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Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins
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We discuss zero-temperature quantum spin chains in a uniform magnetic field, with axial symmetry.
For integer or half-integer spin,S, the magnetization curve can have plateaus and we argue that the
magnetization per sitem is topologically quantized asnsS 2 md ­ integer at the plateaus, wheren
is the period of the ground state. We also discuss conditions for the presence of the plateau at those
quantized values. ForS ­ 3y2 and m ­ 1y2, we study several models and find two distinct types of
massive phases at the plateau. One of them is argued to be a “Haldane gap phase” for half-integerS.
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One-dimensional antiferromagnets are expected
to have long-range magnetic order in general. It w
argued by Haldane [1], in 1983, that for integer, b
not half-integer spin,S, there is a gap to the excite
states. In the presence of a magnetic field, theS ­ 1y2
Heisenberg antiferromagnetic (AF) chain remains gap
from zero field up to the saturation field, where t
ground state is fully polarized [2]. For integerS, the
gap persists up to a critical field, equal to the gap, wh
Bose condensation of magnons occurs [3]. TheS ­ 1
Heisenberg AF chain is known to be gapless from
critical field up to the saturation field [4]. Recent
Hida observed that anS ­ 1y2 antiferromagnetic chain
with period 3 exchange coupling shows a plateau in
magnetization curve at magnetization per sitem ­ 1y6
(1y3 of the full magnetization) [5]. Related works o
bond-alternating chains have also been reported [6
including experimental observation [10].

In this Letter, we consider the zero-temperature beh
ior of general quantum spin chains, including chains w
periodic structures, in a uniform magnetic field pointi
along the direction of the axial symmetry (z axis) (i.e.,
the total Sz is conserved). We argue that, in quantu
spin chains, there is a phenomenon which is strikin
analogous to the quantum Hall effect—topological qu
tization of a physical quantity under a changing m
netic field [11]. We first consider an extension of t
Lieb-Schultz-Mattis (LSM) theorem [12] to the case w
an applied field. This indicates that translationally
variant spin chains in an applied field can be gap
without breaking translation symmetry,only when the
magnetization per spin,m, obeysS 2 m ­ integer. We
expect such gapped phases to correspond to platea
these quantized values ofm. “Fractional quantization” can
also occur, if accompanied by (explicit or spontaneo
breaking of the translational symmetry. The generali
LSM theorem does not prove the presence of the plat
however. Thus we construct a corresponding argum
using Abelian bosonization, which is in complete agr
984 0031-9007y97y78(10)y1984(4)$10.00
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ment with the generalized LSM theorem, and also give
condition for the presence of the plateau. As simplest
amples, we study translationally invariantS ­ 3y2 chains
at m ­ 1y2. We present numerical diagonalization an
density matrix renormalization group (DMRG) [13] calcu
lations, which demonstrate the existence of the two disti
types of gapped phases for generalized models. They
related to theS ­ 1 large-D phase and theS ­ 1 Haldane
phase, respectively. On the other hand, our study sho
that the standardS ­ 3y2 Heisenberg model is gaples
with no plateau atm ­ 1y2. Details and further results
including the effect of the axial symmetry breaking, wi
be presented in a longer paper [14].

The LSM theorem [12] proves the existence of at lea
one low-energy,Os1yLd excited state for even lengthL
half-integerS AF chains with periodic boundary condi
tions and general, translationally invariant Hamiltonian
It is expected that this implies either gapless excitatio
or spontaneously broken translational symmetry in t
L ! ` limit. The failure of this proof for the integer-
S case is necessary for the existence of the Haldane ph
with no broken translational symmetry and a gap. We o
serve that the original version of this proof also works
a magnetic fieldexcept for integerS 2 m. Thus only
in this case is a massive phase without spontaneou
broken translational symmetry possible. The proof co
sists of making a slow rotation on the ground state,jcl,
assumed to be unique, and observing that the resul
low-energy state is orthogonal to the ground state. T
rotation operator isU ; expf2i

