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We present a formal framework for modeling evolutionary dynamics with special emphasis on the
generation of diversity through branching of the evolutionary tree. Fitness is defined as the long
term growth rate which is influenced by the biotic environment leading to an ever-changing adaptive
landscape. Evolution can be described as a dynamics in a space with variable number of dimensions
corresponding to the number of different types present. The dynamics within a subspace is governed
by the local fitness gradient. Entering a higher dimensional subspace is possible only at a particular
type of attractors where the population undergoes evolutionary branching. [S0031-9007(97)02628-8]
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Evolution by natural selection is the grand unifying the
ory of biology. In the simplest selection models eac
phenotype has a fixed fitness value, and the fittest ty
eventually outcompetes all others. This constant fitne
picture, however, is unable to explain the enormous dive
sity of life on Earth: how could any type but the fittes
survive? For instance, in the spin-glass models [1,2]
well as in the prebiotic model of Eigen [3] either a single
localized (quasi)species is present or the high mutation ra
destroys any organization in the genotype space. Spec
tion has been explained by stochastic models ignorin
selection processes altogether [4,5]. In these models, ho
ever, the concept of adaptation has no meaning. We su
gest that speciation can be understood on the basis
natural selection if one takes into account the fact th
the fitness function itself is modified by the evolutionar
process. We suppose a clear separation of the (slow) e
lutionary and the (fast) population dynamical time scale
that is, mutations, occurs only infrequently and has only
small phenotypic effect. (This is a very realistic assump
tion for almost all evolutionary situations.)

We confine ourselves to asexual populations, and a
sume that different types can be characterized by a sing
one-dimensional quantity, referred to as strategy. Fitne
is a smooth function of the strategy parameter. This d
scription, which has some similarity to the “fitness space
approach [6], is much easier to handle than the “genoty
space” models.

Fitness can be generally defined as the long term pop
lation growth rate of a given type [7]. The growth rate ca
NOT be fixed, because exponential population growth ca
not be sustained indefinitely. Consider a population wit
a single strategyx. The growth of the population can be
described by

d
dt

N ­ Msx, Ed ? N , (1)
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where N is the state vector of the population (i.e., th
number of individuals in different age groups, state, l
cation, etc.). The projection matrixMsx, Ed contains the
demographic parameters for birth, death, and migrati
and depends on strategyx as well as on the environmen
E. For any given, fixed condition of the environment th
population would increase exponentially with growth ra
% sx, Ed, which is the (real) leading eigenvalue of the m
trix Msx, Ed. We suppose that% is a smooth function
of the strategy as well as the environmental paramet
As the population increases, the environment deteriora
Consequently, the growth rate decreases and eventually
comes zero when the population reaches an equilibriu
The condition of the environment at the equilibrium
denoted byEx, which is a solution of%sx, Ed ­ 0, and
which we assume to be unique.

Next, consider a new mutant with strategyy emerging
in an equilibrium population ofx strategists. As long as
the mutant is rare, its effect on the environment as set
the x strategy is negligible, so that the mutant’s grow
rate is given by

sxs yd ­ %s y, Exd . (2)

If sxs yd , 0 the mutant dies out, but ifsxs yd . 0 it will
spread. If mutations are small, then the sign of the lo
fitness gradient

Dsxd ­

∑
≠sxs yd

≠y

∏
y­x

(3)

determines what mutants can invade. IfDsxd . 0, mu-
tants withy . x can invadex, whereas ifDsxd , 0, this
is only possible for mutants withy , x. If y is near
enough tox sxs yd . 0 impliessysxd , 0, because the lo-
cal fitness gradient does not change sign during the tr
sition x ! y. That is, thex strategy cannot recover onc
the mutant has become common and thex strategy itself
© 1997 The American Physical Society
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has become rare. We shall assume that the mutant ev
tually takes over the whole population in this case.

The population thus evolves in the direction of the loc
fitness gradient until it reaches the neighborhood of
“singular strategy,”xp, where the local fitness gradien
is zero. Close to a singular strategy it may happen th
sxs yd . 0 andsysxd . 0, so that bothx andy are protected
against extinction, and the population necessarily becom
dimorphic.

