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We present the first results of a self-consistent solution of the semiclassical Einstein field equations
corresponding to a Lorentzian wormhole coupled to a quantum scalar field. The specific solution
presented here represents a wormhole connecting two asymptotically spatially flat regions. In general,
the diameter of the wormhole throat, in units of the Planck length, can be arbitrarily large, depending
on the values of the scalar coupliggand the boundary values for the shape and redshift functions. In
all cases we have considered, there is a fine structure in the form of Planck-scale oscillations or ripples
superimposed on the solutions. [S0031-9007(97)02570-2]

PACS numbers: 04.25.Dm, 04.20.Gz, 04.60.—-m

Wormholes are topological handles in spacetimesive minimally and/or conformally coupled scalars fail to
linking widely separated regions of a single universe omeet the requirements for maintaining five particular types
“bridges” joining two different spacetimes. Interest in of static spherically symmetric wormholes, but have not
these configurations dates back at least as far as 19H80lved the back-reaction problem [16]. In particular, no
[1] with punctuated revivals of activity following both one up to now has succeeded in writing down a bona fide
the classic work of Einstein and Rosen in 1935 [2] andwormholesolutionof either the classical or semiclassical
the later series of works initiated by Wheeler in 1955Einstein field equations. The reason for this state of affairs
[3]. More recently, a fresh interest in the topic hasis easy to understand. Inthe first case, itis well known that
been rekindled by the work of Morris and Thorne [4], any stress energy that might give rise to a wormhole must
leading to a flurry of activity branching off into diverse violate one or more of the cherished energy conditions of
directions. A brief resumé of current work devoted toclassical general relativity [4,5]. Hence wormholes can-
the physics of Minkowski-signature wormholes includesnot arise as solutions of classical relativity and matter. |If
topics addressing fundamental features of traversabliey exist, they must belong to the realm of semiclassical
wormholes [4,5], explicit modeling of wormhole metrics or perhaps quantum gravity. In the realm of semiclassical
and the corresponding classical [6] and quantum mechangravity, one sets the Einstein tensor equal to the expecta-
cal stability [7] analyses, wormholes as time machinedion value of the stress-energy tensor operator of the quan-
and the problem of causality violation [8], wormholes in tized fields present,
higher-derivative gravity [9], wormholes from the gravi- Gy = 87T, (1)
tationally squeezed vacuum [10], possible cosmological wy pyis
consequences of early universe wormholes [11,12], and primary technical difficulty in semiclassical gravity is
wormholes as gravitational lenses [13]. A thorough andhat(T,,) depends strongly on the metric and is gener-
up-to-date survey of the present status of Lorentziamlly difficult to calculate. Until recently, all calculations of
wormholes may be found in the excellent monograph by(7,,,) have been performed on fixed classical backgrounds.
Visser [14]. The fixed background in turn, as its name implies, must

There are plausible physical arguments suggesting thdie a solution of the classical Einstein equation. As there
Lorentzian wormholes should exist at least at scales of orare no classical wormhole backgrounds, no correspond-
der the Planck length. Most of what is known about theming semiclassical back-reaction problem can be set up
is based on detailed analyses of models, and within themeaningfully.
literature devoted to the subject, the existence of worm- In this Letter we present and summarize the results
holes is taken as a working hypothesis. Metrics describingf the first self-consistentvormhole solutions of semi-
wormholes with desirable traits are written down by fiat,classical Einstein gravity. Prior to this, a self-consistent
and the properties of the corresponding hypothetical stressvormhole solution had been obtained using a phenomeno-
energy tensors needed to support the wormhole spacetini@gical stress tensor not derived from quantum field theory
are then worked out and analyzed. In an example of afil7]. The results of the present calculation may be taken as
analysis of this sort, Ford and Roman [15] have derivechumerical evidence for the existence of Lorentzian worm-
approximate constraints on the magnitude and duration dfoles. For the source term in (1) we employ the stress-
the negative energy densities which must be observed bgnergy tensor of Anderson, Hiscock, and Samuel, which is
a timelike geodesic observer in static spherically symmetealculated for a quantized scalar field in an arbitrary static
ric wormhole spacetimes. More recently, Taylor, Hiscock,and spherically symmetric spacetime [18]. This means
and Anderson have argued that stress tensors for matiiat in the field equation (1), both the Einstein tensor as
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well as the stress tensor individually depend on two indethroat, i.e.,r(0) > 0. Following the established nomen-
pendent functions of the radial coordinate. When suppleelature, f is denoted the redshift function amds known
mented with the appropriate set of boundary conditionsas the shape function [14]. In this metric, the semiclassical
the solutions of the resultant coupled nonlinear differenfield equations take the form [19]

tial equations are therefore self-consistent because both the

spacetime metric and the distribution of stress energy are G Lf(D), r(D)] = 8T, Lf (D), r(1); €Dy, 3)

determined simultaneously and coherently. This shoulq\,heref is the (nonminimal) scalar coupling to the metric.

