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Spatial Quantum Signatures in Parametric Down-Conversion
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We calculate the normal and time ordered spatial intensity correlation function of the signal
field in a degenerate parametric oscillator below threshold, with spherical mirrors. In the far field,
it exhibits a two peak structure, and the correlation is maximal between points opposite each
other with respect to the axis of the system. This feature provides direct spatial evidence of the
twin photon emission, and identifies states of the radiated field with local nonclassical squeezing
properties. [S0031-9007(97)02726-9]
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The fundamental character of the twin photon emissi
in parametric down-conversion is well known. The pum
photons are split into pairs of photons called signal a
idler that are highly correlated both in time [1] and in pho
ton number [2,3], and can be entangled in polarization [4
The quadrature phase amplitudes of the signal and id
beams shown an Einstein-Podolsky-Rosen (EPR) para
for continuous variables [5]. All these features exhibit i
the best way the particle aspect of electromagnetic rad
tion, and are of quantum nature.

The aim of this article is to identify some prominen
spatial aspects in the twin photon emission. We co
sider a degenerate optical parametric oscillator (OPO
with spherical mirrors. Below threshold, the signal fiel
is purely generated by quantum fluctuations. The avera
intensity distribution corresponds to a wide spot with ro
tational symmetry, which does not show any corpuscu
aspect. However, our recent analyses of quantum ima
[6,7] have shown that a spatial correlation function is ab
to reveal structures where the average intensity distrib
tion is structureless.

The spatial intensity correlation function in the OPO
below threshold has been calculated in [7] for the ne
field. However, the particle aspects emerge only in t
far field [8]; as we show in this paper, the examination
the spatial correlation function of the intensity in the fa
field allows one to find the spatial quantum signature w
are looking for.

A coherent and stationary fieldEP , of frequency2vs, is
injected in a cavity (Fig. 1) with spherical and quasiplan

FIG. 1. Scheme of the system;Aout is the signal field.
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mirrors (i.e., the Rayleigh range of the cavity is much large
than the cavity length).EP has a plane wave configuration
(it is not reflected by the cavity mirrors) and, due to the
intracavity medium with ax s2d nonlinearity, via parametric
down-conversion generates a signal fieldA of frequency
vs. Mirror M2 is totally reflecting, and the input/output
mirror M1 has a high reflectivity for the signal field, with
respect to which the cavity supports the Gauss-Laguer
modes [9]
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wherep, l ­ 0, 1, 2, . . . ,

wszd ­ w0

q
1 1 szyz0d2 , z0 ­ pw2

0yl , (1)

upl ­ s2p 1 l 1 1dtg21szyz0d , (2)

z is the longitudinal coordinate (Fig. 1),r ­
p

x2 1 y2,
w is the angular coordinate in the transverse plane,w0

and z0 denote the beam waist and the Rayleigh range
respectively, andl is the wavelength;Ll

p is the Laguerre
polynomial of indicated indices. The mode frequencies
are given by

vpl ­ v00 1 s2p 1 ldh , (3)

where the intermode frequency spacingh depends on the
curvature of the mirrors and on their distance [9]; mode
with the same value of2p 1 l are frequency degenerate.
We use a single longitudinal mode model [6,7] formulated
in the paraxial and mean field approximations, in which
the intracavity signal fieldAs $x, td, with $x ­ sx, yd, is
independent ofz and can be expanded as follows:

As $x, td ­ Asr , w, td ­
X
p,l,i

aplistdfplisr , w, z ­ 0d , (4)
© 1997 The American Physical Society
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where apli , a
y
pli are the annihilation and creation op

erators of photons which obey the commutation ru
faplistd, a

y
p0l0i0 stdg ­ dp,p0dl,l0di,i0. Neglecting pump de-

pletion, as it is legitimate below threshold, the densi
operatorr of the signal field obeys the master equation
the interaction picture [6,7]:

dr

dt
­

1
i"

fH, rg 1
X
p,l,i

Lplir , (5)

where the decay terms,

Lplir ­ gs2aplira
y
pli 2 ra

y
pliapli 2 a

y
pliaplird , (6)

contain the damping rateg of the signal field, and the
Hamiltonian is given by

H ­ Hfree 1 Hint , (7)

with

Hfree ­ "
X
p,l,i

svpli 2 vsday
pliapli , (8)

Hint ­
i"g
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Ap

X
p,l,i

fsay
plid2 2 a2

plig , (9)
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and AP ­ gEPyg, where g is the coupling constant,
proportional to the susceptibilityx s2d, and EP is the
amplitude of the pump field, treated as a real number.