As a convenient graphical means to see what muta
can spread in a given population we use a “pairwise i
vasibility plot” (PIP) to indicate the sign ofsxs yd for all
possible values ofx and y (Fig. 1). On the main diago-
nal sxs yd is always zero, because by definitionsxsxd ­
% sx, Exd ­ 0. A “ 1” just above the diagonal and a “2”
just below indicate a positive fitness gradient, whereas
opposite indicates a negative fitness gradient. The int
section of the diagonal with another curve on whichsxs yd
is zero corresponds to a singular strategy.

Close to a singular strategyxp there are only eight
possible (generic) local configurations of the PIP (Fig. 2
For their algebraic characterization we will use that at th
singular strategy

≠2sxs yd
≠x2 1 2

≠2sxs yd
≠x≠y

1
≠2sxs yd

≠y2 ­ 0 , (4)

which follows fromsxsxd ­ 0 for all x. Each configura-
tion represents a different evolutionary scenario that c
be interpreted in terms of the four properties of the sing
lar strategy discussed below.

(1) A singular strategyxp is evolutionarily stable (ESS)
if no initially rare mutant can invade, in other words
if sxp s yd , 0 for all y fi xp. In the PIP the vertical
line throughxp lies entirely within a region marked “2”
[Figs. 2(c)–2(f)]. Sincesxp s yd as a function ofy has a
maximum fory ­ xp, at the singular strategy we have

≠2sxs yd
≠y2 , 0 . (5)

An ESS is an evolutionary trap in the sense that once
tablished in a population, no further evolutionary chang
is possible [8].

FIG. 1. Example of pairwise invasibility plot.
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(2) A singular strategy is convergence stable [9]
a population of nearby phenotypes can be invaded
mutants that are even closer toxp, that is, if sxs yd . 0
for x , y , xp and xp , y , x. In the PIP there is a
“1” above the diagonal on the left, and below the diagon
on the right ofxp [Figs. 2(b)–2(e)]. Since atxp the local
fitness gradient is a decreasing function ofx, it follows that
at the singular strategy we have

dDsxd
dx

­
≠2sxs yd

≠x≠y
1

≠2sxs yd
≠y2

, 0 , (6)

or, using Eq. (4),

≠2sxs yd
≠x2

.
≠2sxs yd

≠y2
. (7)

A convergence stable singular strategy is an evolutiona
attractor in the sense that a monomorphic populatio
will remain within its neighborhood. A singular strategy
that is not convergence stable is a repeller from whic
populations tend to evolve away. A singular strateg
can be ESS but not convergence stable [Fig. 2(f)],
convergence stable but not ESS [Fig. 2(b)] [10].

(3) A singular strategy can spread in other population
when itself is initially rare ifsxsxpd . 0 for all x fi xp, in
other words, if in the PIP the horizontal line throughxp on
they axis lies entirely in a region marked “1” [Figs. 2(a)–
2(d)]. Sincesxsxpd as a function ofx has a minimum for
x ­ xp, it follows that at the singular strategy we have

≠2sxs yd
≠x2 . 0 . (8)

A singular strategy that is ESS and convergence stable m
nevertheless be incapable of invading other populations
initially rare itself [Fig. 2(e)]. Such a singular strategy ca
be reached only asymptotically through a series of eve
decreasing evolutionary steps [Fig. 2(e)] [11,12].

(4) Two strategiesx and y can mutually invade, and
hence give rise to a dimorphic population, ifsxs yd . 0 and

FIG. 2. Classification of the singular strategies according
the second partials ofsxs yd. The small plots are the local PIPs
near to the singular point characterized by these partials.
2025
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sysxd . 0. The set of pairs of mutually invasible strategi
nearxp is given by the overlapping parts of the “1” regions
in the PIP and its mirror image taken along the ma
diagonal. The set is nonempty if and only if the second
diagonal lies entirely in a “1” region [Figs. 2(a)–2(c),
2(h)]. Since along the secondary diagonalsxs yd has a local
minimum fory ­ x ­ xp, at the singular strategy we hav

≠2sxs yd
≠x2 2 2

≠2sxs yd
≠x≠y

1
≠2sxs yd

≠y2 . 0 , (9)

or, equivalently,

≠2sxs yd
≠x2

. 2
≠2sxs yd

≠y2
. (10)

The evolutionary significance of mutual invasibilit
depends on the combination with the other properties
the singular strategy. Ifxp is convergence stable an
ESS, then mutually invasible strategies are necessarily
opposite sides ofxp [Fig. 2(c)]. A mutant with strategyy
can invade a population withx1 andx2 (with x1 , x2) only
if x1 , y , x2 [Fig. 3(a)]. The mutant may replace bot
x1 andx2, or only the one that is on the same side ofxp but
farther away. In the long run the dimorphism effective
disappears as the population gradually evolves towa
xp through a series of monomorphic and (convergin
dimorphic population states.

