VOLUME 78, NUMBER 10 PHYSICAL REVIEW LETTERS 10 MRcH 1997

Rheology of Soft Glassy Materials
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We attribute similarities in the rheology of many soft materials (foams, emulsions, slurries, etc.) to
the shared features of structural disorder and metastability. A generic model for the mesoscopic dynam-
ics of “soft glassy matter” is introduced, with interactions represented by a mean-field noise tempera-
turex. We find power-law fluid behavior either with < 1) or without(1 < x < 2) ayield stress. For
1 < x < 2, both storage and loss modulus vary with frequency#s!, becoming flat near a glass tran-
sition (x = 1). Values ofx = 1 may result from marginal dynamics as seen in some spin glass models.
[S0031-9007(97)02673-2]

PACS numbers: 83.20.—d, 05.40.+j, 83.50.—v

Many soft materials, such as foams, emulsions, pastesje feel that its unifying role in rheological modeling has
and slurries, have intriguing rheological properties. Ex-not been appreciated.
perimentally, there is a well-developed phenomenology To test these ideas, we construct a minimal “generic
for such systems: Their nonlinear flow behavior is of-model” for soft glassy matter. For simplicity, we ignore
ten fit to the formo = A + By" whereo is shear stress tensorial aspects, restricting our analysis to simple shear
andy strain rate. This is the Herschel-Bulkeley equationstrains. Consider first the behavior of a foam or dense
[1,2]; or (for A = 0) the “power-law fluid” [1-3]. For emulsion under shear. We focus omasoscopicegion,
the same materials, linear or quasilinear viscoelastic medarge enough for a local strain variabléo be defined, but
surements often reveal storage and loss mo@iliw),  small enough for this to be approximately uniform within
G"(w) in nearly constant ratio”/G’ is usually about the region, whose size we choose as the unit of length.
0.1) with a frequency dependence that is either a weals the system is sheared, droplets in this region will first
power law (clay slurries, paints, microgels) or negligibledeform elastically from a local equilibrium configuration,
(tomato paste, dense emulsions, dense multilayer vesiclegiving rise to a stored elastic energy (due to surface
colloidal glasses) [4—10]. This behavior persists down tdension, in this example [18]). This continues up to
the lowest accessible frequencies (abb@it’~1 Hz de- a yield point, characterized by a straip, whereupon
pending on the system), in apparent contradiction to lineathe droplets rearrange to new positions in which they
response theory [11], which requires tii&t(w) should be are less deformed, thus relaxing stress. The mesoscopic
an odd function ofw. strain / measured from the nearest equilibrium position

That similar anomalous rheology should be seen in sucfi.e., the one which can be reached by purely elastic
a wide range of soft materials suggests a common causdeformation) therefore executes a saw-tooth motion as
Indeed, the frequency dependence indicated above pointise macroscopic straify is increased [22]. Neglecting
strongly to the generic presence of slow “glassy” dynam-nonlinearities before yielding, the local shear stress is
ics persisting to arbitrarily small frequencies. This fea-given by kI, with k an elastic constant; the yield point
ture is found in several other contexts [12—14], such aslefines a maximal elastic enerdy = %klf. A similar
elastic manifold dynamics in random media [15,16]. Thedescription obviously extends to many others of the soft
latter is suggestive of rheology: Charge density wavesmaterials discussed above.
vortices, contact lines, etc., can “flow” in response to an We now ascribe to each mesoscopic region not only its
imposed “stress.” In this Letter we argue that glassy dyown strain variabld, but also its own maximal yield elas-
namics is a natural consequence of two properties shardit energyE > 0. We model the effects of structural dis-
by all the soft materials mentioned abowtructural dis-  order by assuming distribution of such yield energieg,
order and metastability. In such materials, thermal mo- rather than a single value common to all regions. The state
tion alone is not enough to achieve complete structurabf a macroscopic sample is then characterized by a proba-
relaxation. The system has to cross energy barriers (fdility distribution P(I, E; t). We propose the following dy-
example, those associated with rearrangement of dropletemics for the time evolution a?:
in an emulsion) that are very large compared to typical , g -tk
thermal energies. Therefore the system adopts a disors P = —y —- P — pe = P+ T(t)p(E)S(1).
dered, metastable configuration even when (as in a mono-
disperse emulsion or foam) the state of least free energy 1)
would be ordered [17]. While the importance of disorderThe first term on the right-hand side (r.h.s.) arises from
has been noted before for specific systems [7,11,18—-21fhe elastic deformation of the regions. This embodies
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a mean-field assumption that between successive loc&rm is not required. We use nondimensional units for
yield events, changes in local strain follow those of thetime and energy by settin, = x, = 1, we also rescale
macroscopic deformationt = y. Note, however, that our strain variableg/, v) so thatk = 1. In these units,
due to stochastic yielding events the strésss spatially p(E) = exg{—E[1 + f(E)]} with f(E) — 0 for E — oo,
inhomogeneous (as is the local stré)n The macroscopic Up to sub-power-law factors such as logarithms, all power

