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We attribute similarities in the rheology of many soft materials (foams, emulsions, slurries, etc.) to
the shared features of structural disorder and metastability. A generic model for the mesoscopic dynam-
ics of “soft glassy matter” is introduced, with interactions represented by a mean-field noise tempera-
turex. We find power-law fluid behavior either withsx , 1d or withouts1 , x , 2d a yield stress. For
1 , x , 2, both storage and loss modulus vary with frequency asvx21, becoming flat near a glass tran-
sition sx ­ 1d. Values ofx ø 1 may result from marginal dynamics as seen in some spin glass models.
[S0031-9007(97)02673-2]
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Many soft materials, such as foams, emulsions, pas
and slurries, have intriguing rheological properties. E
perimentally, there is a well-developed phenomenolo
for such systems: Their nonlinear flow behavior is o
ten fit to the forms ­ A 1 B Ùgn wheres is shear stress
and Ùg strain rate. This is the Herschel-Bulkeley equati
[1,2]; or (for A ­ 0) the “power-law fluid” [1–3]. For
the same materials, linear or quasilinear viscoelastic m
surements often reveal storage and loss moduliG0svd,
G00svd in nearly constant ratio (G00yG0 is usually about
0.1) with a frequency dependence that is either a w
power law (clay slurries, paints, microgels) or negligib
(tomato paste, dense emulsions, dense multilayer vesi
colloidal glasses) [4–10]. This behavior persists down
the lowest accessible frequencies (about1023 1 Hz de-
pending on the system), in apparent contradiction to lin
response theory [11], which requires thatG00svd should be
an odd function ofv.

That similar anomalous rheology should be seen in s
a wide range of soft materials suggests a common ca
Indeed, the frequency dependence indicated above p
strongly to the generic presence of slow “glassy” dyna
ics persisting to arbitrarily small frequencies. This fe
ture is found in several other contexts [12–14], such
elastic manifold dynamics in random media [15,16]. T
latter is suggestive of rheology: Charge density wav
vortices, contact lines, etc., can “flow” in response to
imposed “stress.” In this Letter we argue that glassy
namics is a natural consequence of two properties sh
by all the soft materials mentioned above:structural dis-
order and metastability. In such materials, thermal mo
tion alone is not enough to achieve complete structu
relaxation. The system has to cross energy barriers
example, those associated with rearrangement of drop
in an emulsion) that are very large compared to typi
thermal energies. Therefore the system adopts a di
dered, metastable configuration even when (as in a mo
disperse emulsion or foam) the state of least free ene
would be ordered [17]. While the importance of disord
has been noted before for specific systems [7,11,18–
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we feel that its unifying role in rheological modeling ha
not been appreciated.

To test these ideas, we construct a minimal “gene
model” for soft glassy matter. For simplicity, we ignor
tensorial aspects, restricting our analysis to simple sh
strains. Consider first the behavior of a foam or den
emulsion under shear. We focus on amesoscopicregion,
large enough for a local strain variablel to be defined, but
small enough for this to be approximately uniform with
the region, whose size we choose as the unit of leng
As the system is sheared, droplets in this region will fi
deform elastically from a local equilibrium configuration
giving rise to a stored elastic energy (due to surfa
tension, in this example [18]). This continues up
a yield point, characterized by a strainly, whereupon
the droplets rearrange to new positions in which th
are less deformed, thus relaxing stress. The mesosc
strain l measured from the nearest equilibrium positio
(i.e., the one which can be reached by purely elas
deformation) therefore executes a saw-tooth motion
the macroscopic straing is increased [22]. Neglecting
nonlinearities before yielding, the local shear stress
given by kl, with k an elastic constant; the yield poin
defines a maximal elastic energyE ­

1
2 kl2

y . A similar
description obviously extends to many others of the s
materials discussed above.

We now ascribe to each mesoscopic region not only
own strain variablel, but also its own maximal yield elas
tic energyE . 0. We model the effects of structural dis
order by assuming adistributionof such yield energiesE,
rather than a single value common to all regions. The s
of a macroscopic sample is then characterized by a pro
bility distributionPsl, E; td. We propose the following dy-
namics for the time evolution ofP:

≠

≠t
P ­ 2 Ùg

≠

≠l
P 2 G0e2sE2 1

2
kl2dyxP 1 GstdrsEddsld .