In the following, we will consider three quantities
which refer to the signal field out of the cavityAout; they
are (1) the average intensity distributionkIs $x, z, tdl, with

Is $x, z, td ­ A
y
outs $x, z, tdAouts $x, z, td . (10)

By taking into account the input-output relation of the
cavity [10], one obtains

kIs $x, z, tdl ­ g
X
p,l

f f̃plsr , zdg2 A
2
P

1 2 A
2
P 1 D

2
pl

, (11)

whereDpl ­ svpl 2 vsdyg. (2) The space-time inten-
sity correlation function

Gs $x, z, t; $x0, z, t0d ­ k::dIs $x, z, tddIs $x0, z, t0d::l , (12)

where dIs $x, z, td ­ Is $x, z, td 2 kIs $x, z, tdl, and :: :: de-
notes normal and time ordering. The explicit expressio
of G turns out to be
Gs $x, z, t; $x0, z, 0d ­ g2A2
Pe22jtj
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where t ­ gt, apl ­ 1 1 iDpl , bpl ­ A
2
P 2 D

2
pl 1

iDpl , dpl ­
p

A2
P 2 D2

pl. (3) The spectrum of the
spatial intensity correlation function

G̃s $x, z; $x0, z; vd ­
Z 1`

2`

dte2ivtGs $x, z, t; $x0, z, 0d . (14)

All the averages are calculated in the stationary sta
of the degenerate OPO below threshold. Because
translational symmetry in time, the average (10) does n
depend ont, and G depends only onst 2 t0d; due to
rotational symmetry,G andG̃ depend only onw 2 w0.

The mean intensity distribution, shown in Fig. 2(a)
corresponds to a wide spot with cylindrical symmetry
When plotted as a function of the scaled transver
coordinatesxywszd, yywszd, it is independent ofz; the
same holds true for the correlation function when the OP
is below but close to threshold, because the domina
contribution toG arises from the frequency degenerat
family of modes which is closest to resonance with th
signal field frequencyvs [7], and the propagation phase
shift uplszd [see Eq. (2)] is the same for all these modes

The interesting case is when the OPO is below thres
old enough, so thatG is built up by the contribution of
several families of Gauss-Laguerre modes. In Figs. 2 a
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3, scaled versions ofG andG̃ are plotted as a function of
$x0ywszd, keeping the first point$x fixed.

Figures 2(b) and 2(c) display the equal time correlati
function Gs $x, z, t; $x0, z, td in the near field and in the
far field, respectively. The first one is peaked at$x0 ­
$x, which is the standard configuration for a spati
correlation function. On the other hand, the far fie
configuration exhibits a dominant peak for$x0 ­ 2 $x, i.e.,
when the two points are opposite to each other w
respect to the axis of the system. This feature can
easily linked to the circumstance that, since Eqs. (5)–
describe a Gaussian stochastic process, one has

Gs $x, z, t; $x0, z, td ­ kAy
outs$x, z, tdAy

outs$x0, z, tdl

3 kAouts $x0, z, tdAouts $x, z, tdl

1 kAy
outs$x, z, tdAouts $x0, z, tdl

3 kAy
outs$x0, z, tdAouts $x, z, tdl , (15)

where the two contributions correspond to the two pa
at the right-hand side of Eq. (13) fort ­ 0, respectively.
The second one is phase insensitive and is independ
of z when expressed as a function of$xywszd. The first,
phase-sensitive contribution arises from the two phot
2093
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FIG. 2. (a) Average intensity distribution of the signal field
for hyg ­ 0.1, D00 ­ 20.5, AP ­ 0.5. (b), (c) Equal
time spatial intensity correlation functionGwszd4yg2 [see
Eq. (12)] for the same parameters as in (a), and (b)zyz0 ø 1,
(c) zyz0 ­ 200.

character of the interaction and is dominant over th
second. It corresponds to a peak for$x0 ­ $x in the near
field, which is exactly shifted to the opposite side whe
zyz0 ! `. For hyg & 1, the qualitative shape shown in
Figs. 2(b) and 2(c) is independent of the position$x and of
the values ofD00 andAP (provided that the OPO is not
too close to the threshold region).

The spectrumG̃s $x, z; $x0, z; vd of the spatial correlation
function exhibits qualitatively the same behavior asG;
Fig. 3 shows howG̃ changes whenz varies from the near
to the far field. In comparison withG, the peaks are
less narrow and, in the far field, the difference betwee
the sizes of the autocorrelation peaks $x0 ­ $xd and the
anticorrelation peaks $x0 ­ 2$xd is smaller.

The emergence of the peak at$x0 ­ 2 $x is linked to the
fact that the far field shows the particle aspect of radiatio
[8]. As shown by Fig. 2(a), there is no privileged direction
of emission for the photons of the signal field. Howeve
they are emitted as pairs of twin photons: If a photon
emitted in the directiona in Fig. 4(a), a twin photon is
emitted in the directionb in order to preserve the transverse
momentum; hence maximum correlation with pointa is
shown by pointb. This is the physical interpretation of the
2094
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FIG. 3. Temporal Fourier transform̃Gwszd4yg [see Eq. (13)]
of the spatiotemporal intensity correlation function for
v ­ 0, hyg ­ 0.1, D00 ­ 20.5, AP ­ 0.5; (a) zyz0 ø 1,
(b) zyz0 ­ 40.

