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First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems
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We analyze the collective behavior of a set of coupled damped driven pendula with finite (large)
inertia, and show that the synchronization of the oscillators exhibits a first order phase transition
synchronization onset, substantially different from the second order transition obtained in the case of
no inertia. There is hysteresis between two macroscopic states, a weakly and a strongly coherent
synchronized state, depending on the coupling and the initial state of the oscillators. A self-consistent
theory is shown to determine these cooperative phenomena and to predict the observed numerical data
in specific examples. [S0031-9007(97)02614-8]
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Coupled limit-cycle oscillators have been explored
model certain nonlinear phenomena such as the s
chronous firing of Asian fireflies [1], circadian rhythms
heart beat generation [2], and the Josephson junction
rays [3]. An insight by Kuramoto first made it possible t
construct a solvable model (the Kuramoto model), whic
captures the essence of these coupled limit-cycle os
lators, explicitly showing the connection to second ord
phase transitions [4]. In the Kuramoto model and som
other relevant physical models, the dynamics is reduc
to first order phase equations on theN torus formed by
the N limit cycles due to the weak coupling limit. In a
uniform globally coupled case with purely sinusoidal non
linearity, studied by Kuramoto [4], the equations take th
following form:

Ùui ­ Vi 1
K
N

NX
j­1

sinsuj 2 uid, i ­ 1, . . . , N ,

(1)
whereui andVi are, respectively, the instantaneous pha
and the natural frequency of theith oscillator. Kuramoto
transformed this system to a more physically insightf
form by introducing a complex order parameter

rstdeifstd ­ N21Sjeiuj , (2)

where r measures the coherence andf is the average
phase. Furthermore, by assuming that, in the largeN
limit, r and Ùf are stationary, he was able to obtain a
analytic solution forr.

We have used the Kuramoto ansatz (2) to analyze
more general dynamical system [5]

müi 1 Ùui ­ Vi 1 sKyNdSj sinsuj 2 uid . (3)

In a mechanical analog,müi , Ùui , andVi can be, respec-
tively, interpreted as the inertia, damping, and drivin
torque in theith rotator. We note that the model (3
is a damped, driven version of a coupled Hamiltonia
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system [6,7], but the existence of even small dampin
greatly modifies the steady-state solutions. In this Le
ter, we focus on the effect of finite (large) inertia on th
synchronization, especially the modification of the phas
transition-like onset, that was found for (1), with a generi
distribution of the natural frequencies [4].

In our previous study of (3) with nongeneric, uni-
formly distributed natural frequencies, a discontinuou
phase transition between the incoherent and complet
coherent states was shown to take place at two distin
coupling strength thresholdsKlower

c and K
upper
c , and a

good prediction of their values was obtained as a functio
of m [5]. However, whether the inertia or the nongeneri
distribution caused the discontinuous transition was n
clear. Here, we consider a generic unimodal, natural fr
quency distribution, with extended tails, such as a Gaus
ian or Lorentzian, to see if the inertia itself is the cause o
the discontinuous transition, and to determine the gene
collective behavior induced by the inertia. This allows
direct comparison to the results obtained by Kuramoto [
in which a second order phase-transition-like onset fro
an incoherent to a (partially) synchronized state was fou
as K was increased. We find that a higher order exte
sion of the Kuramoto theory can be used to determine t
collective behavior of (3) with large inertia, and that the
inclusion of this inertia results in a first order transition
with hysteresis in the phase-coherent states.

Figure 1 shows the typical characteristics for finit
(large) m with large N and the unimodal, symmetric
[gsVd ­ gs2Vd] distribution, which is obtained from
the numerical simulation (plotted with¶) of (3) for the
Lorentzian case, withgsVd ­ dypsV2 1 d2d, d ­ 1.0,
and m ­ 0.95, 2.0. A fourth order Runge-Kutta scheme
with time step 0.1 is employed to solve (3). Theoretica
curves (the solid and dashed curves), calculated belo
are compared to the numerical results. Several differe
© 1997 The American Physical Society
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FIG. 1. Hysteretic synchrony observed in Eq. (3) with larg
inertia. The vertical axis gives the order parameterr (the
degree of the synchrony) of the oscillators; the horizont
axis is the coupling strengthK between the oscillators.
Data from numerical simulations of Eq. (3) (¶) with system
size N ­ 500 and Lorentzian withd ­ 1.0; (a) m ­ 0.95,
(b) m ­ 2.0. Small perturbations to the previous (incoherent
state were introduced;ui ­ 0 andvi ­ Vi for oscillators with
jVi j # 0.3. Curves (solid and dashed) are obtained by th
theoretical prediction Eqs. (11) and (12) (see text).