stress is defined as an average over regions laws reported below are valid for ang(E); numerical
examples usg¢ = 0. Analytical and numerical support
o(t) = k() = k[ IP(l,E;t)dldE . (2)  for our results will be detailed elsewhere [23].

Consider first the complex dynamic shear modulus

The second term on the r.h.s. of (1) describes the yielding*(w) = G’ + iG", which describes the stress response
of our mesoscopic regions. We have written the yieldingo small shear strain perturbations around the equilibrium
rate as the product of an “attempt frequendy;, and state. As such, it is well defined (i.e., time independent)
an exponentlal probability for activation over an energyonly above the glass transition > 1. Expanding (1)
barrier E — —k12 (the excess of the yield energy over to first order in the amplitude of an oscillatory strain
that stored elastrcally) However, the resemblance toy(r) = y coswt, we find G*(w) = (iw7/(iwT + 1))q.
thermal activation is formal: We expect these “activated”This corresponds to a distribution of Maxwell modes
yield processes to arise primarily by coupling to structuralwhose spectrum of relaxation times= exp(E/x) is given
rearrangements elsewhere in the system. In a mean-fieh the equilibrium distributionP.q(E) ~ exp(E/x)p(E).
spirit, all such interactions between regions are subsumeThe relaxation time spectrum thus exhibits power-law
into an effective “noise temperature” We first regard behavior for larger: P(7) ~ 7~*. This leads to power
Iy, x as arbitrary constants, but later discuss their meaningaws for G* in the low frequency range (Fig. 1):
and their possible dependences on other quantities.

Finally, the third term on the r.h.s. of (1) describes the
relaxation of regions to new local equilibrium positions
after yielding, which we treat as effectively instantaneous.
The first factor in this term is simply the total yielding Forx > 3 the system is Maxwell-like at low frequencies,
rate I'(r) = I'oexd —(E — klz)/x]>P The remaining whereas fo2 < x < 3 there is an anomalous power law
two factors incorporate further mean-field assumptions ag the elastic modulus. Most interesting is the regime
follows. First, the yield energye for distortions about x < 2, whereG' andG" have constant ratio; both vary as
any equilibrium configuration is uncorrelated with the »*~!. Behavior like this is observed in a number of soft
previous one for this region; it is drawn randomly from materials [4—7,10]. Moreover, the frequency exponent
the prior distribution (*density of states’p(E) which  approaches zero as— 1, resulting in essentially constant
we assume to be time independent. Second, immediatelyalues of G’ and G', as reported in dense emulsions,
after yielding, a region always finds itself in a completelyfoams, and onion phases [6—8]. Note, however, that the
unstressed state of local equilibrium with= 0 [hence ratioG’/G' ~ x — 1 becomes small as the glass transition
the Dirac delta functio@(/)]. This latter simplification is is approached. This increasing dominance of the elastic
not essential, as shown elsewhere [23]. responseG’ prefigures the onset of a yield stress for

In the absence of floWfy(r) = 0], the model (1)
describes actlvated hopping between “traps” of depth
E' =E — —k12 with densityp(E’). This corresponds to
Bouchaud’s model for glassy dynamics [12—-14], whose
predictions we briefly recall. For high (noise) tempera- _ 10
turesx the system evolves towards the Boltzmann distri-

G'~w for2<ux, ~ ol forl<x<2,

3)

