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Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins
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We discuss zero-temperature quantum spin chains in a uniform magnetic field, with axial symmetry.
For integer or half-integer spirfy, the magnetization curve can have plateaus and we argue that the
magnetization per site: is topologically quantized as(S — m) = integer at the plateaus, where
is the period of the ground state. We also discuss conditions for the presence of the plateau at those
quantized values. Faof = 3/2 andm = 1/2, we study several models and find two distinct types of
massive phases at the plateau. One of them is argued to be a “Haldane gap phase” for half-integer
[S0031-9007(97)02624-0]

PACS numbers: 75.10.Jm

One-dimensional antiferromagnets are expected nanent with the generalized LSM theorem, and also gives a
to have long-range magnetic order in general. It wasondition for the presence of the plateau. As simplest ex-
argued by Haldane [1], in 1983, that for integer, butamples, we study translationally invaright= 3/2 chains
not half-integer spin,S, there is a gap to the excited atm = 1/2. We present numerical diagonalization and
states. In the presence of a magnetic field,§he 1/2  density matrix renormalization group (DMRG) [13] calcu-
Heisenberg antiferromagnetic (AF) chain remains gaplesktions, which demonstrate the existence of the two distinct
from zero field up to the saturation field, where thetypes of gapped phases for generalized models. They are
ground state is fully polarized [2]. For integéy, the related to theS = 1 large-D phase and th& = 1 Haldane
gap persists up to a critical field, equal to the gap, wherphase, respectively. On the other hand, our study shows
Bose condensation of magnons occurs [3]. The= 1  that the standard = 3/2 Heisenberg model is gapless
Heisenberg AF chain is known to be gapless from thewith no plateau ain = 1/2. Details and further results,
critical field up to the saturation field [4]. Recently including the effect of the axial symmetry breaking, will
Hida observed that a8 = 1/2 antiferromagnetic chain be presented in a longer paper [14].
with period 3 exchange coupling shows a plateau in the The LSM theorem [12] proves the existence of at least
magnetization curve at magnetization per site= 1/6  one low-energyO(1/L) excited state for even length
(1/3 of the full magnetization) [5]. Related works on half-integerS AF chains with periodic boundary condi-
bond-alternating chains have also been reported [6—3]Jons and general, translationally invariant Hamiltonians.
including experimental observation [10]. It is expected that this implies either gapless excitations

In this Letter, we consider the zero-temperature behaver spontaneously broken translational symmetry in the
ior of general quantum spin chains, including chains withL. — oo limit. The failure of this proof for the integer-
periodic structures, in a uniform magnetic field pointing S case is necessary for the existence of the Haldane phase
along the direction of the axial symmetry éxis) (i.e., with no broken translational symmetry and a gap. We ob-
the total S* is conserved). We argue that, in quantumserve that the original version of this proof also works in
spin chains, there is a phenomenon which is strikinglya magnetic fieldexcept for integerS — m. Thus only
analogous to the quantum Hall effect—topological quanin this case is a massive phase without spontaneously
tization of a physical quantity under a changing mag-broken translational symmetry possible. The proof con-
netic field [11]. We first consider an extension of thesists of making a slow rotation on the ground stae),
Lieb-Schultz-Mattis (LSM) theorem [12] to the case with assumed to be unique, and observing that the resulting
an applied field. This indicates that translationally in-low-energy state is orthogonal to the ground state. The
variant spin chains in an applied field can be gapfulrotation operator i/ = ex;{—iZ,L-zl(zwj/L)Sj]. For
without breaking translation symmetrgnly whenthe  any HamiltonianH, including a magnetic field term, with
magnetization per sping, obeysS — m = integer. We short-range interactions which is invariant under rotation
expect such gapped phases to correspond to plateausadtoutz axis and either reflection about a link or time re-
these quantized valuesaf “Fractional quantization” can versal(S*, S?, §?) — (§*, —§”, %),
also occur, if accompanied by (explicit or spontaneous)
breaking of the translational symmetry. The generalized (wlUtHU — H|y) = 0(1/L). @