dynamical regimes are observed: an incoherent state (I
a weakly synchronized state (WSS) (dashed curves),
strongly synchronized state (SSS) (solid curves), and
transition state from the WSS to SSS, as the couplin
strengthK is varied up with a small perturbation to the
previoussui , vid distribution at eachK , and then down
without any perturbation. AsK is increased from small
K , the value ofr persists around the incoherent stat
[rstd ; 0] up to a certainK. At this point a small
fluctuation ofrstd, which is due to the finite system size
N used in the simulation, triggers a jump to the WS
(the lower branch of the data (¶) and the dashed curve).
The coherence continues to increase asK is increased.
However, if K is decreased without introducing new
sui , vid, the coherence does not follow the original WSS
branch but is observed to remain nearly constant un
the numerical values join the upper branch of the theo
curve, corresponding to the SSS coherence. Beyond t
K , the coherence decreases on the SSS asK is decreased
and finally jumps back to the incoherent state at near
the same criticalK where the onset of the synchronization
e
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first takes place. Similar numerical results are obtaine
for a Gaussian distribution.

The theoretical curves for the WSS and SSS a
predicted through an extension of the Kuramoto sel
consistent theory, to a second order system. We al
show these transitions are discontinuous with respect
K . It should be noted that we approximate a large, bu
still finite size system (3) by the continuum (infinite size
limit. A specific distribution of V, the Lorentzian, is
considered in the analysis for technical convenience
solving the approximate self-consistent equation. Th
theory is applicable to other generic distributions such a
the Gaussian. We use a coordinate transformation as
(1) to obtain

müi 1 Ùui ­ Vi 1 Krstd sinffstd 2 uig , (4)

which is a damped driven pendulum with a modulate
restoring force and phase modulation. We assume th
gsVd is unimodal, symmetric, and has zero mean. Unde
these conditions, we seek a particular, self-consiste
steady solutionrstd ; r $ 0 and fstd ; 0, i.e., all
fluctuations around the steady solutionr vanish asN !
`, as in the Kuramoto model. In the Kuramoto model,
steady solution (r . 0) bifurcates from the IS (r ; 0) to
a partially coherent state atK ­ Kc with

Kc ­ 2ypgs0d , (5)

obtained by solving the self-consistent equation forr.
We have obtained a similar result from the self

consistency ofr for the generalized equations (3) using
the following two steps [5]: (i) identify two groups of
oscillators that are either locked to the mean phase (2) (d
noted by [S]) or mutually incoherent and whirling around
the locked group (denoted by [D]), and (ii) measure th
contributions from [S] and [D] to the order paramete
r, and equate the sum of them to the originalr . The
basic idea of the derivation is the same as Kuramoto’
However, in step (i) care must be taken to consider th
initial condition dependence of Eq. (4), since Eq. (4) is
set of damped, driven pendula for a steady staterstd ; r
andfstd ; 0,

mü 1 Ùu 1 Kr sinu ­ V , (6)

which has both a stable equilibrium and a whirling limit
cycle depending on the parameters [8]. A pendulum
starts whirling once the applied torqueV goes beyond
a certain thresholdVD. This VD is characterized by
the disappearance of the equilibrium point determine
by Eq. (6):u ­ sin21sVyKrd ­ 6py2. ThenVDs.0d
is given by VD ­ Kr. On the other hand, belowVD

Eq. (6) can be bistable [8]. The frequency averageṼ ;
k Ùul of the whirling solution in Eq. (6) tends to0 at some
VP as flnsV 2 VPdg21, resulting in an extremely steep
drop of the drifting frequency atVP [9].

