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We present the first results of a self-consistent solution of the semiclassical Einstein field equati
corresponding to a Lorentzian wormhole coupled to a quantum scalar field. The specific solut
presented here represents a wormhole connecting two asymptotically spatially flat regions. In gen
the diameter of the wormhole throat, in units of the Planck length, can be arbitrarily large, depend
on the values of the scalar couplingj and the boundary values for the shape and redshift functions. I
all cases we have considered, there is a fine structure in the form of Planck-scale oscillations or rip
superimposed on the solutions. [S0031-9007(97)02570-2]
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Wormholes are topological handles in spaceti
linking widely separated regions of a single universe
“bridges” joining two different spacetimes. Interest
these configurations dates back at least as far as 1
[1] with punctuated revivals of activity following both
the classic work of Einstein and Rosen in 1935 [2] a
the later series of works initiated by Wheeler in 19
[3]. More recently, a fresh interest in the topic h
been rekindled by the work of Morris and Thorne [4
leading to a flurry of activity branching off into divers
directions. A brief resumé of current work devoted
the physics of Minkowski-signature wormholes includ
topics addressing fundamental features of traversa
wormholes [4,5], explicit modeling of wormhole metric
and the corresponding classical [6] and quantum mech
cal stability [7] analyses, wormholes as time machin
and the problem of causality violation [8], wormholes
higher-derivative gravity [9], wormholes from the grav
tationally squeezed vacuum [10], possible cosmolog
consequences of early universe wormholes [11,12],
wormholes as gravitational lenses [13]. A thorough a
up-to-date survey of the present status of Lorentz
wormholes may be found in the excellent monograph
Visser [14].

There are plausible physical arguments suggesting
Lorentzian wormholes should exist at least at scales of
der the Planck length. Most of what is known about the
is based on detailed analyses of models, and within
literature devoted to the subject, the existence of wo
holes is taken as a working hypothesis. Metrics describ
wormholes with desirable traits are written down by fi
and the properties of the corresponding hypothetical str
energy tensors needed to support the wormhole space
are then worked out and analyzed. In an example of
analysis of this sort, Ford and Roman [15] have deriv
approximate constraints on the magnitude and duratio
the negative energy densities which must be observed
a timelike geodesic observer in static spherically symm
ric wormhole spacetimes. More recently, Taylor, Hisco
and Anderson have argued that stress tensors for m
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sive minimally and/or conformally coupled scalars fail
meet the requirements for maintaining five particular typ
of static spherically symmetric wormholes, but have n
solved the back-reaction problem [16]. In particular, n
one up to now has succeeded in writing down a bona fi
wormholesolutionof either the classical or semiclassic
Einstein field equations. The reason for this state of affa
is easy to understand. In the first case, it is well known t
any stress energy that might give rise to a wormhole m
violate one or more of the cherished energy conditions
classical general relativity [4,5]. Hence wormholes ca
not arise as solutions of classical relativity and matter.
they exist, they must belong to the realm of semiclassi
or perhaps quantum gravity. In the realm of semiclassi
gravity, one sets the Einstein tensor equal to the expe
tion value of the stress-energy tensor operator of the qu
tized fields present,

Gmn ­ 8pkTmnl . (1)

A primary technical difficulty in semiclassical gravity is
that kTmnl depends strongly on the metric and is gene
ally difficult to calculate. Until recently, all calculations o
kTmnl have been performed on fixed classical backgroun
The fixed background in turn, as its name implies, mu
be a solution of the classical Einstein equation. As the
are no classical wormhole backgrounds, no correspo
ing semiclassical back-reaction problem can be set
meaningfully.

In this Letter we present and summarize the resu
of the first self-consistentwormhole solutions of semi-
classical Einstein gravity. Prior to this, a self-consiste
wormhole solution had been obtained using a phenome
logical stress tensor not derived from quantum field theo
[17]. The results of the present calculation may be taken
numerical evidence for the existence of Lorentzian wor
holes. For the source term in (1) we employ the stre
energy tensor of Anderson, Hiscock, and Samuel, which
calculated for a quantized scalar field in an arbitrary sta
and spherically symmetric spacetime [18]. This mea
that in the field equation (1), both the Einstein tensor
© 1997 The American Physical Society



VOLUME 78, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 17 MARCH 1997

l

n

a

h

f
w

d
r

n
h
h
w
e
e

r

e

-

cal

c.
wo
ts

ed
[18]

or
e
al
se
in

hy
ns
well as the stress tensor individually depend on two ind
pendent functions of the radial coordinate. When supp
mented with the appropriate set of boundary condition
the solutions of the resultant coupled nonlinear differe
tial equations are therefore self-consistent because both
spacetime metric and the distribution of stress energy
determined simultaneously and coherently. This shou
be contrasted clearly with, and distinguished from, t
approach taken in perturbative back-reaction problems
which the (background) spacetime is fixed once and
all, and the stress tensor is supplied as an explicitly kno
function of that fixed background.

