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First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems
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We analyze the collective behavior of a set of coupled damped driven pendula with finite (large)
inertia, and show that the synchronization of the oscillators exhibits a first order phase transition
synchronization onset, substantially different from the second order transition obtained in the case of
no inertia. There is hysteresis between two macroscopic states, a weakly and a strongly coherent
synchronized state, depending on the coupling and the initial state of the oscillators. A self-consistent
theory is shown to determine these cooperative phenomena and to predict the observed numerical data
in specific examples. [S0031-9007(97)02614-8]

PACS numbers: 05.45.+b, 02.50.—r, 05.40.+j, 87.10.+e

Coupled limit-cycle oscillators have been explored tosystem [6,7], but the existence of even small damping
model certain nonlinear phenomena such as the symreatly modifies the steady-state solutions. In this Let-
chronous firing of Asian fireflies [1], circadian rhythms, ter, we focus on the effect of finite (large) inertia on the
heart beat generation [2], and the Josephson junction asynchronization, especially the modification of the phase-
rays [3]. An insight by Kuramoto first made it possible to transition-like onset, that was found for (1), with a generic
construct a solvable model (the Kuramoto model), whichdistribution of the natural frequencies [4].
captures the essence of these coupled limit-cycle oscil- In our previous study of (3) with nongeneric, uni-
lators, explicitly showing the connection to second ordefformly distributed natural frequencies, a discontinuous
phase transitions [4]. In the Kuramoto model and somghase transition between the incoherent and completely
other relevant physical models, the dynamics is reducedoherent states was shown to take place at two distinct
to first order phase equations on thé torus formed by coupling strength threshold& ¥ and K:**", and a
the N limit cycles due to the weak coupling limit. In a good prediction of their values was obtained as a function
uniform globally coupled case with purely sinusoidal non-of m [5]. However, whether the inertia or the nongeneric
linearity, studied by Kuramoto [4], the equations take thedistribution caused the discontinuous transition was not

following form clear. Here, we consider a generic unimodal, natural fre-
_ quency distribution, with extended tails, such as a Gauss-
0 =Q; + — Z sin(9; — i=1...,N, ian or Lorentzian, to see if the inertia itself is the cause of

the discontinuous transition, and to determine the generic
(1) collective behavior induced by the inertia. This allows a
whered; and(); are, respectively, the instantaneous phasejirect comparison to the results obtained by Kuramoto [4]
and the natural frequency of thith oscillator. Kuramoto in which a second order phase-transition-like onset from
transformed this system to a more physically insightfulan incoherent to a (partially) synchronized state was found
form by introducing a complex order parameter as K was increased. We find that a higher order exten-
r(n)et®® = N7IS e, (2)  sion of the Kuramoto theory can be used to determine the
where r measures the coherence amdis the average CcOllective behavior of (3) with large inertia, and that the
phase. Furthermore, by assuming that, in the lage |n_cIu5|on of thISf inertia results in a first order transition
limit, » and ¢> are stationary, he was able to obtain anW'th. hysteresis in the phase_—coherent states. -
analytic solution forr. Figure 1 shows the typical characteristics for finite

arge) m with large N and the unimodal, symmetric
We have used the Kuramoto ansatz (2) to analyze thF () = ¢(—0)] distribution, which is obtained from
more general dynamlcal system [5] ) ) . .
the numerical simulation (plotted witk) of (3) for the

ml; + 6; = Q; + (K/N)X;sin0; = 6).  (3) Lorentzian case, witlg(Q) = d/7(Q? + d?), d = 1.0,
In a mechanical analog;é;, 6;, andQ; can be, respec- andm = 0.95,2.0. A fourth order Runge-Kutta scheme
tively, interpreted as the inertia, damping, and drivingwith time step 0.1 is employed to solve (3). Theoretical
torque in theith rotator. We note that the model (3) curves (the solid and dashed curves), calculated below,
is a damped, driven version of a coupled Hamiltonianare compared to the numerical results. Several different
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first takes place. Similar numerical results are obtained
for a Gaussian distribution.

The theoretical curves for the WSS and SSS are
predicted through an extension of the Kuramoto self-
consistent theory, to a second order system. We also
show these transitions are discontinuous with respect to
K. It should be noted that we approximate a large, but
still finite size system (3) by the continuum (infinite size)
limit. A specific distribution of ), the Lorentzian, is
considered in the analysis for technical convenience in
solving the approximate self-consistent equation. The
theory is applicable to other generic distributions such as
the Gaussian. We use a coordinate transformation as in
(1) to obtain

mb; + 6; = Q; + Kr(t)sine(t) — 6;], (4)

which is a damped driven pendulum with a modulated
restoring force and phase modulation. We assume that
g(Q) is unimodal, symmetric, and has zero mean. Under
these conditions, we seek a particular, self-consistent
steady solutionr(r) =r =0 and ¢() =0, i.e., all
fluctuations around the steady solutiervanish asv —

o, as in the Kuramoto model. In the Kuramoto model, a
steady solution{ > 0) bifurcates from the IS = 0) to