Consider two particular configurations of the oscillator
corresponding to the WSS and SSS, respectively; (I) th
increasing K case, starting from the incoherent state
2105
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and (II) the decreasingK case starting from the highly
coherent state with an arbitrary largeK. In both cases,
we start by assuming that the two groups [S] an
[D] have certain coherencerlocks$0d and rdrifts#0d,
respectively. In case (I), suppose a certainrstd . 0 is
given at any moment, thenrstd determines the pinning
thresholdVP and the initially drifting oscillators with
V , VP can be entrained to the locked oscillators [S
after a transient. Thus, it is reasonable to assume t
[S] and [D] can be separated atV ­ VP in the natural
frequency distribution. On the other hand, in case (I
initially locked oscillators are desynchronized and fa
into the drifting state [D] onceV exceedsVDs­ Krd.
Hence, [S] and [D] can be assumed to be separated at
depinning frequencyV ­ VD. From [S], for case (II),
as in the Kuramoto model,

rII
lock ­ Kr

Z py2

2py2
cos2 ugsKr sinud du . (7)

For case (I), oscillators withV . VP are still drifting on
the unit circle and the coherence of the locked oscillato
takes the same form as Eq. (7) withpy2 being replaced
with uP ­ sin21fVPysKrdg. (uP # py2 follows from
VP # VD ­ Kr.) From [D]; cases (I) and (II) can
be conveniently combined by noting each oscillator
drifting independently of the others as in the Kuramo
model. Then,r

I,II
drift has the same form as in Kuramoto’

analysis;

r
I,II
drift ­

Z
jVj.VP,D

I
eiunDsu, VdgsVd du dV , (8)

where nDsu, Vd is the density of the desynchronized
oscillators [D] with phaseu and given driving frequency
v

y

2106
d

]
hat

I)
ll

the

rs

is
to
s

V. As nDsu, Vd is proportional toj Ùuj21 and gsVd is
symmetric, Eq. (8) can be simplified as

r
I,II
drift ­

1
p

Z
V.VP,D

Z T̃

0
cosust, Vd jṼjgsVd dt dV .

(9)
The self-consistent equation of the steady staterstd ; r
is then

r ­ r
I,II
lock 1 r

I,II
drift , (10)

for cases (I) and (II), respectively.
In our previous work we used a uniform, bounded

intrinsic frequency distribution such thatrdrift ; 0 in
the coherent state. This resulted in certain nongener
features of our solutions, such as separate pinning an
depinning critical couplingK. Here, we are interested
in a generic distributiongsVd with extended tails, which
can be compared directly to a similar distribution in
Kuramoto’s analysis [4]. TakinggsVd to be Lorentzian
we can solve (10) analytically. The first step is to
approximate the whirling solutionustd and Ṽ. This
can be done by choosing a small parametersmKd21 ;
d and applying the Poincaré-Lindstead method. The
second step is the approximation ofVP by the Melnikov
method. This can be done nicely due to the characteristic
of Eq. (6) with largem [9]. Applying these analytic
approximations to (10), we find that the lowest order term
in (9), after expanding in a series ofD ; smVd21 ø 1,
becomes dominant. After discarding the higher orde
terms ofD (for details of the method, see [5]), we have
the following set of self-consistent equations for cases (I
and (II), respectively.

Case I:
r ­ rI
lock 1 rI

drift ­
Kr
m2

√
1

pd3 ln

p
d2 1 V2

P

VP
2

1

2pdV
2
P

!

1
2

pKr

∑p
d2 1 K2r2 tan21

µp
d2 1 K2r2 tanuP

∂
2 duP

∏
,

g

wn
with

uP ­ sin21fVPysKrdg, and VP ­ s4ypd
p

Krym ,

(11)
Case II:

r ­ rII
lock 1 rII

drift

­
Kr
m2

√
1

pd3
ln

p
d2 1 K2r2

Kr
2

1
2pdK2r2

!

1

µp
d2 1 K2r2 2 d

∂
ysKrd . (12)

The self-consistent equations forr (11) and (12) can be
numerically solved to obtain the solid and dashed cur
in Fig. 1. SinceKr appears everywhere on the right-han
side of (11) and (12), the simplest procedure is to anal
the graph ofrsxd with x ; Kr and extractr ­ xyK (see
es
d
ze

[10] for a similar analysis). The results yield the followin
properties.

