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Lyapunov Spectrum and the Conjugate Pairing Rule for a Thermostatted Random
Lorentz Gas: Kinetic Theory
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We calculate all four nonzero Lyapunov exponents for a three-dimensional, dilute, random Lorentz
gas by combining dynamical systems and Boltzmann equation methods. In the presence of an
external field and a Gaussian thermostat the Lyapunov exponents, calculated up to second order
in the applied field, satisfy a conjugate pairing rule. Agreement of the results obtained here with
those of computer simulations of Dellago and Posch [following Letter, Phys. Rev.78etR11
(1997)]. [S0031-9007(96)02152-7]

PACS numbers: 05.45.+b, 05.20.Dd

The application of methods from dynamical systemsfor the exponents of systems with more than one pair of
theory to the study of transport phenomena in fluids hagxponents.
recently become an area of active study. Formal theories In this paper we present an analytical calculation of the
based upon the assumption that, microscopically, fluidfour Lyapunov exponents for a dilute, three-dimensional
can be considered to be hyperbolic dynamical systemkorentz gas with randomly placed hard sphere scatterers,
with nonzero Lyapunov exponents have led to very in-both for an equilibrium system and for a system where
teresting connections between transport coefficients antthe moving particle is placed in a thermostatted applied
dynamical quantities such as Lyapunov exponents, anfield. In both cases our results for each of the exponents
Kolmogorov-Sinai (KS) entropies. For example, the vis-agree very well with computer simulations of Dellago and
cosities and diffusion coefficients for fluids can be ex-Posch [6] and satisfy the conjugate pairing rule to second
pressed in terms of the sum of all Lyapunov exponentsprder in the electric field:.
when the fluids are in a steady state produced by the Recently a systematic analytic method was developed
application of a thermostatted external force on the parthat can be used to calculate the sums of the positive
ticles [1,2]. When theconjugate pairing ruleapplies, the and negative Lyapunov exponents, respectively, for dilute
transport coefficients can be obtained from the determisystems from an extended Lorentz-Boltzmann equation [5]
nation of the values of a single conjugate pair of Lya-where a radius of curvature appears as one of the variables.
punov exponents, rather than having to determine all ofn this paper we use a different method, which combines
them. This rule, which was discovered by Evans, Mor-the ordinary Lorentz-Boltzmann equation with dynamical
riss, and Cohen [3], states that all of the nonzero Lyasystems methods, to compute both the sum of the positive
punov exponents can be ordered in paifsA; in such a  Lyapunov exponents, i.e., the KS entropy and the sum of
way that the sum\; + A, is independent of the indeix  the negative exponents for equilibrium and nonequilibrium
This generalizes the pairing rule for symplectic systemssteady state systems. Further, we obtain all four of the
where the sum is always zero. A general derivation ofndividual exponents by combining kinetic theory methods
this rule has been given by Dettmann and Morriss [4)with results from the theory for eigenvalues of products
for Hamiltonian systems with smooth potentials, whichof random matrices. In the steady state case we compute
are coupled to a thermostat that maintains a constarine exponents to second order in the applied field. In a
kinetic energy in the system. It applies to the case oBubsequent paper we will present more formal methods
diffusion studied here, with the small exception that webased upon the arguments given here and elsewhere [5,7]
treat hard sphere particles. However, up to the presenthich allow a systematic generalization of these results to
work there have not been any explicit analytical calcu-higher densities and to larger fields.
lations of the spectrum of Lyapunov exponents for sys- We consider the motion of a particle in a random, fixed
tems usually treated in computer simulations with morearray of hard sphere scatterers. The number density of the
than one pair of exponents. A new complication, whichscatterers will be denoted by the radius of each scatterer
did not arise in the two-dimensional case studied earlieby a, and we requireia® < 1. The position and velocity
[5], stems from the fact that the time evolution opera-of the particle are denoted byand v, respectively, and
tor needed for the computation of the Lyapunov expothe particle has mass and chargey which couples to a
nents involves time ordered products of noncommutingonstant external electric field. To avoid an infinite
matrices. Thus it had not yet been possible to make ddancrease in energy an isokinetic constraint is applied,
tailed comparisons of numerical with theoretical resultswhich keeps the kinetic energy and, of course, the speed
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v of the moving particle constant at all times. The pt =[(2/a)cospP + 1/p']!,

equations of motion aré = v; v = gE/m — av;, a = ;

gE - ©/mv®. Here—ma# is the force that maintains a P = (1 ;tar?¢co§¢tar?¢(r:;)sw sr|]r21¢> )
constant kinetic energy for the moving particle. We take tan’ ¢ cosy sings 1 + tarr ¢ sin

the direction of the field to be along tfeaxis, and set where ¢ is the angle between the outward normabn
E = (0,0, E). When the particle hits a scatterer, there isthe sphere and@, and ¢ is the angle between and the
a discontinuous change from a precollision velodityo  plane throughy andE.