PL
j­1s2pjyLdSz

j g. For
any HamiltonianH, including a magnetic field term, with
short-range interactions which is invariant under rotati
aboutz axis and either reflection about a link or time re
versalsSx , Sy , Szd ! sSx , 2Sy, Szd,

kcjUyHU 2 Hjcl ­ Os1yLd . (1)

This implies the existence of an excited state w
excitation energy ofOs1yLd, if we can show thatUjcl is
© 1997 The American Physical Society
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orthogonal tojcl. To this end, we use the invariance
H under translation by one site,T . This operation maps
U into

U ! TUT21 ­ Ue
i2pSz

1 2is2pyLd
PL

j­1
Sz

j . (2)

Namely, the operation ofU changes the eigenvalue o
T by a factorei2psS2md, wherem ­

PL
j­1 Sz

j yL. Thus
Ujcl must be orthogonal tojcl except whensS 2 md
is an integer. We note that this is consistent w
previous results for translationally invariantS ­ 1y2
and 1 AF chains, where no gap is found at parti
magnetization. However, for higher spin, gapped pha
at partial magnetization are possible without breaking
translational symmetry, whenS 2 m is an integer.

When S 2 m is not an integer, there is a low-lyin
state with energy ofOs1yLd. This means either a
massless phase with a continuum of low-energy sta
or spontaneous symmetry breaking in the thermodyna
limit. Following the above proof, whenS 2 m ­ pyq
wherep andq are coprimes,Ukjcl for k ­ 0, 1, . . . , q 2

1 have different eigenvalues ofT . Thus theseq states
have low energy ofOs1yLd. If these are related to a
spontaneous breaking of the symmetry, the ground st
in the thermodynamic limit should beq-fold degenerate.
Since they haveq different eigenvalues ofT , they can
be related to a spontaneous breaking of the transla
symmetry to period ofq sites in the thermodynami
limit. It is natural to expect a gap and plateau in th
case. As in the case of quantum Hall effect, “fraction
quantization” is therefore possible, accompanying
spontaneous breaking of the translation symmetry in
present case. We may compare this to a hidden symm
breaking in fractional quantum Hall effect [15].

Our generalization of LSM theorem is easily extend
to Hamiltonian with spatial structures: bond-alternati
chains [5,8], spin-alternating chains [16], spin ladde
etc. For example, Hida’s model [5] is only invaria
under a three-site translationT3; a massive phase withou
spontaneous symmetry breaking is possible for3sS 2

md ­ integer. Thus a quantized plateau is possible
m ­ 1y6 as he observed. In general, the quantizat
condition is given bySu 2 mu ­ integer, whereSu and
mu are, respectively, the sum ofS and m over all sites
in the unit period of the ground state. The period of t
ground state is determined by the explicit spatial struct
of the Hamiltonian, and also by spontaneous symme
breakings.

The low-energy stateUjcl appearing in the LSM
theorem has the same total magnetization as in the gro
state. It does not directly contradict the existence
a plateau, which is determined by the gap to sta
with other total magnetizations. However, we expe
that, in general, a gapless phase has low-energy s
in both fixed and different magnetization sector, as c
be seen in the following Abelian bosonization approa
Schulz [17] explained the difference between integer a
half-integer spin by Abelian bosonization. We sho
f
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that his result can be understood more simply as
consequence of symmetries. At the same time, w
generalize the discussion to the case with a nonvanish
magnetization. Following Schulz [17], we start from
Abelian bosonization of2S spin-1y2 chains and then
couple them to form a spin-S chain. First, each spin-1y2
chain is fermionized by Jordan-Wigner transformation
The z component of each spin-1y2 is related to the
fermion number assz

n ­ 1 2 2cy
n cn. Then the low-

energy excitations are treated by continuous fermio
fields. Let us denote the lattice spacing asa and the
spatial locationx ­ na. The continuous fermion fields
cR andcL are defined by

cj
n , eikF xc

j
Rsxd 1 e2ikFxc

j
Lsxd , (3)

wherej ­ 1, . . . , 2S is the “flavor” index to distinguish
2S spin-1y2’s. They are bosonized in a standard way
c

j
R ­ eiw

j
R yR and c

j
L ­ e2iw

j
LyR , wherew

j
R and w

j
L are

chiral bosons andR is the compactification radius of
the boson. R will be renormalized by interactions [18],
and will eventually depend on the model and on th
magnetizationm. (For an isotropic model,R is fixed by
the symmetry atm ­ 0, but the magnetic field breaks the
symmetry and thusR will depend onm.) We define
the nonchiral bosonic fieldwj ­ w

j
L 1 w

j
R and its dual

w̃j ­ w
j
L 2 w

j
R.