a partially coherent state & = K, with

FIG. 1. Hysteretic synchrony observed in Eq. (3) with large Ke =2/mg(0), (5)
inertia. The vertical axis gives the order parametefthe  obtained by solving the self-consistent equationsfor
degree of the synchrony) of the oscillators; the horizontal We have obtained a similar result from the self-

axis is the coupling strengthk between the oscillators. - - . .
Data from numerical simulations of Eq. (3p)( with system consistency ofr for the generalized equations (3) using

size N = 500 and Lorentzian withd = 1.0; (a) m = 0.95, the following two steps [5]: (i) identify two groups of
(b) m = 2.0. Small perturbations to the previous (incoherent) oscillators that are either locked to the mean phase (2) (de-

state were introduced); = 0 andw; = (), for oscillators with  noted by [S]) or mutually incoherent and whirling around
lﬁégétgg[ prggircvt?osn (égls'd ('i“l‘)daﬂgs(qez‘;)(;;g tgg:)a_'”ed by theihe Jocked group (denoted by [D]), and (ii) measure the
contributions from [S] and [D] to the order parameter
r, and equate the sum of them to the origimal The
dynamical regimes are observed: an incoherent state (I)asic idea of the derivation is the same as Kuramoto’s.
a weakly synchronized state (WSS) (dashed curves), However, in step (i) care must be taken to consider the
strongly synchronized state (SSS) (solid curves), and anitial condition dependence of Eq. (4), since Eq. (4) is a
transition state from the WSS to SSS, as the couplinget of damped, driven pendula for a steady stétg = r
strengthK is varied up with a small perturbation to the and¢(r) = 0,
previous(0;, w;) distribution at eachk, and then down
without any perturbation. AX is increased from small
K, the value ofr persists around the incoherent statewhich has both a stable equilibrium and a whirling limit
[r(t) = 0] up to a certaink. At this point a small cycle depending on the parameters [8]. A pendulum
fluctuation ofr(z), which is due to the finite system size starts whirling once the applied torque goes beyond
N used in the simulation, triggers a jump to the WSSa certain threshold)p. This €}p is characterized by
(the lower branch of the data) and the dashed curve). the disappearance of the equilibrium point determined
The coherence continues to increasekass increased. by Eq. (6):6 = sin"'(Q/Kr) = =7 /2. ThenQp(>0)
However, if K is decreased without introducing new is given by Qp = Kr. On the other hand, belo\2,
(0;, w;), the coherence does not follow the original WSSEQ. (6) can be bistable [8]. The frequency averfye=
branch but is observed to remain nearly constant unti(@) of the whirling solution in Eq. (6) tends t at some
the numerical values join the upper branch of the theorf), as[In(QQ — Qp)]7 !, resulting in an extremely steep
curve, corresponding to the SSS coherence. Beyond thdrop of the drifting frequency a2p [9].
K, the coherence decreases on the SSEK &sdecreased Consider two particular configurations of the oscillators
and finally jumps back to the incoherent state at nearlgorresponding to the WSS and SSS, respectively; () the
the same criticak where the onset of the synchronization increasing K case, starting from the incoherent state,
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and (Il) the decreasin& case starting from the highly Q. As np(6,Q) is proportional tolé|~! and g(Q) is
coherent state with an arbitrary large In both cases, symmetric, Eq. (8) can be simplified as
we start by assuming that the two groups [S] and | 7
[D] have certain coherencei,.x(=0) and rgyif(=0), roit = —[ f cosf(t, Q) |Q|g(Q) drdQ) .
respectively. In case (I), suppose a certain) > 0 is T JA>Qpp SO
given at any moment, then(z) determines the pinning 9)
threshold ), and the initially drifting oscillators with The self-consistent equation of the steady stdte = r
) < Qp can be entrained to the locked oscillators [S]is then
after a transient. Thus, it is reasonable to assume that L L
[S] and [D] can be separated & = Q, in the natural r = Teck T Tdrift s (10)
frequency distribution. On the other hand, in case (g cases (I) and (II), respectively.
initially locked oscillators are desynchronized and fall In our previous work we used a uniform, bounded
into the drifting state [D] once() exceedsQp(= Kr).  intrinsic frequency distribution such thatyis, = 0 in
Hence, [S] and [D] can be assumed to be separated at thge coherent state. This resulted in certain nongeneric
depinning frequency) = Qp. From [S], for case (I), features of our solutions, such as separate pinning and
as in the Kuramoto model, depinning critical couplingk. Here, we are interested
| /2 2 ) in a generic distributiorg () with extended tails, which
Tlock = K’[ , 0 0g(Krsing)de . (7)  can be compared directly to a similar distribution in
] ) o Kuramoto's analysis [4]. Taking({)) to be Lorentzian
For case (l), oscillators witll) > Qp are still drifting on e can solve (10) analytically. The first step is to
the unit circle and the coherence of the locked oscillator%pproximate the whirling solutiord(r) and Q. This
takes the same form as Eq. (7) witty2 being replaced can be done by choosing a small paraméiek) ! =
with 6p = sin”'[Qp/(Kr)]. (9p = m/2 follows from 5 and applying the Poincaré-Lindstead method. The
Qp = Qp = Kr.) From [D]; cases (I) and (ll) can gecond step is the approximation @ by the Melnikov
be conveniently combined by noting each oscillator ismethod. This can be done nicely due to the characteristics
drifting mdeper}qlently of the others as in the Kuramotog¢ Eq. (6) with largem [9]. Applying these analytic
model. Then,g;r has the same form as in Kuramoto's approximations to (10), we find that the lowest order term
analysis; in (9), after expanding in a series &f = (mQ) ! <« 1,
- ” becomes dominant. After discarding the higher order
Faife = ] jée' np(0,0)g(Q)dodQ, (8) terms ofA (for details of the method, see [5]), we have
Q1>0p, the following set of self-consistent equations for cases (l)
where np(60,Q) is the density of the desynchronized and (Il), respectively.
oscillators [D] with phase and given driving frequency| Case I