(1)

The first term on the right-hand side (r.h.s.) arises fro
the elastic deformation of the regions. This embod
© 1997 The American Physical Society
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a mean-field assumption that between successive l
yield events, changes in local strain follow those of t
macroscopic deformation:Ùl ­ Ùg. Note, however, that
due to stochastic yielding events the stresskl is spatially
inhomogeneous (as is the local strainl). The macroscopic
stress is defined as an average over regions

sstd ­ kkll ; k
Z

l Psl, E; td dl dE . (2)

The second term on the r.h.s. of (1) describes the yield
of our mesoscopic regions. We have written the yieldi
rate as the product of an “attempt frequency”G0, and
an exponential probability for activation over an ener
barrier E 2

1
2 kl2 (the excess of the yield energy ove

that stored elastically). However, the resemblance
thermal activation is formal: We expect these “activate
yield processes to arise primarily by coupling to structu
rearrangements elsewhere in the system. In a mean-
spirit, all such interactions between regions are subsum
into an effective “noise temperature”x. We first regard
G0, x as arbitrary constants, but later discuss their mean
and their possible dependences on other quantities.

Finally, the third term on the r.h.s. of (1) describes t
relaxation of regions to new local equilibrium position
after yielding, which we treat as effectively instantaneo
The first factor in this term is simply the total yieldin
rate Gstd ­ G0kexpf2sE 2

1
2 kl2dyxglP. The remaining

two factors incorporate further mean-field assumptions
follows. First, the yield energyE for distortions about
any equilibrium configuration is uncorrelated with th
previous one for this region; it is drawn randomly fro
the prior distribution (“density of states”)rsEd which
we assume to be time independent. Second, immedia
after yielding, a region always finds itself in a complete
unstressed state of local equilibrium withl ­ 0 [hence
the Dirac delta functiondsld]. This latter simplification is
not essential, as shown elsewhere [23].

In the absence of flowfgstd ­ 0g, the model (1)
describes activated hopping between “traps” of de
E0 ­ E 2

1
2 kl2 with densityrsE0d. This corresponds to

Bouchaud’s model for glassy dynamics [12–14], who
predictions we briefly recall. For high (noise) temper
turesx the system evolves towards the Boltzmann dis
bution PeqsE0d , rsE0d expsE0yxd. As x is lowered, this
distribution may cease to be normalizable, leading to
glass transition atx21

g ­ 2 limE!`s≠y≠Ed ln rsEd. For
x , xg, no equilibrium state exists, and the system sho
“weak ergodicity breaking” and various aging phenom
ena. A finite value ofxg implies an exponential tail in the
density of states,r , exps2Eyxgd, which corresponds to
a Gaussian distribution of yield strainsly ­ s2Eykd1y2.

A major attraction of the model defined by (1) and (
is that an exact constitutive equation, relating the str
sstd to the strain-rate historyf Ùgst0 , tdg, can be obtained
[23]. Since this is quite complicated, we restrict ourselv
here to two standard rheological tests, for which the f
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form is not required. We use nondimensional units
time and energy by settingG0 ­ xg ­ 1; we also rescale
our strain variablessl, gd so thatk ­ 1. In these units,
rsEd ­ exph2Ef1 1 fsEdgj with fsEd ! 0 for E ! `.
Up to sub-power-law factors such as logarithms, all pow
laws reported below are valid for anyfsEd; numerical
examples usef ; 0. Analytical and numerical suppor
for our results will be detailed elsewhere [23].