However, if xp is convergence stable but not ES
[Fig. 2(b)], then a strategyy can invade only ify , x1
or y . x2 [Fig. 3(b)]. Since it is always the middle
strategy that is ousted, the two remaining strateg
become progressively more distinct with each success
invasion. This process of divergence of strategies we
“evolutionary branching,” and the singular strategy in t
associated PIP we call a “branching point.”

Figure 4 shows numerical simulation of evolutiona
branching in a population inhabiting two patches wi
different optimal strategies and migration between th
[13]. (A similar model was analyzed by [14] using th
genotype space approach.)

After branching the two coexisting strategies so
evolve too far apart for the local approximation of th
mutant’s fitness used in Fig. 3 above to be valid.

FIG. 3. Mutant’s fitness in a population withx1 and x2 as a
perturbation from the fitness in a population with a strate
xp that is (a) ESS or (b) not ESS. (Horizontal axis: strateg
vertical axis: fitness.)
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generalize the formalism to populations with an arbitrar
number of strategies, letEx1,...,xn

denote the condition
of the environment in an equilibrium population with
strategiesx1, . . . , xn, i.e.,

%sxi , Ex1,...,xn d ­ 0 (11)

for all i. Generically,Ex1,...,xn
can satisfy Eq. (11) only

if the environment can be represented as a vector with
least n independently adjustable components [15]. Th
dimensionality of the environment thus sets an upper lim
to the number of different types that can coexist, an
hence to the maximum diversity that can be reached
branching of the evolutionary tree.

The growth rate of an initially rare mutant with strategy
y in an equilibrium population with strategiesx1, . . . , xn is
given by

sx1,...,xns yd ­ % s y, Ex1,...,xn d (12)

[cf. Eq. (2)]. The direction of a possible evolutionary
change in thexi strategy is indicated by the local fitness
gradient

Disx1, . . . , xnd ­

∑
≠sx1,...,xn

s yd
≠y

∏
y­xi

(13)

[cf. Eq. (3)]. We callxp
1 , . . . , xp

n an “evolutionarily sin-
gular coalition” if for each strategy the fitness gradient i
zero. The classification above can be used for each me
ber population of this coalition. A singular coalition tha
is an evolutionary attractor but some of its members a
not in an ESS point will lead to further branching of the
evolutionary tree.

The picture of evolution that arises is that of a random
walk in a state space of a dimension that is given by th
number of the different strategies present. The directio
of the steps is given by the local fitness gradient. (Th
random walk can be approximated by a deterministic d
namics of the strategy parameters in the appropriate lim
[16].) At each branching event the dimension of the sta
space increases. In some cases there is no attractor in
n-dimensional space, and the population leaves the v
ume containing the strategy combinations that can coex

FIG. 4. Evolutionary branching in a specific model [13]
(a) PIP with two branching points and a repeller, and (b) simu
lated evolutionary tree.
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as ann morphism. In this case one or several strateg
may go extinct, so that the population falls back to a low
dimensional state space again. (See [17,18] for further
cussion and generalizations.) According to the numer
experiments, like the one presented on Fig. 4, this beh
ior is not very sensitive for the time-scale separation.
the random component of the directional evolution is n
negligible, but still small enough, the picture of an evo
ing and, sometimes, branching quasispecies emerges.

Although evolutionary branching is reminiscent of sp
ciation, in the present context of asexual populations
species concept is not well defined. Applied to sex
populations, the framework could describe evolution
allele space rather than in strategy space. Branchin
allele space can be interpreted as speciation only if
separate branches do not interbreed. Matings between
ferent branches produce intermediate offspring (hetero
gotes). As during the process of branching intermed
types are selected against [cf. Fig. 3(b)], types that m
more within branches than between branches are at a s
tive advantage, so that reproductive isolation might evo
indeed [19].