a post-collision velocityw’ = v — 2(v - 71)A, whered is The separation of the trajectories in space at time
the outward normal of the spherical scatterer at the point 067, (1) can be written in terms of the initial separation
impact. 67, (0) as

As shown by Sinai [8] the positive (negative) Lya- .
punov exponents can be related to a radius of curvature 57, (1) = Texp{vj I dt/} . 87,(0)
matrix p of an expanding (contracting) trajectory bundle. o p)
That is, we consider the trajectory of the moving particle — U(r) - 67,00). 3)

[7(z), 9(1)], which we call the reference trajectory, and a

bundle of trajectories which are infinitesimally close to the i i i
reference trajectory. We measure the spreading or contra@n€re T is the time ordering operator. The sum of the
positive Lyapunov exponents is defined as the limit value

tion of this trajectory bundle with timeby considering a
plane3.(z) in space which is perpendicular to the referencd®f ? — = of the growth ratel /7InS(z) of an area element

trajectory at time, and then measuring both the spatial and® (*) In the planeX () [8]. S(z) is given by detU(t)S(0),
the velocity distances from the reference trajectory to thé/heres(0) is an arbitrary initial surface 2element. Writ-
intersection of the adjacent trajectories with this plane. wéd U as [Ti—, exdv/p(1)Ar] + O((A1)°) where: =
denote the spatial difference between the reference traje®-A? and using the fact that the determinant of a prod-
tory and another one in the bundle &y, (1) and the veloc- uct of matrices is egual tg the_ product of the determi-
ity separation of these two trajectories By , (1), defined  Nants, one finds that; + A, = “lmt—m <|0q9etU)/t =
as the component perpendicularitt) of the velocity dif-  1M—e [Tr(n U)]/1 = lim, .. [v Jod'Tep~'@))/e.
ference of the two trajectories at the points of intersection BY using the fact that reversing the direction of time
of the trajectories with the planB(¢). By construction, and the vequUes of a contracting trajectory bundle leads
both 67, (r) and 85, (¢) lie in 3(r). Then, in this plane, to an expanding bundle, we can apply these results to
the radius of curvature matrix is defined by the relation OPtain the sum of the negative Lyapunov exponents also.
80, (t) = vp(r)~! - 67, (t). By means of this construc- _A calculation of the sum of _the p105|t_|ve exponents for a
tion, p is a2 X 2 matrix with nonzero eigenvalues. The dilute random Lorentz gas using kinetic f[heory arguments
eigenvalues will be positive (negative) on the expanding’roceeds as follows: We first note that immediately after
(contracting) trajectory bundles. a collision, the maitrixp is, to Iead_mg order im, given
We first consider the equation of motion fgr and  PY [(2/a)cos¢P]™! since the additional term appearing
then relate this matrix to the Lyapunov exponents. Thén the right hand25|de of Eq. (2) will give contributions
equation of motion fop during a free flight can be derived ON the order ofza” compared to the other terms which
by using the equations of motion given above, and thére of ordera™". Thus, at low density, the matrip

geometry of the particle trajectories in the thermostatte@t any time depends only upon the paramewrsand
field. It is of the form ¢, of the most immediate past collision and not upon

the parameters of any collision prior to that. One can
00) , then calculate the time integral of the trace @f! by
o1) P following the collision history of the moving particle and

(1)  breaking up the integration time into a set of intervals,

each starting at the instant after a collision and ending
Here e = gE/mv and ¢ is the angle betweew and at the time immediately before the next collision. The
E, so introducing an arbitrary azimuthal angle one length of these time intervals will be distributed according
hasv(r) = v(sinf(r) cose(t),sind(r) sing(r),cosh(z)),  to the distribution of free flight times. Next, one assumes
with # = —esing andg = 0. The matrixp is described that the motion of the particle is ergodic, so that the
in a time dependent coordinate system with its basis vedime averages can be replaced by an ensemble average
tors in the planeX(), such that the first one is orthogonal over a suitable distribution of velocity directions, collision
to E. Because of the scattering of the moving particle byparameters, and free flight times. We assume that the
the hard spheres, there is a discontinuous changeah system is in a spatially homogeneous nonequilibrium
each collision. On the expanding manifold the valugof steady state produced by the field and the thermostat. The
immediately after a scattering event can be written in termgquilibrium case is easily obtained by setting the field
of a scattering geometry and the precollision magrxas  strength equal to zero. We then write

d e .
—p =vl + ecosfp + — sitdp -
dt v
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vy T 27 o t /2
AT+ A = 4—2f stinef de X f vdt exr[—vt][ dt’f d¢
m* Jo 0 0 0 0