In the following, we set up the semiclassical fiel
equations valid for any static and spherically symmet
spacetime containing quantized scalar matter and disc
the nature of the boundary conditions needed for solvi
this system of fourth-order equations. We consider t
case of a conformally coupled scalar field. Results of t
numerical calculations are presented graphically, and
appeal to an approximate but analytic treatment to rev
the important asymptotic behavior of the solution. Furth
details of this and related calculations will appear in
separate paper.

The metric for a general static and spherically symmet
spacetime can be cast into the form

ds2 ­ 2fslddt2 1 dl2 1 r2sld sdu21sin2 udf2d , (2)

where fsld, rsld are two independent functions of th
proper distancel. This form of the metric is suitable for
dealing with wormholes, or for that matter, any static an
spherically symmetric spacetime which might contain
e-
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throat, i.e.,rs0d . 0. Following the established nomen
clature, f is denoted the redshift function andr is known
as the shape function [14]. In this metric, the semiclassi
field equations take the form [19]

Gn
mf fsld, rsldg ­ 8pkTn

mf fsld, rsld; jgl , (3)

wherej is the (nonminimal) scalar coupling to the metri
Note the dependence of both sides of Eq. (3) on the t
unknown functions. In the metric (2), the componen
of the Einstein tensor are given byGt

t ­ 2r 00yr 1

r 02yr2 2 1yr2, Gl
l ­ f 0r 0yfr 1 r 02yr2 2 1yr2, and

Gu
u ­ f 00y2f 1 r 00yr 1 f 0r 0y2fr 2 f 02y4f2; the prime

denotes the derivative with respect tol. An accurate
analytic approximation to the exact numerically calculat
scalar field stress energy tensor was developed in Ref.
and is expressed there as

kTn
mlanalytic ­ sTn

md0 1 sj 2
1
6 d sT n

md1

1 sj 2
1
6 d2 sTn

md2 1 sTn
mdlog , (4)

where the individual factorssT n
md0,1,2 are written in terms

of two functions of the radial coordinate. The last fact
sT n

mdlog was left in terms of combinations of curvatur
tensors and covariant derivatives [20]. To be of practic
use in the present calculation, we must work out the
curvature terms and transform all the factors in (4)
terms of our two functionsfsld, rsld of the proper distance
l. Carrying out these straightforward but rather lengt
steps we find that the semiclassical Einstein equatio
for a conformally coupled scalarsj ­

1
6 d are as follows

sK2 ­
1

5760p d ( ll component only):
f 0r 0

fr
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The full expressions for the generalj-dependent compo-
nents of the Einstein equations are too lengthy to be sho
here.

In order to solve the field equations, we must supp
an appropriate set of boundary conditions. Thett and
uu equations are fourth-order differential equations
the two functions f and r while the ll equation is
third order. This latter equation is actually a constrai
which plays the role of restricting the solutions of th
coupled fourth-order differential equations [21]. Sinc
we seek wormhole solutions of (1), we shall specify th
boundary data atl ­ 0, the origin of proper distance as
measured from the throat. The complete set of bound
conditions therefore requires specifying eight pieces
wn

ly

in

nt
e
e
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information, namely,fs0d, f 0s0d, f 00s0d, and f 000s0d, as
well asrs0d, r 0s0d, r 00s0d, andr 000s0d. In particular,rs0d
is the (wormhole) throat radius, and we can use thell
equation to derive an exact relation betweenrs0d and just
three initial conditions. In order to do so, let us reca
the boundary conditions appropriate to a wormhole
more generally, for any spacetime with a throat). If
solution of (1) is to possess a throat, then we must requ
thatrs0d . 0, r 0s0d ­ 0, andr 00s0d $ 0. In other words,
there must exist a sphere of minimum radius locat
at the origin of proper distance. Sorsld is simply a
positive increasing function ofl in the neighborhood of
the origin. For two-way passage through the wormhole
is judicious to avoid solutions with horizons at the throa
2051
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This is taken care of by requiring a (locally) nonvanishin
redshift function:fs0d . 0 (the other possibility,fs0d ,

0, leads to a Euclidean metric). The chain rule als
provides an additional constraint, namely,r 0s0d ­ 0 !
f 0s0d ­ 0 [22]. We may ask that the redshift be a locally
increasing function,f 00s0d $ 0. These constitute the
minimum requirements. Beyond this, one could impose
symmetry on the solutions of the formrsld ­ rs2ld and
s
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fsld ­ fs2ld which automatically eliminates all the od
derivatives, r s2n11ds0d ­ fs2n11ds0d ­ 0. In particular,
one can setr 000s0d ­ f 000s0d ­ 0. Taken together, thes
give the boundary conditions appropriate to a wormho
However, one cannot choose freely all the eight bound
conditions independently. This is easily seen by writi
out thell equation (5) at the pointl ­ 0, which yields an
algebraic quartic equation for the throat radiusrs0d,
24