LSM theorem does not prove the presence of the plateau,
however. Thus we construct a corresponding argumernthis implies the existence of an excited state with
using Abelian bosonization, which is in complete agree-excitation energy oD (1/L), if we can show that/|¢) is
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orthogonal to|). To this end, we use the invariance of that his result can be understood more simply as a

H under translation by one sit&, This operation maps consequence of symmetries. At the same time, we

U into generalize the discussion to the case with a nonvanishing
U— TUT-) = UeiZWSffi(Zw/L)Z/L:lS;. ) mag.netization.. Fpllowing Schulz [17], we start from

Abelian bosonization of2S spin-1/2 chains and then

Namely, the operation o changes the eigenvalue of couple them to form a spif-chain. First, each spih/2

T by a factore2”=m  wherem = f=1S§/L. Thus chain is fermionized by Jordan-Wigner transformation.

Uly) must be orthogonal tdys) except when(S — m)  The z component of each spih/2 is related to the

is an integer. We note that this is consistent withfermion number ass? =1 — 2¢!¢,. Then the low-

previous results for translationally invariart = 1/2  energy excitations are treated by continuous fermion

and 1 AF chains, where no gap is found at partial fields. Let us denote the lattice spacing @asand the

magnetization. However, for higher spin, gapped phasespatial locationx = na. The continuous fermion fields

at partial magnetization are possible without breaking the/r andy;, are defined by

translational symmetry, whefi — m is an integer.

When S — m is not an integer, there is a low-lying Wi~ ek rxyd (x) + e Ryl (x), (3)
state with energy ofO(1/L). This means either a
massless phase with a continuum of low-energy stateghere;j = 1,...,2S is the “flavor” index to distinguish

or spontaneous symmetry breaking in the thermodynami2$S spin-1/2’s. They are bosonized in a standard way:
limit. Following the above proof, wheS — m = p/q  y# = ¢/¢*/R and ] = e ¢1/R where ¢} and ¢} are
wherep andg are coprimesy/*|) for k = 0,1,...,¢4 —  chiral bosons andR is the compactification radius of
1 have different eigenvalues df. Thus these; states the boson. R will be renormalized by interactions [18],
have low energy ofO(1/L). If these are related to a and will eventually depend on the model and on the
spontaneous breaking of the symmetry, the ground stategsagnetization. (For an isotropic modelR is fixed by

in the thermodynamic limit should be-fold degenerate. the symmetry ain = 0, but the magnetic field breaks the
Since they havey different eigenvalues of’, they can symmetry and thust will depend onm.) We define

be related to a spontaneous breaking of the translatiofjhe nonchiral bosonic field/ = ¢; + ¢ and its dual
symmetry to period ofg sites in the thermodynamic .; _ go{ _ @{e

limit. I"[A\ls_na;]ural to e>;pect a gapl)_l a|r|1dﬁplateicu n th'sl Interactions among bosonic fields are also generated
case. As In the case of quantum Hall effect, “fractionaly,,ing the mapping from the original spin problem. In

quantization” is therefore possible, accompanying theenera| e expect any interaction would be generated if

spontaneous breaking of the trans_latlon symmetry in th& ot forbidden by a symmetry. Thus we analyze symme-

present case. We may compare this to a hidden symmetgyag of the system, following the treatment of spif2

breaking in fraptlo_nal quantum Hall effept [15].' chains in Ref. [18]. The original problem has a U(1)
Our generalization of LSM theorem is easily extendedyy o, metry: rotational invariance about theaxis. Rota-

to Hamiltonian with spatial structures: bond-alternating;;, of each spink/2 is given by the phase transforma-

chains [5,8], spin-alternating chains [16], spin Iadders,tion %’R _ e”’d/LfR of the corresponding fermion. In