Consider first the complex dynamic shear modu
Gpsvd ­ G0 1 iG00, which describes the stress respon
to small shear strain perturbations around the equilibri
state. As such, it is well defined (i.e., time independe
only above the glass transitionx . 1. Expanding (1)
to first order in the amplitudeg of an oscillatory strain
gstd ­ g cosvt, we find Gpsvd ­ kivtysivt 1 1dleq.
This corresponds to a distribution of Maxwell mode
whose spectrum of relaxation timest ­ expsEyxd is given
by the equilibrium distributionPeqsEd , expsEyxdrsEd.
The relaxation time spectrum thus exhibits power-la
behavior for larget: Pstd , t2x . This leads to power
laws forGp in the low frequency range (Fig. 1):

G00 , v for 2 , x, , vx21 for 1 , x , 2 ,

G0 , v2 for 3 , x, , vx21 for 1 , x , 3 ,
(3)

For x . 3 the system is Maxwell-like at low frequencie
whereas for2 , x , 3 there is an anomalous power la
in the elastic modulus. Most interesting is the regime1 ,

x , 2, whereG0 andG00 have constant ratio; both vary a
vx21. Behavior like this is observed in a number of so
materials [4–7,10]. Moreover, the frequency expone
approaches zero asx ! 1, resulting in essentially constan
values of G00 and G0, as reported in dense emulsion
foams, and onion phases [6–8]. Note, however, that
ratioG00yG0 , x 2 1 becomes small as the glass transiti
is approached. This increasing dominance of the ela
responseG0 prefigures the onset of a yield stress f

FIG. 1. Linear moduliG0 (solid line) and G00 (dashed) vs
frequencyv at various noise temperatures.
2021
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x , 1 (discussed below) [24]. If a high energy cuto
Emax is imposed onrsEd (giving an upper limit on local
yield strains), the above results remain valid down
vmin ­ exps2Emaxyxd. Well-defined equilibrium values
of the linear moduli then exist also forx , 1; one still
finds G00 , vx21 for vmin ø v ø 1. For x just below
xg ­ 1, a log-log plot ofG00svd therefore exhibits a smal
negativeslope (whereasG0 is constant). This may agai
be compatible with recent experimental data [7–10].

We now turn to the case of steady shear flow,Ùg ­
const, for which the steady-state distributionPsssl, Ed can
be obtained analytically. After integrating overE, one
findsPsssld , Qsldgssszsldddd with

zsld ­
1
Ùg

Z l

0
eg2y2x dg,

gszd ­
Z

rsEd exps2ze2Eyxd dE .

In the largez limit, gszd , z2x . Figure 2 shows tha
for large shear ratesÙg $ 1, s increases very slowly for
all x fs , sx ln Ùgd1y2g. More interesting is the smallÙg
behavior, where we find three regimes: (i) Forx . 2, the
system is Newtonian,s ­ h Ùg. The viscosity is simply
the average relaxation timeh ­ kexpsEyxdleq ­ ktleq
taken over the equilibrium distribution of energie
PeqsEd , expsEyxdrsEd. Hence h , kexps2Eyxdlr ,
which diverges atx ­ 2. (ii) For 1 , x , 2 one finds
power-law fluid behaviors , Ùgx21. (iii) For x , 1, the
system shows a yield stressss Ùg ! 0d ­ sy . 0. (This
has a linear onset near the glass transitionsy , 1 2 x.)
Beyond yield, the stress again increases as a power la
shear rate,s 2 sy , Ùg12x (for Ùg ø 1). The behavior
of our model in regimes (ii) and (iii) therefore matche
respectively, the power-law fluid [1–3] and Hersch
Bulkeley [1,2] scenarios as used to fit the nonline
rheology of pastes, emulsions, slurries, etc.

FIG. 2. Shear stresss vs shear rate Ùg, for x ­ 0.25,
0.5, . . . , 2.5 (top to bottom on left);x ­ 1, 2 are shown in bold.
Inset: small Ùg behavior, with yield stresses forx , 1 shown
by arrows.
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We now speculate on the origin and magnitude o
the attempt frequencyG0 and the noise temperaturex.
First note that the parameterG0 is the only source of a
characteristic time scale (chosen as the time unit abov
We have approximated it by a constant value:G0s Ùgd ­
G0s0d. One possibility is that the intrinsic rate constan
G0 arises fromtrue thermal processes. If so, it can be
estimated asGlockBTPeqs0dQ with Gloc a local diffusive
attempt rate (for1 mm emulsions this might be 0.01 s);
kBTPeqs0d is the (small) fraction of regions in which
true thermal activation can surmount the yield barrie
The factorQ denotes the number of neighboring region
perturbed as a result of one such thermal event. A mo
detailed analysis (involving an extension to our mode
[23]) then shows thatkBTPeqs0dQ must be large enough
(at least of order unity) to avoid depletion of the low
energy partsE # kBT d of the barrier distribution. This
mechanism may arise in systems (such as foams) in wh
one local rearrangement can trigger a long sequence
others [20,21]. If so, the resulting intrinsic rateG0 , Gloc
provides a plausible rheological time scale. (IfQ is too
small,G0 will instead be of orderGloce2EykBT , which for
typical barrier energiesE ­ kElr is unfeasibly slow.)