_Kr(l o V& 03 1 )

—a/

_ I I
r = Tock t Tarife = 2\ g3 " Qr - Ymd Q2
2
- 7[ d* + K2r2tan*1<\/d2 + K2r2tanep> - dap},
TRAY
with | [10] for a similar analysis). The results yield the following
R _ —— properties.
Op = sin [Qp/(Kr)], and Qp = @/m)VKr/m, (i) In case (I) there is a thresholki$SS > K., which
(11) can be obtained analytically for any finite (large)and
Case Il: d as a function ofn andd. For K < K355, there is no
I - solution forr except for the trivial IS = 0). Fork >
T = Tioek F Farife K555, there are two solution branches obifurcating at
_Krf 1 Vd? + K2r? 1 K = K55S into upper increasing and lower decreasing
o2\ 73 In Kr  2mdK2r? branches, as shown in Fig. 1. They tendte- 1 andr =
SSS

0, respectively, ak — « and coalesce te = r ~

c

+ <~/d2 T K22 — d>/(Kr). (12) O(1) atk = K35, Thus,r(K) has a discontinuous jump
to the IS atk 555 asK is decreased.
The self-consistent equations fo11) and (12) can be (ii) In case (Il) there is an increasing branchrofWSS)
numerically solved to obtain the solid and dashed curvewith respect tok which tends tor = 1 asK — «. The
in Fig. 1. SinceKr appears everywhere on the right-handother end point of the WSS branch is on the SSS as shown
side of (11) and (12), the simplest procedure is to analyzen Fig. 1, which corresponds t@p = /2. This branch
the graph ofr(x) with x = Kr and extractr = x/K (see is always below the upper branch in case (1) forgll
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FIG. 2. Coherent branches for at = 6.0. Data were ob- FIG. 3. Numerically determined averaged frequenci@$

tained in the same conditions as used in Fig. 1. The coherendgolid line) fori = 1,...,500, with m = 6.0 and K = 10.2,

r shown is averaged over time after a transient. showing the mutual entrainment of whirling oscillators (around
i = 100 and400). The phasesli02 = i = 395 are locked,
while the other phases are whirlingQ; = dtar{5(2i — N —

As we see in Fig. 1 data from the numerical simulation!)/(N' + )] is used to approximate a Lorentzian.
of (3) and theoretical prediction from (11) and (12) show
agreement in the discontinuous jumps and shape of the

coherent branch. The (flat) transition from the WSS tOhOur"re?yItsblnr(]jlcgte ?n |mp|)o(rjtant dlfgeregce betv'\[/'een
SSS can also be understood from the bistability in (6)t € coliective benhavior of coupied second order equations,

and the fact that)y , decrease a decreases; once and the collective behavior of first order equations ana-

oscillators are locked to the mean phase, they maintail{zed by Kuramoto [4].' . The ;econd order generall_z_ed
Foei UNtil their Q; go beyondQ,, uramoto system exhibits a first order phase transition
ocC 1 .

The approximations in (11) and (12) are not necessaril 2], with discontinuous jumps.a_md hysteresis, in.contrast
good approximations to (10) a&r — 0. However, as 0 a second order phase transition found in the first order

we observe in Fig. 1(a), the good agreement between th(g:;smal% Kukrarl\l;o,tat) sa/_stgm. M.D.S. Viei S H
theoretical and numerical data indicates that the transitiogt c tt an d K. W ' ?”Bap’ h .I f I. \eira, N ) .d
takes place in a valid range &fr for the approximation. rogatz, and 1. VViesenteld for heipiul comments, an
On the other hand, the end point of the lower SSS brancﬁ' I\_l|| for pointing out the synchronization of the whirling
is not captured properly for the above reason. Does Som%scnlators. Great thanks go to G.B. Ermentrout for a
(finite) K exist where the lower SSS branch touches theuserI hote on se(_:ond order phase equations, and S. Wata-
IS (+ = 0) and does a lower branch of WSS exist? Ournabe for helpful discussions throughout the year.
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