G ~ w? for3 <ux, ~o* ! forl<x<3,

bution Peq(E’) ~ p(E')exp(E'/x). As x is lowered, this 10
distribution may cease to be normalizable, leading to a |
glass transition ak, ' = — limz_..(d/9E)In p(E). For 10

x < xg, no equilibrium state exists, and the system shows
“weak ergodicity breaking” and various aging phenom-

ena. A finite value ok, implies an exponential tail inthe 10— [ W R SRR ~O |
density of stategp ~ exp(—E/x,), which corresponds to 0 | \\ I \\
a Gaussian distribution of yield straifns = (2E/k)\/2. x=11 x=1.05

A major attraction of the model defined by (1) and (2) 16° L L
is that an exact constitutive equation, relating the stress 10* 10° 107 10" 10° 107 10° 107 107 10°
o (1) to the strain-rate historlyy(+' < )], can be obtained ® o

[23]. Since this is quite complicated, we restrict ourselvess|G. 1. Linear moduliG’ (solid line) andG” (dashed) vs
here to two standard rheological tests, for which the fullfrequencyw at various noise temperatures.
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x < 1 (discussed below) [24]. If a high energy cutoff We now speculate on the origin and magnitude of
Emax IS imposed onp(E) (giving an upper limit on local the attempt frequency’y and the noise temperatuxe
yield strains), the above results remain valid down toFirst note that the parametéi, is the only source of a
®min = eXp(—Emax/x). Well-defined equilibrium values characteristic time scale (chosen as the time unit above).
of the linear moduli then exist also for < 1; one still We have approximated it by a constant vallig(y) =
finds G ~ w* ™! for wmin < w < 1. Forx just below Tx(0). One possibility is that the intrinsic rate constant
xg = 1, alog-log plot ofG"(w) therefore exhibits a small I'y arises fromtrue thermal processes. If so, it can be
negativeslope (wherea&' is constant). This may again estimated ad’i,ckgTP.q(0)Q with I'i,c @ local diffusive
be compatible with recent experimental data [7—10]. attempt rate (forl xwm emulsions this might be 0.01 s);
We now turn to the case of steady shear flow=  kzTP.4(0) is the (small) fraction of regions in which
const, for which the steady-state distributiBg(/, E) can  true thermal activation can surmount the yield barrier.
be obtained analytically. After integrating ovér, one  The factorQ denotes the number of neighboring regions

finds P (1) ~ ©(1)g(z(1)) with perturbed as a result of one such thermal event. A more
1! detailed analysis (involving an extension to our model
() = — [ e/ dy, [23]) then shows thatzTP.q(0)Q must be large enough
Y Jo

(at least of order unity) to avoid depletion of the low
energy part(E = kgT) of the barrier distribution. This
mechanism may arise in systems (such as foams) in which
one local rearrangement can trigger a long sequence of
others [20,21]. If so, the resulting intrinsic rdfg ~ '
provides a plausible rheological time scale. @fis too

behavior, where we find three regimes: (i) Ror 2, the small, 'y will instead be of Orde!rloce_E/kf;T' which for
system is Newtoniang = 7. The viscosity is simply typical barrier energies = (E), is unfeasibly slow.)
the average relaxation time = (€Xp(E/x))eq = (T)eq We emphasize, however, t_hEg may be gtrongly sys-
taken over the equilibrium distribution of energies, tsi)rgc%elgt?\?geméﬁggh?a?gsssp(\jv%fﬁg]yt(\algg\rﬂigogc(t)ii/gtri(e)rr??allgs
aﬁi(ci)divgrgréi/;gcpiE; (i:;anOcrel Z N f);qgfg?%%’s torin Eq. (1) as the probability that a perturbative “kick” to
power-law fluid behavioo- ~ #*~1. (i) For x < 1, the ggiven mesoscopic_ region_(from_ events elsewhere) causes
system shows a yield stresgy — 0) = o, > 0. (This it to ylgld. We b'el!eve'thls activation factor should bg
has a linear onset near the glass transitgn— 1 — x.) primarily geometric |n.0r|g|n'and hence depend on th_e dis-
Beyond yield, the stress again increases as a power law §fder, but not on any intrinsic energy scale. Accordingly,
shear rateg — oy ~ ' (for 7 < 1). The behavior in our units)x values generically of order unity can be
of our model in regimes (ii) and (iii) therefore matches, &XPected. We argue next thavaluesclose tounity may
respectively, the power-law fluid [1—3] and Herschel-P& normal. _
Bulkeley [1,2] scenarios as used to fit the nonlinear CONSider firsta steady shear experiment. For soft me-
rheology of pastes, emulsions, slurries, etc. tastable materlqls, the rheological properties of a sample
freshly loaded into a rheometer are usually not repro-
ducible; they become so only after a period of shearing to
eliminate memory of the loading procedure. Inthe process
of loading one expects a large degree of disorder to be in-
troduced,; the initial dynamics under flow should therefore
involve a high noise temperature>> 1. As the sample
approaches the steady state, the flow will (in many cases)
tend to eliminate much of this macroscopic disorder [25] so
thatx will decrease. But as this occurs, the noise-activated
processes will slow down; as— 1, they become negli-
gible. Assuming that, in their absence, the disorder can-
not be reduced furtheg, is then “pinned” at a steady-state
value at or close to the glass transition. This scenario, al-
though extremely speculative, is strongly reminiscent of
the “marginal dynamics” seen in some mean-field spin
Y glass models [26].
FIG.2. Shear stressr vs shear ratey, for x — 025 There remain several ambiguities within this picture—
0.5,...,2.5 (top to bottom on left)x = 1,2 are shown in bold. for example, whether the steady-state valuex ghould