2
x ]0 dy sind cos £(6'(, ) Tip (0. .. 1) (4)

Here v is the collision frequency, or inverse mealn immediately before the collision with 2, in the integrand.
free time, given by v = na’vw, and vexp—[vt] Inthis way one finds that

is the low density form of the distribution of free i 2 1\ &2
flight times, which is independent of the field strength — > A; = 12’7('“ - * C) - ( >T~ (5)

. . . . v : n

since the particle’s speed is constant. The quantity !

na*v sing coseg sindf(6'(¢,))d¢pdpdd is the num-  C is Euler's constanti = 7na3, andé = ae/v. The

ber of particles scattered per unit time to angles betweetbtal sum of the negative and positive exponents agrees
6 and # + d6 with scattering angles betwee# and with the general results of Evans and Hoover for the
¢ + d¢ andy andy + dy. Hered' is the precollision  relation between the phase space contraction to a steady

value of the angle that the velocity makes with #@Xis,  iote attractor and the entro roductiona, = (4hy —
such that after collision this angle 65 given by co®’ = Py P Ton; = {ar)

h X —2a) [1,2], wherel" = (7, v) is a vector in phase space.
cosé — 2.COS¢[C(.)SB cos¢ + sing sing COS{‘I’, -~ ‘”.)]' The average of the friction coefficieat is related to the
where ¢ is an azimuthal angle for the collision with the

he initial fi h < th : diffusion coefficienD by (a’) = 2D €?/v? for small fields,
scatterer at the initial time. Furthgi(6) is the station- o4 gne can immediately check that this relation is satisfied
ary angular distribution function for directions of the

. ; . . . by our results. Further, Pesin’s theorem [9] allows us to
velocity of the moving pa}rtlcle, obta|ngd by solving the identify the sum of the positive Lyapunov exponents with
Lorentz-Boltzmann equation for a spatially homogeneou

$he KS entropy of the system. The zeroth order term in
steady state; i.e., f(8) =1 + 2ecosf/v + O(e?). by y

lization § h Iso b cluded i € is the equilibrium KS entropy. The term of ordeini
Normalization _?c_tors ave aiso been included in Eq. (4)agrees with the value of the Kolmogorov-Sinai entropy for
The trace ofp ' is determined up to second order én

b Vi ios émwith the initial a periodic Lorentz gas at low density given by Chernov
y solving Eq. (1) as a power series érwith the initial 111 while our results also give the orderterms as well
condition p = (2cos¢ /aP)~!. These calculations may

L e ; , as the KS entropy for the system in small fields. The
b.e S|mpl|f|ed by Worklr_lg_ In a representation Wh_qre_s agreement with simulations is excellent for small densities
diagonal just after collision. All that then remains is to

h od i Is i and electric fields as can be seen from the results of Dellago
carry out the required integrals in Eq. (4). and Posch in the accompanying Letter [6]. It is worth
The sum of the negative Lyapunov exponents can b

. . ointing out that the computer results provide an accurate
computed in a similar way. Here one uses the fact th

) ) , heck of the ordefi terms in the equilibrium KS entropy.
negative Lyapunov exponents are determined by trajectory 4 c5icylate the individual exponents we must combine
bundles that contract exponentially with time. The equa

X . X 1”“the results for the sums of the two positive or two
tion for the radius of curvature matrix for the ContraCt'ngnegative exponents with a calculation of the largest

€magnitude using results from the theory of products of
X , random matrices [11]. This latter method can be applied
velocity (¢ — @ — §). One can then follow the motion of \itho\t major difficulties because for low densities, the

the contracting bundle from scatterer 1 to scatterer 2 (S&€,qjys of curvature matrix depends only on the previous
Fig. 1) and require th‘f"t the_ radius of curvature matrix Justqiision and not on the collisions that preceded it.
before the collision with 2 is very close (with corrections

of relative ordema®) to [2 cos¢ /aP] ™! whereP is given
by Eqg. (2) with¢, ¢ the scattering angles at the collision expanding trajectory
with 2. This is required if the trajectory bundle continues
to be contracting after the collision with 2.

