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We present a formal framework for modeling evolutionary dynamics with special emphasis on the
generation of diversity through branching of the evolutionary tree. Fitness is defined as the long
term growth rate which is influenced by the biotic environment leading to an ever-changing adaptive
landscape. Evolution can be described as a dynamics in a space with variable number of dimensions
corresponding to the number of different types present. The dynamics within a subspace is governed
by the local fitness gradient. Entering a higher dimensional subspace is possible only at a particular
type of attractors where the population undergoes evolutionary branching.  [S0031-9007(97)02628-8]

PACS numbers: 87.10.+e, 89.60.+x

Evolution by natural selection is the grand unifying the-where N is the state vector of the population (i.e., the
ory of biology. In the simplest selection models eachnumber of individuals in different age groups, state, lo-
phenotype has a fixed fithess value, and the fittest typeation, etc.). The projection matrid (x, E) contains the
eventually outcompetes all others. This constant fithesdemographic parameters for birth, death, and migration,
picture, however, is unable to explain the enormous diverand depends on strategyas well as on the environment
sity of life on Earth: how could any type but the fittest E. For any given, fixed condition of the environment the
survive? For instance, in the spin-glass models [1,2] apopulation would increase exponentially with growth rate
well as in the prebiotic model of Eigen [3] either a single, o (x, E), which is the (real) leading eigenvalue of the ma-
localized (quasi)species is present or the high mutation rateix M(x, E). We suppose thag is a smooth function
destroys any organization in the genotype space. Speciaf the strategy as well as the environmental parameters.
tion has been explained by stochastic models ignorind\s the population increases, the environment deteriorates.
selection processes altogether [4,5]. Inthese models, howzonsequently, the growth rate decreases and eventually be-
ever, the concept of adaptation has no meaning. We sugomes zero when the population reaches an equilibrium.
gest that speciation can be understood on the basis dhe condition of the environment at the equilibrium is
natural selection if one takes into account the fact thatenoted byE,, which is a solution ofg(x, E) = 0, and
the fitness function itself is modified by the evolutionary which we assume to be unique.
process. We suppose a clear separation of the (slow) evo- Next, consider a new mutant with strategymerging
lutionary and the (fast) population dynamical time scalesin an equilibrium population ok strategists. As long as
that is, mutations, occurs only infrequently and has only ahe mutant is rare, its effect on the environment as set by
small phenotypic effect. (This is a very realistic assump+the x strategy is negligible, so that the mutant’s growth
tion for almost all evolutionary situations.) rate is given by

We confine ourselves to asexual populations, and as-
sume that different types can be characterized by a single, sx(y) = e(y, Ex). (2)

one-dimensional quantity, referred to as strategy. Fitnesg s (y) < 0 the mutant dies out, but i, (y) > 0 it will

is @ smooth function of the strategy parameter. This despread. If mutations are small, then the sign of the local
scription, which has some similarity to the “fitness space’fitness gradient

approach [6], is much easier to handle than the “genotype

space” models. D(x) = [asx(y)} (3)
Fitness can be generally defined as the long term popu- dy  dy=x

lation growth rate of a given type [7]. The growth rate can ) )

NOT be fixed, because exponential population growth candetermines what mutants can invade. Difx) > 0, mu-

not be sustained indefinitely. Consider a population witf@nts withy > x can invadex, whereas ifD(x) < 0, this

a single strategy. The growth of the population can be IS only possible for mutants witly < x. If y is near

described by enough tax s,(y) > 0 impliess, (x) < 0, because the lo-
cal fitness gradient does not change sign during the tran-
S N=MGxE) N, ) sitionx — y. That is, thex strategy cannot recover once
dt the mutant has become common and xherategy itself
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has become rare. We shall assume that the mutant even-(2) A singular strategy is convergence stable [9] if
tually takes over the whole population in this case. a population of nearby phenotypes can be invaded by

The population thus evolves in the direction of the localmutants that are even closer 6, that is, if s,(y) > 0
fitness gradient until it reaches the neighborhood of dor x <y < x* andx™ <y < x. In the PIP there is a
“singular strategy,”x”, where the local fithess gradient “+" above the diagonal on the left, and below the diagonal
is zero. Close to a singular strategy it may happen thabn the right ofx™ [Figs. 2(b)-2(e)]. Since at* the local
sx(y) > 0ands,(x) > 0, so that botlxandy are protected fitness gradient is a decreasing functiorxaf follows that
against extinction, and the population necessarily becomes the singular strategy we have
dimorphic.

As a convenient graphical means to see what mutants dD(x)  9%sc(y) + 9%sx(y) <

can spread in a given population we use a “pairwise in- dx dxdy ay?
vasibility plot” (PIP) to indicate the sign of,(y) for all

possible values ok andy (Fig. 1). On the main diago- or, using Eq. (4),

nal s,(y) is always zero, because by definitiop(x) =

o(x,E,) = 0. A“+"just above the diagonal and a-" 9%s5:(y) - 9%sx(y) %

just below indicate a positive fitness gradient, whereas the dx2 ay?

opposite indicates a negative fitness gradient. The inter-

section of the diagonal with another curve on whighy) A convergence stable singular strategy is an evolutionary
is zero corresponds to a singular strategy. attractor in the sense that a monomorphic population

Close to a singular strategy” there are only eight will remain within its neighborhood. A singular strategy
possible (generic) local configurations of the PIP (Fig. 2)that is not convergence stable is a repeller from which
For their algebraic characterization we will use that at thepopulations tend to evolve away. A singular strategy
singular strategy can be ESS but not convergence stable [Fig. 2(f)], or
convergence stable but not ESS [Fig. 2(b)] [10].