Inset: smally behavior, with yield stresses for < 1 shown depend ony; if it does so strongly, our results for steady
by arrows. flow curves will of course be changed. If a steady flow

g(2) =fp(E)eX[i—ze7E/x)dE.

In the largez limit, g(z) ~ z~*. Figure 2 shows that
for large shear rateg = 1, o increases very slowly for
all x [c ~ (xIn})"/2]. More interesting is the smaff

2022



VOLUME 78, NUMBER 10 PHYSICAL REVIEW LETTERS 10 MRcH 1997

is stopped and a linear viscoelastic spectrum measured,7] T.G. Mason, J. Bibette, and D. A. Weitz, Phys. Rev. Lett.
the behavior observed should presumably pertain tocthe 75, 2051 (1995).

characterizing the preceding steady flow (assumingithat [8] P. Panizzaet al., Langmuir12, 248 (1996).

reflects structure only). But unless the strain amplitude is[®] H. Hoffmann and A. Rauscher, Colloid Polym. Sair1,

extremely small the value obtained in steady state could 10 _3r9?5 (1'\;’93)' d D.A Weitz. Phvs. Rev. L. 2770
be affected by the oscillatory flow itself [27]. [10] (1'99'5) ason, and D.A. Weitz, Phys. Rev. Letb,

_ Also uncertain is to what extent a steady energy inpulflll] D.M.A. Buzza, C.Y.D. Lu, and M.E. Cates, J. Phys. II

is needed to sustain the nonlinear dyn_amlcs._ Althoug (France)5, 37 (1995).

not represented in the model, a smalll finite strain rate any12] ¢. Monthus and J.P. Bouchaud, J. Phys.28, 3847

plitude might be needed to balance the gradual dissipa- = (1996).

tion of energy in yield events. In its absence, one migh{13] J. P. Bouchaud and D.S. Dean, J. Phys. | (Frabc&65

expect the sample to show aging [i.€(/, E; ) nonsta- (1995).

tionary in time]. Within the model, aging in fact occurs [14] J.P. Bouchaud, J. Phys. | (Fran@)1705 (1992).

only for x < 1 [14] (the regime for which we predict a [15] V.M. Vinokur, M.C. Marchetti, and L.W. Chen, Phys.

yield stress). Conversely, we saw above that, even in  Rev. Lett.77, 1845 (1996). _

this regime, for finitey a well-defined steady-state dis- [16] P. LeDoussal and V.M. Vinokur, Physica (Amsterdam)

tribution is recoveredflow interrupts aging[13]. This 254, 63 (1995). Lo .

can be understood by considering the distribution of en[17] Soft systems may also be intrinsically metastable in a
more drastic sense (for example, with respect to coales-

ergies. Without flow, one obtains a Boltzmann distribu- cence in emulsions)—we ignore this here.