µ
f 00s0d
fs0d

∂2

f1 1 lnsss fs0ddddgrs0d4 1 32

µ
f 00s0dr 00s0d

fs0d

∂ ∑
1 1

1
2

lnsss fs0dddd
∏

rs0d3

1 fK22 2 16r 00s0d2lnsss fs0ddddgrs0d2 1 16 lnsss fs0dddd ­ 0 , (6)
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where we have used only thatr 0s0d ­ f 0s0d ­ 0. Indeed,
it is important to note that this constraining relation i
independentof the values assigned to the third derivative
f 000s0d andr 000s0d. With some effort, this quartic equation
can be solved forrs0d, though the resulting expression
are not particularly transparent. However, it suffices f
our purposes to consider (6) in certain simplifying bu
natural cases in order to get a feeling for the allowe
range inrs0d. In this way, we have found that large throa
radii can result even for values offs0d, f 00s0d, andr 00s0d
of order unity. As case in point, takingfs0d ­ f 00s0d ­
1, r 00s0d ­ 0, andj ­

1
6 yields rs0d ø 67lP wherelP is

the Planck length. Larger (and smaller) throat radii a
also possible depending on the values chosen for the ot
boundary data and the scalar coupling constantj.

We now turn to our specific calculations ofrsld and
fsld subject to the above class of boundary condition
Employing the Rugge-Kutta method, we have obtain
a good numerical solution of these equations using t
following boundary conditions forfsld and rsld at the
throatl ­ 0:

21 # ln fs0d , 0; f 0s0d ­ 0; f 00s0d ­ 0; f 000s0d ­ 0 ;

rs0d ­
q

216 K2 ln fs0d; r 0s0d ­ 0; r 00s0d ­ 0;

r 000s0d ­ 0 . (7)

The graphs which represent a particular numerical s
lution for ln fs0d ­ 2

2
3 for various length scales are

displayed below. The redshift functionfsld is plotted ver-
sus proper distance in Figs. 1(a) and 1(b); both axes h
been scaled byK22. In Fig. 1(b), we see thatfsld is a posi-
tive increasing function. Actually, there is a fine structur
in the form of Planck-scale “ripples” or spatial oscillation
superimposed on this function; these are not numerical a
facts. These oscillations are clearly revealed in the “blo
up” graph in Fig. 1(a). The wormhole’s shape functio
rsld is depicted in Figs. 2(a) and 2(b). In Fig. 2(a) one se
the throat, of radiusrs0d ø 0.02lP, in the neighborhood
of the origin extending out to about10K22 at which point
the wormhole “flares” out, marking the onset of the supe
imposed small-scale oscillations. The graph in Fig. 2(
shows the gross features of the shape function. As
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marked below, the oscillations in bothfsld and rsld are
composed of two different modes. Of course, since bo
f and r are even functions, their graphs can be reflect
through the origin,l ! 2l. The wormhole’s embedding
diagram is easily inferred from Figs. 2(a) and 2(b).

It is important to know the asymptotic behavior offsld
and rsld. To get at this information, we carried out a
asymptotic analysis of the Einstein equation (1) takin
into account and guided by the results of the numeric
investigation. From the numerical calculations, we see t
for sufficiently largel, both the redshift and shape function
can be represented as a sum of two distinct compone
fsld ­ Fsld 1 fsld; rsld ­ Rsld 1 rsld, whereFsld and

FIG. 1. (a) The redshift function on small scales. (b) Th
redshift function on large scales.
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FIG. 2. (a) The wormhole shape function on small scal
(b) The wormhole shape function on large scales.

Rsld are strictlymonotone increasingand fsld and rsld
are boundedoscillating functions.

The relative magnitudes of these components a
their derivatives may be estimated straightforwardly a
then used to expand consistently the coupled Eins
equations. We find that the oscillating modulation
composed of two modes with frequenciesv

2
1 ­ 1y16K2

andv
2
2 ­ 1y16K2s4 1 3 ln Fd, respectively, while in the

limit of large l, Rsld ø l and Fsld ø sa ln l 2 bd2 for
a ­ 5.3 andb ­ 25.5.

From these combined numeric analytic calculatio
we see that for the chosen set of boundary conditio
Rsld ! l, thus our self-consistent wormhole connects tw
spatial regions which are asymptotically flat, modulo t
Planck-scale wiggles. The redshift function, howev
does not approach a constant value asl ! `, so the
metric as a whole is not asymptotically flat. We ha
found additional self-consistent solutions of (1) by takin
different values for the scalar coupling and the boun
ary data. In this way, we have found local solutio
which correspond to large throatfrs0d ø 200 2 300lPg
wormholes with horizons located far from the throat a
wormholes connecting two bounded spatial regions.
full account of these calculations will appear in a separ
publication.
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