(i) In case (I) there is a thresholdKSSS
c . Kc, which

can be obtained analytically for any finite (large)m and
d as a function ofm andd. For K , KSSS

c , there is no
solution forr except for the trivial IS (r ; 0). For K .

KSSS
c , there are two solution branches ofr bifurcating at

K ­ KSSS
c into upper increasingr and lower decreasingr

branches, as shown in Fig. 1. They tend tor ­ 1 andr ­
0, respectively, asK ! ` and coalesce tor ; rSSS

c ,
Os1d at K ­ KSSS

c . Thus,rsKd has a discontinuous jump
to the IS atKSSS

c asK is decreased.
(ii) In case (II) there is an increasing branch ofr (WSS)

with respect toK which tends tor ­ 1 asK ! `. The
other end point of the WSS branch is on the SSS as sho
in Fig. 1, which corresponds touP ­ py2. This branch
is always below the upper branch in case (I) for allK.
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FIG. 2. Coherent branches for atm ­ 6.0. Data were ob-
tained in the same conditions as used in Fig. 1. The cohere
r shown is averaged over time after a transient.

As we see in Fig. 1 data from the numerical simulatio
of (3) and theoretical prediction from (11) and (12) sho
agreement in the discontinuous jumps and shape of
coherent branch. The (flat) transition from the WSS
SSS can also be understood from the bistability in (
and the fact thatVP,D decrease asK decreases; once
oscillators are locked to the mean phase, they maint
rlock until their Vi go beyondVD.

The approximations in (11) and (12) are not necessar
good approximations to (10) asKr ! 0. However, as
we observe in Fig. 1(a), the good agreement between
theoretical and numerical data indicates that the transit
takes place in a valid range ofKr for the approximation.
On the other hand, the end point of the lower SSS bran
is not captured properly for the above reason. Does so
(finite) K exist where the lower SSS branch touches t
IS (r ; 0) and does a lower branch of WSS exist? Ou
theory does not provide any stability properties in the se
consistent static state, although, using a special simulat
protocol from [11], beyond certainK the IS is confirmed
to be unstable. The predicted lower SSS branch has ne
been accessible from the IS in the simulation.

For larger m, although the decreasing SSS branc
shows good agreement to the theoretical prediction,
WSS branch shows a growing deviation from the theore
cal prediction as seen in Fig. 2. This deviation from th
theoretical WSS curve becomes significant form . 3.0.
To consider the reason for this, we measured the er
rate of the experimentally obtained mean frequency ov
the whirling oscillators to the theoretically calculated on
6.4%, 7.1%, 11.2% form ­ 0.95, 2.0, 6.0 with K ­ 8.0
and N ­ 500, and 2.9%, 4.2%, 10.9% forN ­ 2500,
respectively. On the other hand, the error rate of t
actual VP from the theoretical one is reasonable in th
above examples: 3.6%, 1.6%, 0.4% form ­ 0.95, 2.0, 6.0,
respectively. Thus, the deviation is due to the break
the independence between the whirling oscillators, and
is observed that a secondary synchronization of grou
of the whirling oscillators with lower natural frequencie
becomes significant for largerm, as seen in Fig. 3.
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FIG. 3. Numerically determined averaged frequenciesk Ùul
(solid line) for i ­ 1, . . . , 500, with m ­ 6.0 and K ­ 10.2,
showing the mutual entrainment of whirling oscillators (aroun
i ­ 100 and400). The phases102 # i # 395 are locked,
while the other phases are whirling.Vi ­ d tanf p

2 s2i 2 N 2
1dysN 1 1dg is used to approximate a Lorentzian.

Our results indicate an important difference betwee
the collective behavior of coupled second order equatio
and the collective behavior of first order equations an
lyzed by Kuramoto [4]. The second order generalize
Kuramoto system exhibits a first order phase transiti
[12], with discontinuous jumps and hysteresis, in contra
to a second order phase transition found in the first ord
(original) Kuramoto system.
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