be contrasted clearly with, and distinguished from, théygte the dependence of both sides of Eq. (3) on the two
approach taken in perturbative back_-regctlon problems inknown functions. In the metric (2), the components
which the (background) spacetime is fixed once and fops the Einstein tensor are given bg! = 27"/r +

all, and the stress tensor is supplied as an explicitly knowr;/z/rz — 112, GL = 1 fr + 122 = 12 and

function of that fixed background. A I 1o 1274 f2- i
, , . . Go =f")2f +r"/r + f'r'/2fr — f'*/4f*; the prime
In the following, we set up the semiclassical field yonqtes ‘the derivative with respect ko An accurate

equations valid for any static and spherically Symr‘ne'[r'canalytic approximation to the exact numerically calculated

Spacetime containing quantized §palar matter and dis?”%ﬁalar field stress energy tensor was developed in Ref. [18]
the nature of the boundary conditions needed for solving, . is expressed there as

this system of fourth-order equations. We consider the .
case of a conformally coupled scalar field. Results of the (T, )analyic = (T)o + (£ — ) (T;
numerical calculations are presented graphically, and we 1 (& — Y2y, 4 (v 4
appeal to an approximate but analytic treatment to reveal S w2 (Thog @
the important asymptotic behavior of the solution. Furthemwhere the individual factorér';;)o 1> are written in terms
details of this and related calculations will appear in aof two functions of the radial coordinate. The last factor

separate paper. (T oy Was left in terms of combinations of curvature
The metric for a general static and spherically symmetridensors and covariant derivatives [20]. To be of practical
spacetime can be cast into the form use in the present calculation, we must work out these

s s s, . 5 curvature terms and transform all the factors in (4) in
ds* = —f(D)di* +dI* + r*(1) (d0>+sin’ 0d$*), (2)  terms of our two functiong (Z), (1) of the proper distance
where £(1), (1) are two independent functions of the |- Carrying out these straightforward but rather lengthy
proper distancé. This form of the metric is suitable for Steps we find that the semiclassical Einstein equations
dealing with wormholes, or for that matter, any static andfor a conformally coupled scaldg = 7) are as follows

spherically symmetric spacetime which might contain a(K* = ﬁ) (I component only):

1.0 n 4 13..1 1,13 2.1 1.1 ¢l 2 ¢l 2 2.1 !0
J}: +’;—2—%=K2[J;—4—16J;3: +64J;:3 —4ff3r +64ffrzf —64% —4?—2—48];22 +32ffrr;
+ 32f;:” + 8f}f2m - 32 r;f:” —32f;m + |nf<i—f + 7?—/: — 20% - 4% + 32%;3
r/4 f/Zf// f/r/f// r/2f// f//2 flzr// f/r/r// f//r//
—16ﬁ—12T+48 72y - 32 2 —4F—16 72y + 16 7 +167
— 16%2 + 8f;f;m — 16% — 16f}rrm + 32 r;rzmﬂ. (5)

The full expressions for the geneg’e}uependentcompoJ information, namely,f(0), f'(0), f"(0), and f"(0), as
nents of the Einstein equations are too lengthy to be showwell as»(0), »'(0), r”(0), andr"'(0). In particular,r(0)
here. is the (wormhole) throat radius, and we can use lthe

In order to solve the field equations, we must supplyequation to derive an exact relation betwe€®) and just
an appropriate set of boundary conditions. Ttheand three initial conditions. In order to do so, let us recall
06 equations are fourth-order differential equations inthe boundary conditions appropriate to a wormhole (or
the two functionsf and r while the Il equation is more generally, for any spacetime with a throat). If a
third order. This latter equation is actually a constraintsolution of (1) is to possess a throat, then we must require
which plays the role of restricting the solutions of thethatr(0) > 0, r'(0) = 0, andr"(0) = 0. In other words,
coupled fourth-order differential equations [21]. Sincethere must exist a sphere of minimum radius located
we seek wormhole solutions of (1), we shall specify theat the origin of proper distance. Sdl) is simply a
boundary data at = 0, the origin of proper distance as positive increasing function df in the neighborhood of
measured from the throat. The complete set of boundarthe origin. For two-way passage through the wormhole, it
conditions therefore requires specifying eight pieces ofs judicious to avoid solutions with horizons at the throat.
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This is taken care of by requiring a (locally) nonvanishingf(l) = f(—1) which automatically eliminates all the odd
redshift function:f(0) > 0 (the other possibility£(0) <  derivatives, r@**1)(0) = f2*D(0) = 0. In particular,