We emphasize, however, thatG0 may be strongly sys-
tem dependent, and any specific interpretation of it remai
speculative. Nonetheless, we may view the activation fa
tor in Eq. (1) as the probability that a perturbative “kick” to
a given mesoscopic region (from events elsewhere) cau
it to yield. We believe this activation factor should be
primarily geometric in origin and hence depend on the di
order, but not on any intrinsic energy scale. Accordingly
(in our units)x values generically of order unity can be
expected. We argue next thatx valuesclose tounity may
be normal.

Consider first a steady shear experiment. For soft m
tastable materials, the rheological properties of a samp
freshly loaded into a rheometer are usually not repr
ducible; they become so only after a period of shearing
eliminate memory of the loading procedure. In the proce
of loading one expects a large degree of disorder to be
troduced; the initial dynamics under flow should therefor
involve a high noise temperaturex ¿ 1. As the sample
approaches the steady state, the flow will (in many case
tend to eliminate much of this macroscopic disorder [25] s
thatx will decrease. But as this occurs, the noise-activate
processes will slow down; asx ! 1, they become negli-
gible. Assuming that, in their absence, the disorder ca
not be reduced further,x is then “pinned” at a steady-state
value at or close to the glass transition. This scenario,
though extremely speculative, is strongly reminiscent o
the “marginal dynamics” seen in some mean-field sp
glass models [26].

There remain several ambiguities within this picture—
for example, whether the steady-state value ofx should
depend onÙg; if it does so strongly, our results for steady
flow curves will of course be changed. If a steady flow
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is stopped and a linear viscoelastic spectrum measu
the behavior observed should presumably pertain to thx
characterizing the preceding steady flow (assuming thax
reflects structure only). But unless the strain amplitude
extremely small thex value obtained in steady state coul
be affected by the oscillatory flow itself [27].

Also uncertain is to what extent a steady energy inp
is needed to sustain the nonlinear dynamics. Althou
not represented in the model, a small finite strain rate a
plitude might be needed to balance the gradual dissi
tion of energy in yield events. In its absence, one mig
expect the sample to show aging [i.e.,Psl, E; td nonsta-
tionary in time]. Within the model, aging in fact occur
only for x , 1 [14] (the regime for which we predict a
yield stress). Conversely, we saw above that, even
this regime, for finite Ùg a well-defined steady-state dis
tribution is recovered:flow interrupts aging[13]. This
can be understood by considering the distribution of e
ergies. Without flow, one obtains a Boltzmann distrib
tion PsEd , rsEdeEyx up to (for x , 1) a cutoff which
shifts to higher and higher energies as the system a
[12]. This cutoff, and hence the most long-lived trap
visited (which have a lifetime comparable to the age
the system), dominate the aging behavior [14]. The pr
ence of flow leads to a steady-state value of this cut
of E , x lns Ùg21x1y2d, while for higher energies one ha
PsssEd , rsEdE1y2. Hence flow prevents regions from
getting stuck in progressively deeper traps and the ag
process is truncated after a finite time.

We are currently investigating more complicated no
linear strain histories [23]. In future work, explicit spa
tial structure and interactions between regions must
added so as to understand better the mutual dynam
evolution of the attempt rate, the effective noise tempe
ture, and the disorder. One issue concerns the rela
importance of localized [19,28–33] versus avalanche-li
[20,21] events in the relaxation of stress.
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Newton Institute, Cambridge, for hospitality. P. S. is
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