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Mechanism of Time-Delayed Feedback Control
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The Pyragas method for controlling chaos is investigated in detail from the experimental as well
as theoretical point of view. We show by an analytical stability analysis that the revolution around
an unstable periodic orbit governs the success of the control scheme. Our predictions concerning the
transient behavior of the control signal are confirmed by numerical simulations and an electronic circuit
experiment. [S0031-9007(96)02154-0]
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The problem of controlling unstable motion is a clas- In order to achieve control of the unstable periodic orbit
sical subject in engineering science. The revived intereghe system (1) is, following the idea of [3], subjected
of physicists in this subject, however, started with the obto a time-delayed forc&[x(r) — x(r — 7)]. The most
servation that a large number of unstable periodic orbitgieneral situation is given by
embedded in chaotic attractors can be stabilized by weak .
external forces [1]. Since that time a real industry on chaos ¢ = F(z(0).K[2(1) = 2(r = 7)].1). (3)
control has developed [2]. Two main methods for control-where the right-hand side obeys the constraint
ling unstable motions have been established meanwhild?(z,0, ) = f(z,t), and the amplitud& of the control-
The first one, developed by Ott, Grebogi, and Yorke [1],ling force is introduced for convenience. As long as
is based on the invariant manifold structure of unstable orthe delay time coincides with the period of the unstable
bits. It is theoretically well understood, but difficult to periodic orbit the controlled system admits the same
apply to fast experimental systems. The second one, prgolution z(r) = £(¢). Linear stability analysis according
posed by Pyragas [3], uses time-delayed controlling forceso z(t) = &(t) + 8z(z) yields
In contrast to the former one it can easily be applied to .
real experimental situations, but so far the control mecha- 8z = DiF(£(1).0.1)52(1)
nism has been poorly understood from a theoretical point + DryF(&(1),0,0)K[6z(t) — 8z(t — 7)], (4)
of view. By performing an analytical linear stability analy- . o
sis we demonstrate which class of orbits is accessible t here D:F denotes the Jacobian matrix with respect to
time-delayed feedback control methods. In addition, we. e ith (vector type) argument. In the case of conven-
obtain explicit expressions for important quantities like the.Ional Pyragas contral, Wh_ere only one system vgrlable
critical and optimal control amplitude or the dependence of> assumed to be _acceSS|bIe, the mattixF contains
the transient behavior on the control parameters. only one nonvanishing element on the diagonal. But we

Theoretical approach—We consider a dynamical sys- keep our approach as general as possible. The (infinite

e - . ; dimensional generalization of) Floquet theory [4] tells
tem which is described by a general set of differential equa- o .

- . g o us that the deviations ob&yz(r) = exg(A + iQ)t]v(z)
tions. It may contain a periodic explicit time dependenceandv(t) — w(r + 7), 50 that Eq. (4) reduces to

x = flx(),1). 1) , .
: . o o [A+iQJv() + v
We are interested in the stabilization of an unstable peri- .
odic orbit £(t) = £(t + 7). 7 is an integer multiple of = A[K(1 — exgd—A7 — iQ7]),t]v(r). (5)

the period of the driving force for nonautonomous sys-
tems. We remind the reader that the linear stability analy-
sis of such an orbit according idr) = £(r) + exd (A +
iw)t]u(r) leads to a Floguet problem, where the exponent
and the periodic eigenfunctian(z) = u(r + 7) are deter-
mined by

[A + iw]u(t) +a = Df(£(1), Hu(r), (@3]
with D f denoting the Jacobian matrix ¢gf. Since our
subsequent analysis applies separately to each Floquet ex-
ponent we refrain from numbering the different branches.
The real and the imaginary parts of the Floquet exponents

govern the instability and the revolution of the trajectoryriG. 1. Diagrammatic view of a trajectory in the vicinity of
around the unstable periodic orbit (cf. Fig. 1). an unstable periodic orbit.

exp(At)
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Here the abbreviation DyF(£(2),0,1) = Df(£(1),1)
Alk,t] = Df(&(t),t) + DF(&(t),0, 1)k (6) =TI[«]=0A+iw)( + k). (10)

has been used. From Eq. (5) it is obvious that- iQ) But we do not intend to confine our analysis to these
can be expressed in terms of the Floquet exponents of tfpecial situations (cf. [9]). Instead we suppose that the
matrix (6). If we denote the latter for convenience bycontrolling force is small enough in order to neglect

I'[«] then Eq. (5) implies the relation higher order terms in the expansion of Eq. (7).