etc. For example, Hida’s model [5] is only invariant bosonic language, this corresponds to a shift of the dual
under a three-site translatidi¥; a massive phase without . - 9 9¢, : P )
field @/ — @’/ + const. Since we have coupléd spin-

spontaneous symmetry breaking is possible 36§ — /2 chains into a spir& chain, only the simultaneous ro-

m) = integer. Thus a quantized plateau is possible af’’. . L
m)= 1/6 gs he observe?d In genperal the qzantizatio ation of 2§ spin1/2's is a symmetry of the system. If
' ' we define a new bosonic field = Z]- ¢’ (and similarly

condition is given bys, — m, = integer, whereS, and iy ) i ~ ~
m, are, respectively, the sum of and m over all sites [Of #’), the U(1) symmetry is written ag — ¢ + const.

in the unit period of the ground state. The period of theThus all the interactions of the form*>'™'*¢ are pro-
ground state is determined by the explicit spatial structur&ibited by the symmetry. The remainirty — 1 fields,

of the Hamiltonian, and also by spontaneous symmetry/hich are defined by linear combinations of origirgal
breakings. ields, are not protected by the symmetry. Thus all fields

The low-energy statel/|¢) appearing in the LSM except¢ are expected to become massive by interactions,
theorem has the same total magnetization as in the grour®$ Schulz observed by an explicit calculation. The re-

+

state. It does not directly contradict the existence off@ining ¢ field is also subject te*"*/% type interac-

a plateau, which is determined by the gap to state§ONS. Let us consider another symmetry of the system:
with other total magnetizations. However, we expectone-site translation. By definition (3), it actually corre-
that, in general, a gapless phase has low-energy statégonds to a transformation of the continuum figifl —

in both fixed and different magnetization sector, as car’*“y% and ¢ — ¢ !y . Again, only the simulta-
be seen in the following Abelian bosonization approachneous translation of all flavors is a symmetry of the
Schulz [17] explained the difference between integer andystem. Thus the one-site translati@his written as
half-integer spin by Abelian bosonization. We show¢ — ¢ + 4S(kra)R, in the bosonic language.
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Since all of the2S flavors are equivalent, the magne-
tization should be equally distributed among them. Thus t Vo t Vo t Vo t \
the Fermi momentunky is determined agra = (S — T T T
m)r/2S. As a consequence, the one-site translafias
given by FIG. 1. The partially magnetized VBS state for= 3/2. A
b — ¢ + 25 — m)mR. (4) solid line denotes a valence bond (singlet formed from two

spin-1/2's). An up arrow denotes a spiry2 with S* = 1/2.
Thus the leading operator d@s/R) is permitted only A dashed circle represents the symmetrization of spin-
if S — m is an integer. Fomn satisfying the quantiza- Varables at each site.
tion condition, the leading operator ¢gs/R) should be
relevant in order to produce a gap. ThRsmust be
larger thanR. = 1/+/8 for the presence of the plateau.
If §$ —m = p/q wherep and g are coprimes, the op-

solid (VBS) ground state as occurs for &= 1 chain in

zero field. In Ref. [22], this partially magnetized VBS

X ¢ "~ state was proposed and the relevance to the magnetization
erator co&j¢/R) is permitted. It can be relevant if ocess was suggested. A generalization of this kind of
R = q/\/8w (this is a severe condition for a largs); VBS-type state and further analysis were later done in
if it is, @ ground state in the thermodynamic limit corre- po¢ [23]. (See also [16].) Clearly this sort of VBS-type
sponds to a potential minimum of dgg/R). There are  gq0 exists for als andm such thatS — m is an integer.

