may be viewed as eviden
for the weak interaction of unit-charge vortices in suc
media. It has been shown [6] that for large intervorte
separation the dynamics of vortices satisfying the cub
nonlinear Schrödinger equation correspond to point vo
tex dynamics in an ideal two-dimensional fluid. A pair o
point vortices with equal vorticity in an ideal fluid rotate
about their mutual center, while maintaining a consta
separation [7]. The corresponding rotation of quantize
vortices with the same charge and a relatively large sep
ration has been observed in both linear [8] and nonline
[9] optics.
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We show here that the weak interaction of optica
vortices with the same topological charge, and the clos
analogy with point vortices in a fluid, are not genera
results. We present the first experimental demonstratio
of the decay of a high order vortex in a nonlinear medium
with nonlocal anisotropic response. Upon breakup of th
input high-charge vortex the resulting charge-one vortice
repel each other and form an array aligned perpendicu
to the anisotropy axis. The same scenario holds for se
eral closely spaced charge-one vortices launched into t
medium. They repel each other and their characteris
separation at the final stages of the instability may exce
their initial separation by orders of magnitude. Our result
suggest that the high order vortex decay is also possib
in local isotropic media and we outline the conditions fo
which it could be observed.

As a background for subsequent results we discuss tw
possible mechanisms that split a high-charge vortex in
a set of charge-one vortices. The results of this splittin
may subsequently be enhanced by the nonlinearity leadi
to the observation of vortex decay. The first mechanis
is due to the fact that high order vortices are topologicall
unstable and separate into a set of charge-one vortic
in the presence of a small amount of noise, even in th
framework of linear optics. This circumstance was pointe
out in Ref. [10] and can be illustrated as follows. The
structure of the electromagnetic field near the center of
radially symmetric vortex of chargem in the presence of
noise is given byBs$rd 1 es$rd, whereB ­ r jmj expsimud,
ande ­ jes$rdj expfiues$rdg is a random complex function.
Zeros of the total field are determined by the equatio
B 1 e ­ 0, the solution of which givesm roots $r ­ $rj

s j ­ 0 : m 2 1d

$rj ­ jes0dj1yjmj expfips2j 1 1dym 1 iues0dymg . (1)

The results of the above topological decay may not b
very dramatic or even noticeable. The characteristic sep
ration between the formed vortices is determined by th
level of the noise. Subsequent linear diffraction does n
© 1997 The American Physical Society
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change the situation considerably. If the level of nois
is small, the set of charge-one vortices remains close
gether, compared to the characteristic width of a vorte
core, and for many purposes may still be treated as a hig
charge single vortex. Some nonlinearities such as a lo
Kerr response seemingly do not affect the situation app
ciably [5]. The nonlocal anisotropic response obtained
photorefractive media with an externally applied electr
field [11,12] changes the situation dramatically, resultin
in a nonlinear instability of the noise-created charge-o
vortices. The vortices repel each other and their final sep
ration may exceed their initial separation (due to nois
induced splitting) by orders of magnitude.

The second mechanism is due to propagation effec
An elliptically shaped high-charge vortex embedded
a Gaussian beam may split into charge-one vortices
the result of linear diffraction when it propagates in th
medium. In the case of anisotropic media the nonlinear
itself serves as the generator of the ellipticity regardle
of the initial boundary conditions. In the case of isotropi
media the ellipticity should be introduced explicitly by
e.g., a specific choice of anisotropic boundary condition

We believe that in our experiments both of the abov
mechanisms contribute to the vortex decay, though t
numerics show that vortex decay in these media is possi
even in the absence of any internal noise. We also pred
that decay of a high order vortex should be observab
in isotropic media if the input boundary conditions ar
anisotropic. The linear diffraction then splits the vorte
into charge-one vortices. In the absence of the nonlinear
the separation of these resulting vortices is typically muc
less than the size of their cores. Even though a local Ke
nonlinearity does not change the intervortex separati
appreciably as compared to the linear case, it significan
reduces the size of the vortex cores thereby making t
vortices physically distinct.

Vortex decay was observed using a photorefractiv
crystal as the nonlinear medium. The photorefractiv
nonlinearity is proportional to the product of the materia
Pockels coefficient with the static electric field generate
by the optical beam. The electric field is found by solvin
a particular form of Poisson’s equation for the electrosta
potentialf, with a source charge distribution due to ligh
induced charge transport. The photorefractive nonlinear
is thus nonlocal. Given the electrostatic potential th
perturbation to the refractive index isdnij , rijk≠fy≠xk,
wherer is the electro-optic tensor. The anisotropic natu
of r results in a highly anisotropic nonlinear response.