Many models of adaptive evolution assume a o
dimensional environment, usually represented by
equilibrium population density [20]. In these models coe
istence of different types, and hence evolutionary bran
ing, is not possible, and convergence stability alwa
implies ESS stability as well. Fixed, though multipeake
fitness landscapes like in spin-glass models do not al
for coexistence and branching either. As the separate
ness peaks generically are of unequal height, the t
at the highest peak will in the long run out-compete
others. In the present framework, however, fitnesses
the coexisting populations are self-organized to be z
[cf. Eq. (11)], that is, to be exactly equal to each other.

This self-organization has a clear biological message
two (or more) species have been living together for m
lions of years, it is meaningless to ask which of them
the fittest or the least fit. This is in contradiction wi
the assumptions of Bak and Sneppen [21]. Their mo
is similar to ours in one respect: the fitness landscape
each species is affected by the other species. Howe
the number of species is fixed, and within species div
sification is prohibited in the Bak and Sneppen mod
Their model is an interesting candidate for an effect
model explaining the long-term statistics of the evolutio
ary process. Our approach is intended to be a precu
of an underlying theory unifying diversification and ada
tation into a single framework.

The authors thank Odo Diekmann and Frans Jac
for discussions. The work presented in this paper w
supported by the Hungarian Science Foundation OT
es
er
is-
al
v-

If
ot
-

-
he
al
in

in
he
dif-
y-
te
te
lec-
ve

e-
he
-
h-
s
,
w

fit-
pe
ll
of
ro

: if
l-
is

el
of
er,
r-
l.
e
-

sor
-

bs
as
A

(T019272) and the Netherlands Organization for Scientifi
Research (NWO).

*Present address: Department of Zoology, University o
Maryland, 1200 Zoology-Psychology bld., College Park
MA 20742-4415.
Electronic address: Geritz@zool.umd.edu

†Electronic address: Metz@rulsfb.LeidenUniv.nl
‡Electronic address: Eva.Kisdi@elte.hu
§Electronic address: Geza.Meszena@elte.hu

[1] C. Amitrano, L. Peliti, and M. Saber, J. Mol. Evol.29,
513–525 (1989).

[2] S. Franz and L. Peliti, J. Phys. A26, L1195–L1199
(1993).

[3] M. Eigen and P. Schuster,The Hypercycle. A Principle
of Natural Self-Organization(Springer-Verlag, Berlin,
Heidelberg, New York, 1979).

[4] P. G. Higgs and B. Derrida, J. Phys. A24, L985–991
(1991).

[5] F. Manzo and L. Peliti, J. Phys. A27, 7079–7086 (1994).
[6] L. S. Tsimring, H. Levine, and D. A. Kesser, Phys. Rev

Lett. 76, 4440–4443 (1996).
[7] J. A. J. Metz, R. M. Nisbet, and S. A. H. Geritz, Trends

Ecol. Evol.7, 198–202 (1992).
[8] J. Maynard Smith and G. R. Price, Nature (London)246,

15–18 (1973).
[9] F. B. Christiansen, Am. Nat.138, 37–50 (1991).

[10] I. Eshel, J. Theor. Biol.103, 99–111 (1983).
[11] É. Kisdi and G. Meszéna, Lect. Notes Biomath.98, 26–60

(1993).
[12] É. Kisdi and G. Meszéna, Theor. Pop. Biol.47, 191–211

(1995).
[13] G. Meszéna, I. Czibula, and S. A. H. Geritz, J. Biol. Syst

(to be published).
[14] I. Mróz, A. Pekalski, and K. Sznajd-Weron, Phys. Rev

Lett. 76, 3025–3028 (1996).
[15] R. MacArthur and R. Levins, Proc. Natl. Acad. Sci. U.S.A

51, 1207–1210 (1964).
[16] U. Dieckmann and R. Law, J. Math. Biol.34, 579–612

(1996).
[17] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacob

and J. S. van Heerwaarden, inStochastic and Spatial
Structures of Dynamical Systems,edited by S. J. van Strien
and S. M. Verduyn Lunel (North-Holland, Elsevier, 1996),
pp. 183–231.

[18] S. A. H. Geritz, É. Kisdi, G. Meszéna, and J. A. J. Metz
Evolutionary Ecology (to be published).

[19] J. Seger, inEvolution. Essays in Honour of John Maynard-
Smith, edited by P. J. Greenwood, P. M. Harvey, and
M. Slatkin (Cambridge University Press, Cambridge
1985).

[20] R. E. Michod, Am. Nat.113, 531–550 (1979).
[21] P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083–4086

(1993).
2027