We denote the velocity direction after the collision with
1 by 6 again, and the velocity direction just before the
collision with 2 by 6,. The relation between these two _ ,
angles is co8; = cosf + ersi? 0 + O(e?), wheret is contracting trajectory
the time between the two collisions. The sum of the nega- bundle
tive Lyapunov exponents can then be obtained by changinrglG- 1. A particle scattered by sphere 1 with scattering angle
the sign on the right hand side of Eq. (4)—to account fo collides with sphere 2 after a free flight. The expanding

. . - trajectory bundle, related to the positive Lyapunov exponent,
the fact that the trajectory bundle is contracting—and USs indicated with dashed lines at scatterer 1. The converging

ing the solution to the equation for the contracting radiusyundle, relevant for the calculation of the negative Lyapunov
of curvature matrix, with the above mentioned conditionexponents, is shown as dashed lines at sphere 2.

_1_

3 18

time direction(r — —t) and reversing the direction of the

209



VOLUME 78, NUMBER 2 PHYSICAL REVIEW LETTERS 13 ANUARY 1997

Therefore the operatdd(t) becomes a product of random based upon the Boltzmann transport equation. The results
matricesU; whereU; = exp(v [} ,,(Iﬂ) dt') is the free obtained here are in excellent agreement with computer
propagator between collisionand i + 1. EachU; is  simulations and provide a concrete example of the validity
determined by the value g# after theith collision (i.e., of the conjugate pairing rule for thermostatted systems.
by the scattering angle$ and s, which, as before, are The success of this calculation suggests that it might very
sampled from a random distribution) and by the randonwell be possible to obtain analytical results for Lorentz
time intervalss;.; — t; between collisions. From the gases at higher densities and at higher field strengths and
theory for products of random matrices [11] it is known for more complicated systems where all of the particles
that the largest Lyapunov exponent is equalAig,x =  move.
v(InA)g, with A = |U; - 7|, where? = (cospB,sing) is The authors wish to thank Professor H. Posch and
an arbitrary unit vector. The subscrigt indicates an Dr. Ch. Dellago for their stimulating help and coopera-
average ovel3, which has to be performed in addition tion during the course of this work. J.R.D. wishes to
to the average over the random matrix parameter. In oudcknowledge support from the National Science Founda-
case one can show that has a rotationally invariant tion under Grant No. PHY-93-21312. H.v.B. was sup-
distribution up to ordek to lowest order in the density, ported by FOM, SMC, and by the NWO Priority Program
i.e.,P(B) = % + c0s280(€?). The term to ordee? in Non-Linear Systems, Which_ are financially support_gd by
P(B) does not contribute to the Lyapunov exponents. the Nederlandse Organisatie voor Wetenschappelijk On-
The calculation of the individual Lyapunov exponents isderzoek. He thanks the University of Maryland for its
now a straightforward extension of the method used abovdlospitality.
For the calculation of the largest positive expongpt the
required average of JbJ; - £| is taken over the distribution
of free flight times, the collision parametegs, , and
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(6) [4] E:l.ggg)ttmann and G.P. Morriss, Phys. Rev5E R5545
=3 ﬁ(ln T iCc+m- 1/2> — <i - i) ve? . [5] H. van Beijeren and J. R. Dorfman, following Letter, Phys.
a 2 3 36/ ai Rev. Lett. 74, 4412 (1995);76, 3238(E) (1996); H. van
Therefore the Lyapunov exponents fulfill the conjugate  Beijeren, J.R. Dorfman, E.G. D. Cohen, Ch. Dellago, and
pairing rule,A\;” + A; = —(a) independent of the index H.A. Posch, Phys. Rev. Lefl7, 1974 (1996).
i. The field dependent corrections to the two different [6] Ch. Dellago and H.A. Posch, Phys. Rev. Leig, 211
equilibrium values of the positive (negative) exponents are (1997). .
the same. [7] ,IA_\.hLZ;z, H. van Beijeren, and J.R. Dorfman (unpub-
ished).

The quantitative agreement of (6) with the simulations [8] Ya.G. Sinai, Russ. Math. Surg5, 137 (1970)
for both the equilibrium and the steady state systems is[g] Ya.B. Pesin. Russ. Math. Surg2 55 (1977)'
again very satisfactory [6]. [10] N.I. Chernov, Funct. Anal. AppR5, 204 (1991).
We conclude with a few remarks. We have shown[11] D. Mannion, Ann. Appl. Prob.3, 1189 (1993);

that it is possible to compute the Lyapunov spectrum A, Crisanti, G. Paladin, and A. VulpianiProducts of
for a simple random system using analytical methods, = Random Matrice¢Springer, Berlin, 1993).

210