The experimental arrangement was similar to that us
in Ref. [12]. A 30 mW He-Ne laser beam (l ­ 0.63 mm)
was passed through a variable beam splitter and a sys
of lenses controlling the size of the beam waist. Th
beam was directed into a photorefractive crystal of SBN:6
doped with 0.002% by weight Ce. The beam propagat
perpendicular to the crystal̂c axis (­ z axis), and was
polarized along it. The crystal measured 19 mm alon
the direction of propagation, and was 5 mm wide alon
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the ĉ axis. The experimentally measured value of th
relevant component of the electro-optic tensor was foun
to be equal tor33 ­ 150 pmyV. A variable dc voltage
was applied along thêc axis to control the value of the
nonlinearity coefficient. The crystal was illuminated by
a source of incoherent white light to increase the level
the effective saturation intensity. Images of the beam
the output face of the crystal were recorded with a CC
camera. Beams with embedded vortex structures we
produced with the help of computer-generated hologram
corresponding to the interference pattern created by t
target structure of the field and a plane reference bea
Diffraction of the laser beam by the hologram read out th
target structure and embedded it in the beam.

Figure 1 presents experimental observation of the i
stability of a charge-two vortex embedded in a Gaussia
beam. Figure 1(a) shows the output beam with no appli
voltage (zero nonlinearity). The output intensity distribu
tion in Fig. 1(a) corresponds to an annular ring with in
ternal and external diameters of about106 and 260 mm,
respectively. Figure 1(b) shows the interferogram of th
output beam and a spherical reference wave. A doub
spiral demonstrates the existence of a charge-two vort
on the beam. Increasing the applied external voltage (t
nonlinearity) in Figs. 1(c) and 1(d) to 300 and 840 V, re
spectively, results in splitting of the input vortex into two
charge-one vortices, their increasing separation and alig
ment along they axis, perpendicular to the applied field
and the direction of anisotropy. The same behavior but f
vortices with charges of three and five is shown in Fig. 2
A slight tilting of the line of vortices away from they axis
is due to the combined effects of the anisotropy inducin
alignment alongy, and the phase structure of the vortice
causing a clockwise rotation. Changing the sign of th

FIG. 1. Observed evolution of a charge-two vortex for applie
voltages of 0 (a), 300 (c), and 840 V (d). Two unwinding
spirals on the interferogram (b) demonstrate the existence o
double charge on the beam.
2109
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FIG. 2. Decay of charge-three (a) and charge-five (b) vortic
obtained with applied voltages of 550 and 820 V, respective
The corresponding interferograms are shown in (c) and (d).

input high order vortex leads to a slight tilting away from
they axis in the opposite direction. The asymptotic stru
ture of a row of vortices of the same charge is an op
question.

For theoretical interpretation of the results we use t
set of equations describing propagation of an optical be
Bs$rd in a photorefractive self-focusing or self-defocusin
medium as developed in [11,12]∑

≠

≠x
2

i
2

=2

∏
Bs$rd ­ 2i

≠w

≠z
Bs$rd , (2a)

=2w 1 = lns1 1 jBj2d ? =w ­
≠

≠z
lns1 1 jBj2d . (2b)

Here = ­ ŷs≠y≠yd 1 ẑs≠y≠zd and w is the dimension-
less electrostatic potential induced by the beam with t
boundary conditions=ws$r ! `d ! 0. The dimension-
less coordinatessx, y, zd are related to the physical coordi
natessx0, y0, z0d by the expressionsx ­ ax0 ands y, zd ­p

ka s y0, z0d, wherea ­ s1y2dkn2reffEext. Herek is the
wave number of light in the medium,n is the index of re-
fraction, reff is the effective element of the electro-opti
tensor, andEext is the amplitude of the external field di-
rected along thez axis far from the beam. The normalized
intensityjBs$rdj2 is measured in units of saturation intensit
Id, so that the physical beam intensity is given byjBs$rdj2Id.
The minus sign on the right hand side of Eq. (2a) corr
sponds to a self-defocusing nonlinearity. Equations (2
and (2b) are valid for relatively wide beams and neglect t
part of the nonlinearity responsible for asymmetric stim
lated scattering since it is not important in the range
parameters discussed here (for details see [11]).