tion P(E) ~ p(E)et/x up to (forx < 1) a cutoff which 18] p. weaire and M. A. Fortes, Adv. Phy43, 685 (1994).
shifts to higher and higher energies as the system agesg] M.D. Lacasseet al., Phys. Rev. Lett76, 3448 (1996).
[12]. This cutoff, and hence the most long-lived traps[20] T. Okuzono and K. Kawasaki, Phys. Rev.®, 1246
visited (which have a lifetime comparable to the age of (1995).
the system), dominate the aging behavior [14]. The pres21] D.J. Durian, Phys. Rev. Let?5, 4780 (1995).
ence of flow leads to a steady-state value of this cutoff22] Note that precisely this motion is predicted, on a global
of E ~ x In(jflxl/z), while for higher energies one has rather than mesoscopic scale, for perfectly ordered foams.
Py (E) ~ p(E)E'/2. Hence flow prevents regions from 3 ﬁe(;, ﬁ:gH Ref. [glé'l].h g
getting stuck in progressively deeper traps and the agin ] P. Sollich (unpublished). , i

. ] 4] It does not mean, however, that’ for fixed (small)
process is truncated after a finite time.

. S . always decreases witty in fact, it firstincreasesstrongly
. We are_CU”_e”“Y Investigating more compllca}tgd non- as x is lowered and only starts decreasing very close to
linear strain histories [23]. In future work, explicit spa- the glass transition (when — 1 ~ |In |~") [23].
tial structure and interactions between regions must bgs] p. Weaire, F. Bolton, T. Herdtle, and H. Aref, Philos.
added so as to understand better the mutual dynamical Mag. Lett.66, 293 (1992).
evolution of the attempt rate, the effective noise temperaf26] After a quench fromT = « to any temperature0 <
ture, and the disorder. One issue concerns the relative 7Ty < T,, the spin glass is dynamically arrested in regions
importance of localized [19,28—33] versus avalanche-like ~ of phase space characteristic ® itself, rather than
[20,21] events in the relaxation of stress. the true temperaturé&,. See, e.g., L.F. Cugliandolo and
The authors are indebted to J.-P. Bouchaud for vari-__ J- Kurchan, Phys. Rev. Lefl1, 173 (1993).

ous seminal suggestions. They also thank him, M.oQl27] This might allow *flat” moduliG"(w) (x =~ 1) to be found

. . : . alongside a nonzero yield stress with power-law flow
Robbins, and D. Weaire for helpful discussions, and the exponent arounq‘ (x = 1) [7.35,36]
Newton Institute, Cambridge, for hospitality. P.S. is a S

) . 28] P. Hébraud, J.P. Munch, F. Lequeux, and D.J. Pine
Royal Society Dorothy Hodgkin Research Fellow. [28] (unpublished). a

[29] A.J. Liu et al., Phys. Rev. Lett76, 3017 (1996).
[30] S. Hutzler, D. Weaire, and F. Bolton, Philos. Mag.78,

*Electronic address: P.Sollich@ed.ac.uk 277 (1995). _
[1] S.D. Holdsworth, Trans. Inst. Chem. Erigfl, 139 (1993). [31] A.D. Gopal and D.J. Durian, Phys. Rev. Lef5, 2610
[2] E. Dickinson, An Introduction to Food Colloid§Oxford (1995).

University Press, Oxford, 1992). [32] D.J. Durian, D. A. Weitz, and D. J. Pine, Scier2%?, 686
[3] H.A. Barnes, J.F. Hutton, and K. Walter&n Introduc- (1991). .

tion to Rheology(Elsevier, Amsterdam, 1989). [33] J.C. Earnshaw and M. Wilson, J. Phys. Il (Fran6ey13
[4] M.R. Mackley, R.T.J. Marshall, J.B.A.F. Smeulders, (1996).

and F.D. Zhao, Chem. Eng. Sd9, 2551 (1994). [34] A.M. Kraynik, Annu. Rev. Fluid Mech20, 325 (1988).
[5] R.J. Ketz, R.K. Prudhomme, and W. W. Graessley, Rheol[35] T.G. Mason, J. Bibette, and D.A. Weitz, J. Colloid

Acta 27, 531 (1988). Interface Scil79, 439 (1996).
[6] S.A. Khan, C.A. Schnepper, and R.C. Armstrong, [36] H.M. Princen and A.D. Kiss, J. Colloid Interface Sci.

J. Rheol.32, 69 (1988). 128, 176 (1989).

2023