q such ground states, and they are mapped to each othenye can construct a model to realize the= 3/2 VBS-

by applying the translation operat@®* (k < ¢). Thus type state in Fig. 1 as a ground state,
the ground states have spontaneouysfpld broken trans-

lation symmetry. These results are in agreement with the _ (j.j+1) r I z
d . _. H = P + aS; - S+ — hS%, 6
generalized LSM theorem, and also give conditions for a Z 3 RS ] ()
finite plateau at the quantized values. N
Our bosonization argument is also readily generalizegyhere P’/ is the projection operator onto the space
to models with spatial structures. Our picture is consistenjyith total spin 3 for sites j and j + 1. At a =0,
with Okamoto’s analysis [6] of Hida's plateau [5]. For any state constructed with one valence bond between
§ = 1 AF chains, Tonegawat al. 8] obtained ann = neighboring sites is a ground state. The ground state is
1/2 plateau as soon as they introduced a small bonghys infinitely degenerate due to the “free” spif2 at
alternation. In our approach, the leading operator isach site. Applying an infinitesimal magnetic field, the
expected to appear as soon as the translational symmeigégeneracy is lifted and the ground state is the above-
is broken. Thus we expect a plateau for any finite amoungentioned VBS-type state (Fig. 1). Thus the model
of bond alternation, if the radius exceeds the critical valueyith o = 0 has anm = 1/2 plateau starting from zero
in agreement with Ref. [8]. This is also in agreementmagnetic field. Turning on the Heisenberg term), the
with an explicit bosonization calculation by Totsuka [9] degeneracy ak = 0 is lifted and a finite magnetic field
for § = 1 bond-alternating chains. _ is required to reachn = 1/2. For small value ofe,
Now let us discuss some examples of translationally,owever, we might still expect a finite = 1/2 plateau.
invariantS = 3/2 chains. It is interesting both from an e studied this model with periodic boundary conditions
experimental and conceptual point of view to add an easyyy numerical diagonalization for up t® sites and found

J

plane crystal field term, the m = 1/2 plateau exists at least fax = 0.06. In
IR 2 . contrast to the plateau at large positbewhich is related
H = ZS./' *Sj+1 + D(SF)” — hSj. (5)  tothe largep phase ins = 1 chains, it is natural to relate
/ this state to theS = 1 Haldane phase.
Clearly, if D > 1, all the spins are first fixed t§¢ = 1/2 For S = 1, the Haldane phase is known to be distinct

with increasing field before any of the spins go intofrom the largeP phase; these two massive phases are
the §* = 3/2 state, corresponding to a gapped= 1/2  separated by a critical poird., where the gap vanishes
plateau. The presence of finite gap and plateau is provdd7,24]. The Haldane phase is characterized by the
rigorously for a sufficiently large but finitédd [19], by  existence of a topological long-range order [25], and
applying the general theorem in Ref. [20]. This situationgapless edge excitations in the open boundary conditions
is reminiscent of that which occurs in the larfephase in  [26]. These are understood as consequences of a hidden
a zero fieldS = 1 chain. Numerically, we found a finite symmetry breaking [20]. One might suspect that the two

m = 1/2 plateau at least fob = 2. types ofS = 3/2 massive phases at the = 1/2 plateaus
Another kind of trial ground state for a8 = 3/2  discussed above, correspond to distinct phases.
chain, corresponding to am = 1/2 plateau is shown If they are distinct, there should be a phase transition

in Fig. 1 in the valence bond notation [21]. Regardingbetween them. In terms of Abelian bosonization, this
eachS = 3/2 operator as being a symmetrized product ofphase transition may be understood as the vanishing of the
threeS = 1/2's, oneS = 1/2 is polarized by the applied coefficient of the allowed relevant operator GHgR), as

field at each site while the other two form a valence-bondin the case of = 1 [17]. We numerically measured the
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gap (width of the plateau) for the model a substantial enhancement of his presentation [9] at
Japanese Physical Society meeting Fall 1996, and contains
H = Zagj . §j+1 + D(S})z n ng,j+1) — 1S3, (7) some of our general arguments using bosonization.
J
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