0, leads to a Euclidean metric). The chain rule alsoone can set’'(0) = f"(0) = 0. Taken together, these
provides an additional constraint, namel/(0) = 0 —  give the boundary conditions appropriate to a wormhole.
f(0) = 0[22]. We may ask that the redshift be a locally However, one cannot choose freely all the eight boundary
increasing function,f””(0) = 0. These constitute the conditions independently. This is easily seen by writing
minimum requirements. Beyond this, one could impose aut thell equation (5) at the point = 0, which yields an
symmetry on the solutions of the fora{l) = r(—1) and | algebraic quartic equation for the throat radiye),

O " f1(O)r"(©) 1 3
4< 0 > [1 + In(f(0)]r(0)* + 32( 7(0) >[1 T In(f(()))}’(())
+ [K72 = 16r"(07’In( £(0)1r(0)* + 16 In(f(0)) = 0, ©)

where we have used only the{0) = f/(0) = 0. Indeed, | marked below, the oscillations in boif(/) and r(I) are

it is important to note that this constraining relation iscomposed of two different modes. Of course, since both
independenof the values assigned to the third derivativesf andr are even functions, their graphs can be reflected
F"(0) andr""(0). With some effort, this quartic equation through the origin] — —I. The wormhole’s embedding
can be solved for(0), though the resulting expressions diagram is easily inferred from Figs. 2(a) and 2(b).

are not particularly transparent. However, it suffices for It is important to know the asymptotic behavior fff)

our purposes to consider (6) in certain simplifying butand r(I). To get at this information, we carried out an
natural cases in order to get a feeling for the allowedasymptotic analysis of the Einstein equation (1) taking
range inr(0). In this way, we have found that large throat into account and guided by the results of the numerical
radii can result even for values ¢f0), f”(0), andr”(0) investigation. From the numerical calculations, we see that
of order unity. As case in point, taking(0) = f(0) =  for sufficiently largd, both the redshift and shape functions
1, #"(0) = 0, and¢ = ¢ yields r(0) = 671 wherelp is  can be represented as a sum of two distinct components
the Planck length. Larger (and smaller) throat radii aref(1) = F(I) + ¢(1); r(I) = R(I) + p(l), whereF (/) and
also possible depending on the values chosen for the other

boundary data and the scalar coupling consgant

We now turn to our specific calculations ef/) and 70 @ . T . . . .
f(I) subject to the above class of boundary conditions. 60 L /
Employing the Rugge-Kutta method, we have obtained
a good numerical solution of these equations using the 50 T
following boundary conditions forf (/) and r(I) at the 40 - i
throat! = 0: FOHK-?
30 - -
—1=Inf(0)<0; f'(0)=0; f"(0)=0; f"(0)=0; ”
r(0) = 4/—16K21In £(0); r'(0)=0; ~"(0)=0; 10k ]
}’/”(0) =0. (7) 0 1 1 1 1 1 I ]
. _ . 0 50 100 150 200 250 300 350 400
The graphs which represent a particular numerical so- IK—?
lution for In f(0) = —% for various length scales are 600 I
displayed below. The redshift functigi{/) is plotted ver- ® "

sus proper distance in Figs. 1(a) and 1(b); both axes hav 500
been scaled bi ~2. InFig. 1(b), we see thai(/) is a posi-

tive increasing function. Actually, there is a fine structure 400 |- T
in the form of Planck-scale “ripples” or spatial oscillations f(l)K;SO i |
superimposed on this function; these are not numerical arti

facts. These oscillations are clearly revealed in the “blow- 200 | .
up” graph in Fig. 1(a). The wormhole’s shape function
r(l) is depicted in Figs. 2(a) and 2(b). In Fig. 2(a) one sees 100 - 7
the throat, of radius:(0) = 0.02/p, in the neighborhood L

of the origin extending out to abow®K ~2 at which point 00 1x10° 2 3 4 5 6 7 8 9 10
the wormhole “flares” out, marking the onset of the super- K~

imposed small-scale oscillations. The graph in Fig. 2(b)1G. 1. (a) The redshift function on small scales. (b) The
shows the gross features of the shape function. As reedshift function on large scales.
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