A+iQ = TTK{l — exp(—A7 — iQn}], () ATiQ=A+io+ K +ix")

- 2

This expression, which in fact is not entirely new but X K(1 - ex—A7 — iQd7]) + O(KY).

has been evaluated only numerically for specific examples (12)

(cf. [5,6]), determines the exponents of the controlled

orbit in dependence of the control amplitukle Although

it is in general a difficult task to obtain a closed analytical

expression for the quantity, we know by definition that L : : .

the boundary condition [cf. Egs. (2) and (6)] (rjneesl::trl%rzggb;hggrsél?g)() gn(j 1()1655'exactly valid for the cases
Io]=2A+iw (8) Relation (11) determines the stability of the controlled

] ] ] orbit in terms of the control amplitud&, the Floquet
holds, and thal” is an analytical function as long as the exponent of the uncontrolled orbit + iw, and the

Floquet exponents are nondegenerate. These propertiﬁﬁecise mechanism of the couplind, x".
are sufficient to conclude that only orbits with a finite ’

Here use has been made of relation (8), and the abbrevia-
tion ' + ix" = dI'/d«|.«—o contains the details of the
coupling mechanism of the controlling force. It is worth

frequencyQ # 0 can become stable. On increasing the A =X+ Kx'[l — expg—A7)codQ7)]

control amplitudeX the real part of the Floquet exponent — Kx"exp(—A7)sin(Qr), (12)
A has to change its sign from positive to negative values

in order to achieve stabilization. But if the frequen@y Q =w + Ky'exp(—A7)sin(Q7)

of the controlled orbit remains zero, the influence of the
controlling forcek[1 — exp(—Ar)] vanishes if the orbit + Kx'[1 — exp—Ar)codQr)].  (13)
tends to become stable, so that the solutidansf Eq. (7)  For the evaluation we confine the subsequent discussion
never can change their sign. The reader might objedib an uncontrolled unstable periodic orbit which just flips
that the condition() = 0 is atypical and does not occur its neighborhood within one period, that means to an
generically. But we remind ourselves of the fact thatorbit of frequencyw = 7/7. Such a situation appears
(nondegenerate) real Floquet multipliers are stable witlparticularly in a neighborhood of a period doubling
respect to perturbations (cf. [7]), so that both caQes=  bifurcation. Since the corresponding Floquet exponent
0 and Q) # 0 occur in a sense with equal probability. A + iw is located at the “boundary of the Brillouin zone,”
However, one should keep in mind that the necessarthat means the corresponding multiplier is an isolated
condition ) # 0 for stabilization has to be fulfilled for negative real numbed[«] — iw is by definition a real
each Floquet branch separately. Hence stabilization mayinction at« = 0 [cf. Eq. (6)], andy” vanishes. For this
be unlikely if the unstable manifold is high dimensional. reason{) = 7/ is a solution of Eq. (13) which in that
We summarize thay the Pyragas method only orbits sense is an optimal value for the frequency since the effect
with a finite torsion can be stabilizedince for stabiliza- of the control term in Eq. (12) becomes maximal. Then
tion the influence of the controlling force has to be fi- Eq. (12) simplifies to
nite (cf. Fig. 1). This property has been observed recently , _ / . _
even in high-dimensional dynamical systems by analyzing A=A+ Kyl + exp=An)], Q=m/r. (14)
the transient behavior of the control signal [8], but no ex-Stabilization is achieved i\ changes its sign, that means
planation has been proposed. From this point of view thét a critical control amplitude
control methods by Ott, Grebogi, and Yorke [1] on the K. = —A/2x'. (15)
one hand and by Pyragas [3] on the other hand are com- ) ] ) »
plementary, since the former is not in principle but in mostKc is mainly determined by the instability of the uncon-
practical applications restricted to the case of only one untrolled orbit. On further increase of the control amplitude
stable eigendirection, whereas the latter requires mostly @€ frequency may start to deviate from its optimal value.

two-dimensional unstable manifold. Formally this deviation results from a pitchfork bifurca-
For further quantitative investigations some informationtion in Eq. (13) which occurs &y
aboutI'[«] is required. There are a few cases where by 1 = —Kopex' 7 €Xp(— AopeT) s (16)

inspection thec dependence can be read off from Eq. (6):With Aoy, being determined by Eq. (14). Beyoid,, the
op : : p