Numerical solutions of Eqs. (2a) and (2b) describin
nonlinear evolution of a charge-two optical vortex fo
different values of the nonlinearity are shown in Fig. 3
The input intensity distribution of the field was taken to b
2110
es
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FIG. 3. Numerical results showing evolution of a charge-tw
vortex in photorefractive media for applied voltages of 0 (a) an
840 V (b). The curves below show the corresponding intens
profiles.

Bsx ­ 0, $rd ­
p

Iin r exps2r2yd2
G 1 2iud , (3)

wherer ­
p

y2 1 z2 anddG is the diameter of the Gauss
ian beam. FordG ­ 22.5 mm the corresponding input in-
tensity distribution is that of an annular ring with interna
and external diameters of about24 and 55 mm, respec-
tively. The parameterIin was chosen such that the maxi
mum input intensity was about 0.3. The run was carrie
out without noise. A small amount of random noise add
to the input optical field did not change the results in an
qualitative way. The output intensity distribution in th
absence of the nonlinearity is given by Fig. 3(a) and co
responds to an annular ring having approximately115 and
260 mm internal and external diameters, respectively. Fi
ure 3(b) corresponds to the applied voltage of 840 V a
demonstrates instability and breakup of this vortex into tw
charge-one vortices that repel each other and move ap
along they axis. The magnitude of the effect is propor
tional to the value of the nonlinearity. The graphs und
frames 3(a) and 3(b) show cross sections of the cor
sponding intensity distributions along they andz axes.

Alignment of the output charge-one vortices along th
y axis is due to the material anisotropy which preven
the nonlinear rotation of a corotating pair seen in isotrop
Kerr media [9]. We have conducted calculations with
high order vortex plus different realizations of small su
perimposed noise, and also with several charge-one v
tices placed close together in different configurations wi
respect to the anisotropy axis. In all cases the result
charge-one vortices end up aligned along they axis.

As an example Fig. 4 shows the spatial dynamics of
charge-three vortex embedded in a Gaussian beam.
input distribution of the field was chosen to be

B ­ tanh3srydyd exps2r2yd2
G 2 3iud . (4)
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FIG. 4. Spatial intensity distribution of an input charge-thre
vortex at propagation distances of 0 (a), 7 (b), 14 (c), an
20 mm (d). The size of the frames is150 mm.

Herer ­
p

y2 1 z2, anddy anddG are the diameters of
the vortex and the Gaussian beam, respectively. The inp
intensity distribution of the field corresponded to an annu
lar ring with internal and external diameters equal to70
and250 mm, respectively. Frames 4(a)–4(d) correspon
to the intensity distribution inside the medium at distance
x ­ 0, 7, 14, and 20 mm, respectively. The size of eac
frame is equal to150 mm. As the beam propagates, the
input vortex splits up into three charge-one vortices tha
orient themselves along they axis perpendicular to the di-
rection of the applied electric field [Figs. 4(b) and 4(c)]
Each of the resulting vortices is predominantly stretche
along the direction of the anisotropy (thez axis). This
stretching is in correspondence with our previous resul
on the dynamics of unit-charge vortices [13].

Results of numerical analysis of spatial evolution of a ra
dially symmetric and elliptical charge-two vortex embed
ded in a Gaussian beam in a medium with isotropic Ke
nonlinearity is shown in Fig. 5. The analysis has been ca
ried out for the cubic Schrödinger equation with the inpu
boundary conditions taken as

Bsx ­ 0d ­ tanh

√s
y2

d2
y,y

1
z2

d2
y,z

!
exp

√
2

r2

d2
G

1 2iu

!
.

(5)

Frames 5(a) and 5(b) are the inputsx ­ 0d and the output
sx ­ 20d intensity distribution of a radially symmetric
vortex dy,z ­ dy,y ­ 3.5 embedded in a Gaussian beam
with dG ­ 15. Frames 5(c) and 5(d) show the same
but for an initially elliptic vortex with dy,z ­ 2.3 and
dy,y ­ 6.8. Figure 5 demonstrates the metastability of
round vortex and the possibility of observing a high-charg
vortex decay in isotropic media for anisotropic boundar
conditions.

In summary we presented an experimental and theore
cal study of the decay of high order optical vortices in
media with an anisotropic nonlocal nonlinearity. Vortices
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FIG. 5. Spatial intensity distribution of a round (a),(b) and
elliptical (c),(d) charge-two vortex in an isotropic Kerr medium.
Frames (a),(c) are the input; (b),(d)—the output.

with chargen decay inton vortices of unit charge and form
a linear array aligned perpendicular to the direction of the
anisotropy. Our results suggest that the decay of a high
charge vortex may be observed in local isotropic media for
anisotropic boundary conditions.
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