(3) A singular strategy can spread in other populations
when itself is initially rare ifs,(x*) > 0 for all x # x*, in
other words, if in the PIP the horizontal line throughon
which follows froms,(x) = 0 for all x. Each configura- they axis lies entirely in a region marked" [Figs. 2(a)—
tion represents a different evolutionary scenario that cad(d)]. Sinces,(x*) as a function ok has a minimum for
be interpreted in terms of the four properties of the singux = x", it follows that at the singular strategy we have
lar strategy discussed below.

0, (6)

P5x(y) | 5 P(y) | Psy) _
9x2 dxdy dy?

0, (4)

(1) A singular strategy™ is evolutionarily stable (ESS) 9s:(y) =0 @8)
if no initially rare mutant can invade, in other words, dx2 ’
if s,+(y) <O for all y # x*. In the PIP the vertical
line throughx* lies entirely within a region marked—” A singular strategy thatis ESS and convergence stable may

[Figs. 2(c)—2(f)]. Sinces,-(y) as a function ofy has a  nevertheless be incapable of invading other populations if

maximum fory = x*, at the singular strategy we have initially rare itself [Fig. 2(e)]. Such a singular strategy can
be reached only asymptotically through a series of ever-

decreasing evolutionary steps [Fig. 2(e)] [11,12].

(4) Two strategiesx andy can mutually invade, and
hence give rise to a dimorphic populations,if y) > 0and
An ESS is an evolutionary trap in the sense that once es-
tablished in a population, no further evolutionary change

9%s,(y)
dy?

<0. (5)

. ; Fs5,0)
is possible [8]. o7
h a
T - ST | T
y #5,0)
+ =r 23
+ f c
- € d
x* X —» FIG. 2. Classification of the singular strategies according to
the second partials of.(y). The small plots are the local PIPs
FIG. 1. Example of pairwise invasibility plot. near to the singular point characterized by these partials.
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sy(x) > 0. The set of pairs of mutually invasible strategiesgeneralize the formalism to populations with an arbitrary
nearx™ is given by the overlapping parts of the-"regions  number of strategies, leE,, . denote the condition
in the PIP and its mirror image taken along the mainof the environment in an equilibrium population with
diagonal. The setis nonempty if and only if the secondanstrategiesy, ..., x,, i.e.,
diagonal lies entirely in a+" region [Figs. 2(a)—2(c), .
2(h)]. Since along the secondary diagosidly) has a local QWi Ey,..,) = 0 (11)
) 5 5 if the environment can be represented as a vector with at
sx(y) _ 5 0%sa(y) | s(Y) 0 (9) leastn independently adjustable components [15]. The
dax? dxdy ay? ' dimensionality of the environment thus sets an upper limit
to the number of different types that can coexist, and
hence to the maximum diversity that can be reached by
925, (y) 925, () branching of the evolutionary tree.
ox2 - PISINE (10) The growth rate of an initially rare mutant with strategy
y in an equilibrium population with strategies, ..., x, is
The evolutionary significance of mutual invasibility given by
depends on the combination with the other properties of _
the singular strategy. I&* is convergence stable and Sxim(¥) = €(3, En...v,) (12)
ESS, then mutually invasible strategies are necessarily def. Eg. (2)]. The direction of a possible evolutionary
opposite sides af* [Fig. 2(c)]. A mutant with strategy  change in ther; strategy is indicated by the local fitness
can invade a population withh andx, (with x; < x;)only  gradient
if x; <y < x;[Fig. 3(a)]. The mutant may replace both
x1 andx;,, or only the one that is on the same sidecdbut Di(x1,...,x,) = [ﬁ} (13)
farther away. In the long run the dimorphism effectively dy y=x
disappears as thg population gradu_ally evolves tovyarq%f_ Eq. (3). We callx},...,x* an “evolutionarily sin-

x” through a series of monomorphic and (convergingly,ar coalition” if for each strategy the fitness gradient is
dimorphic POPU'E‘“P” states. zero. The classification above can be used for each mem-
However, if x is convergence stable but not ESSyq, population of this coalition. A singular coalition that
[Fig. 2(b)], then a strategy can invade only ify < xi 5 an evolutionary attractor but some of its members are

or y > x; [Fig. 3(b)]. Since it is always the middle .t in an ESS point will lead to further branching of the
strategy that is ousted, the two remaining Strateg'eévolutionary tree.

become progressively more distinct with each successive 1 picture of evolution that arises is that of a random
invasio_n. This process of divergen(_:e of strategies we callalk in a state space of a dimension that is given by the
“evolutionary branching,” and the singular strategy in thepymper of the different strategies present. The direction
associated PIP we call a "branching point. _ of the steps is given by the local fithess gradient. (This
Figure 4 shows numerical simulation of evolutionary ;angom walk can be approximated by a deterministic dy-
branching in a population inhabiting two patches withpamics of the strategy parameters in the appropriate limit
different optimal strategies and migration between themyg)) At each branching event the dimension of the state
[13]. (A similar model was analyzed by [14] using the gpace increases. In some cases there is no attractor in the
genotype space approach.) n-dimensional space, and the population leaves the vol-

After branching the two coexisting strategies S00N,me containing the strategy combinations that can coexist
evolve too far apart for the local approximation of the

mutant’s fithess used in Fig. 3 above to be valid. To

or, equivalently,

1 (b)
S © :
/N [ T —
I+
(b)
X — strategy —»

FIG. 3. Mutant’s fitness in a population with and x, as a

perturbation from the fitness in a population with a strategyFIG. 4. Evolutionary branching in a specific model [13].
x* that is (a) ESS or (b) not ESS. (Horizontal axis: strategy,(a) PIP with two branching points and a repeller, and (b) simu-
vertical axis: fitness.) lated evolutionary tree.
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