DyF(£(1),0,t) =1 =T[k]= A+ iw + k, (9) frequencyQ deviates from its optimal valug /7= so that
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the eigenvalue\ of the controlled orbit starts to increase 0 T ' T
again with the control amplitud&. In this senseX,, is A X
the optimal value since the stability of the controlled orbit 03} g
is maximal. Y e
Simulations and experimenrt:In order to illustrate our -0.6 == : !
theoretical considerations and to demonstrate that the 2 25 g 38 85
features predicted are accessible from observed data, we 0.7 T y
have performed numerical simulations of the driven Toda 29
oscillator " o5 .
21 =22,
. 0.3 1 ) | B
= —uzn — alexpz) — 1] 2 25 g 3 35

o + As'n_%'t B Klz2(1) — Z?(_t - Dl A7) FIG. 2. Real and imaginary part of the Floguet exponent
Time is measured in periods of the driving force. #At= for a numerical simulation of Egs. (17). The data (symbols)
0.8, « = 25, A = 105, andK = 0 the system possesses have been obtained from the decay of the control signal on
a chaotic attractor. A period-one orbit, which has becomeariation of the control amplitud&’. The solid lines indicate
unstable in a period doubling bifurcation, can be stabilizedhe analytical solutions of Egs. (12) and (13) with~ 0.97,
at finite controlK > K, ~ 2.1. From the exponential X ~ ~02%
decay of the control signat,(r) — z2(r — 1), using a
standard least squares method, we determine the real angth the theoretical prediction we take the valugés~ 34
imaginary parts of the Floguet exponeft + iQ for  andK,, =~ 37.5 to determine the two parametey$r and
several values of the control amplitude. Our findings arexr from Egs. (15) and (16). The quantitative agreement
summarized in Fig. 2. We clearly observe the predictedvith Egs. (12) and (13) is within a few percent, except for
dependence on the control amplitude. Using the valuene real part beyond .
Kopi = 2.4 we determine the two parametersand y’ by Apart from the reasons already mentioned the devia-
means of Egs. (15) and (16) and compare our simulationgons can be attributed to the limited accuracy of the value
with the theoretical prediction from Eqgs. (12) and (13).K,,. Since the transients are affected by noise a precise
The quantitative coincidence is within a few percent.estimate of the exponents is difficult to obtain for small
This result is even more convincing when keeping indecay rateA.
mind that the theoretical prediction is just a first order |n conclusion, we have shown that the main limit-
computation in the control amplitude which actually is noting factor for time-delayed feedback control results from
so small. For larger values &f we observe an additional the torsion of the unstable periodic orbit. This topologi-
frequency in the control signal. Such a property can beal property determines whether the control mechanism
attributed to the second (stable) Floguet branch and mayorks at all. We have worked out the general features
also be evaluated by Eq. (7). Finally, as a by-product, wef the transient behavior including critical and optimal
obtain an estimate of the Floquet expongnt iw of the  control amplitudes. Our approach describes at least the
uncontrolled orbit. generic properties for stabilizing unstable periodic orbits

In addition to analytical calculations and computer simu-with an unstable manifold like Mdbius strip. Our simu-
lations we have performed experiments on a nonlineafations have shown that the features described above are
electronic circuit (see, e.g., [10]). We consider a nonlineaaccessible from the transient behavior of the control signal
diode resonator consisting of a capacity diode (1N4005),
an inductor 470 wH), and a resistord0 ) (cf. Fig. 3).

The control device consists of a cascade of electronic
delay lines with a limiting frequency of about 2 MHz
and several operational amplifiers acting as preamplifier,
subtractor, or inverter. The device allows us to apply a
controlling force of the form+-K[U(¢) — eU(r — 7)] +
Upwith parameter rangeX = 0-300, € = 0-2, 7 =
10-7000 ns, andUy = —5-+5 V. For conventional de-
layed feedback contrel has to be adjusted carefully to one
and the offsetl/y to zero. This was done in the experi-
ment reported here. The circuit was sinusoidally driven
with an amplitude of 2 V and a frequency of 990 kHz. Ac-
cordingly the delay time was setto= 1010 ns. From the
transient dynamics of the control signal we again obtain the;|G, 3. Experimental setup of a nonlinear diode resonator
decay rate and the frequency (cf. Fig. 4). For comparisomwith time-delayed feedback device.
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