structure of the spatial correlation function in the far field
which provides the spatial signature of the signal-idle
correlation we were searching for. Next, we demonstrat
that this two peak structure, with the peak at$x0 ­ 2 $x
higher than the peak at$x0 ­ $x, is a quantum effect.
To this aim, let us consider two symmetrical regions
Rs $xd and Rs2$xd centered at the two points$x and 2$x,
respectively, and the difference between the number o
photons collected in the two regions during the time
intervalDt, i.e.,

DIs $x, zd ­
Z Dt

0
dtI2s $x, z, td , (16)

FIG. 4. (a) Twin photon emission in the OPO. (b) Shape o
the regionsRs$xd andRs2 $xd.
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I2s $x, z, td ­

(Z
Rs $xd

d2 $x0 2
Z

Rs2$xd
d2 $x0

)
3 A

y
outs$x0, z, tdAouts $x0, z, td . (17)

Because of symmetry,kDIl ­ 0 but, due to quantum
fluctuations,kDI2l fi 0. For gDt ø 1, and when the
regionsRs$xd and Rs2$xd are so small that the integrand
is nearly constant over each of them, callings the area of
Rs $xd, one has

kDI2s $x, zdl ­ 2hDtskIs $x, z, 0dl

1 Dt2s2fGs $x, z, 0; $x, z, 0d

2 Gs $x, z, 0; 2$x, z, 0dgj . (18)

The first term is the shot noise contribution and, by simp
inspection of Fig. 2(c), one sees that the expression
tween square brackets is negative, in the far field, b
cause the peak ofG for $x0 ­ 2 $x is much higher than that
for $x0 ­ $x. Therefore the fluctuations ofDI are below
shot noise,which is anonclassical squeezing effect.Con-
versely, in the case of a classical field the fluctuations a
necessarily above shot noise, henceGs $x, z, 0; $x, z, 0d .

Gs $x, z, 0; 2 $x, z, 0d, i.e., no classical field can exhibit a
far field intensity correlation function with the shape o
Figs. 2(c) or 3(b) [11].

The amount of squeezing in Eq. (18) is quantitative
irrelevant, because the shot noise is larger than the r
by a factorfgDtsywszd2g21 ø 1. In order to obtain a
significant squeezing effect, we must consider the spectr
of the fluctuations of the intensity difference,

V s $x, z, vd ­
Z 1`

2`
dte2ivtkI2s $x, z, tdI2s $x, z, 0dl , (19)

which is linked toG̃; in addition, the regionsRs $xd and
Rs2 $xd must be selected in such a way that they encomp
the entire peaks of̃G [for the case of Fig. 3, the regions
are shown in Fig. 4(b)]. For the parameters of Fig.
i.e., D00 ­ 20.5, hyg ­ 0.1, AP ­ 0.5 (the threshold
is AP ­ 1, for D00 # 0), and forv ­ 0, we obtained a
quantum noise reduction inV of the order of 75% below
shot noise. Closer to thresholdsAP ­ 0.9d, this value
reduces to 70%. These figures improve further whenhyg

is decreased, i.e., when mirror curvature decreases; e.g.
hyg ­ 0.05 we obtained 82% quantum noise reductio
for AP ­ 0.5 and 79% forAP ­ 0.9. This arises from
the fact that by decreasinghyg the far field peaks of̃G
become narrower and higher, and the peak at$x0 ­ 2$x
becomes more dominant with respect to the peak at$x0 ­ $x.

We note that the squeezing in the intensity differen
I2 has alocal character, and therefore corresponds to
new kind of nonclassical state. The familiar squeezin
properties refer to the beam as a whole, whereas here
consider portions of the beam, which can be taken sma
and smaller ashyg is decreased. Our results demonstra
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that there is a definite quantum correlation between th
points of the transverse plane opposite with respect t
the axis of the system. They hold also in the case of
quasiconcentric cavity.

In conclusion, we have shown that the far field configu-
ration shown in Figs. 2(c) and 3(d) carries a precise quan
tum signature, and provides emphatic spatial evidence o
the twin photon emission in the OPO. Our figures refe
to the correlation function of the intensity fluctuations,
but similar results can be obtained by considering a ba
anced homodyne detection [12] instead of a direct detec
tion of the signal field. In this case, one observes th
quantity hexps2iudAouts $x, z, td 1 H.c.j, where u is the
phase of the local oscillator. Considering the total numbe
of photonsNs $xd which cross a finite regionRs$xd in a homo-
dyne detection scheme, we found that, for an appropria
local oscillator phaseu, the fluctuations in the difference
Ns $xd 2 Ns2 $xd are below shot noise, and the same holds
true for the sumNs $xd 1 Ns2 $xd whenu ­ u 1 py2. On
the basis of these results, which will be discussed in a fu
ture publication, we are presently investigating the exis
tence of a precise EPR paradox for continuous variables
this system, which would correspond to an even stronge
quantum signature.
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