Interactions among bosonic fields are also generat
during the mapping from the original spin problem. In
general, we expect any interaction would be generated
not forbidden by a symmetry. Thus we analyze symm
tries of the system, following the treatment of spin-1y2
chains in Ref. [18]. The original problem has a U(1
symmetry: rotational invariance about thez axis. Rota-
tion of each spin-1y2 is given by the phase transforma-
tion c

j
L,R ! eiuc

j
L,R of the corresponding fermion. In

bosonic language, this corresponds to a shift of the du
field w̃j ! w̃j 1 const. Since we have coupled2S spin-
1y2 chains into a spin-S chain, only the simultaneous ro-
tation of 2S spin-1y2’s is a symmetry of the system. If
we define a new bosonic fieldf ­

P
j wj (and similarly

for w̃j), the U(1) symmetry is written as̃f ! f̃ 1 const.
Thus all the interactions of the forme62npiRf̃ are pro-
hibited by the symmetry. The remaining2S 2 1 fields,
which are defined by linear combinations of originalw̃j

fields, are not protected by the symmetry. Thus all field
exceptf are expected to become massive by interaction
as Schulz observed by an explicit calculation. The re
maining f field is also subject toe6infyR type interac-
tions. Let us consider another symmetry of the system
one-site translation. By definition (3), it actually corre
sponds to a transformation of the continuum fieldc

j
R !

eikF ac
j
R and c

j
L ! e2ikFac

j
L. Again, only the simulta-

neous translation of all flavors is a symmetry of th
system. Thus the one-site translationT is written as
f ! f 1 4SskFadR, in the bosonic language.
1985
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Since all of the2S flavors are equivalent, the magn
tization should be equally distributed among them. Th
the Fermi momentumkF is determined askFa ­ sS 2

mdpy2S. As a consequence, the one-site translationT is
given by

f ! f 1 2sS 2 mdpR . (4)

Thus the leading operator cossfyRd is permitted only
if S 2 m is an integer. Form satisfying the quantiza
tion condition, the leading operator cossfyRd should be
relevant in order to produce a gap. ThusR must be
larger thanRc ­ 1y

p
8p for the presence of the platea

If S 2 m ­ pyq where p and q are coprimes, the op
erator cossqfyRd is permitted. It can be relevant i
R $ qy

p
8p (this is a severe condition for a largeq);

if it is, a ground state in the thermodynamic limit corr
sponds to a potential minimum of cossqfyRd. There are
q such ground states, and they are mapped to each o
by applying the translation operatorT k (k , q). Thus
the ground states have spontaneouslyq-fold broken trans-
lation symmetry. These results are in agreement with
generalized LSM theorem, and also give conditions fo
finite plateau at the quantized values.

Our bosonization argument is also readily generaliz
to models with spatial structures. Our picture is consist
with Okamoto’s analysis [6] of Hida’s plateau [5]. Fo
S ­ 1 AF chains, Tonegawaet al. [8] obtained anm ­
1y2 plateau as soon as they introduced a small b
alternation. In our approach, the leading operator
expected to appear as soon as the translational symm
is broken. Thus we expect a plateau for any finite amo
of bond alternation, if the radius exceeds the critical val
in agreement with Ref. [8]. This is also in agreeme
with an explicit bosonization calculation by Totsuka [
for S ­ 1 bond-alternating chains.

Now let us discuss some examples of translationa
invariant S ­ 3y2 chains. It is interesting both from a
experimental and conceptual point of view to add an ea
plane crystal field term,

H ­
X

j

$Sj ? $Sj11 1 DsSz
j d2 2 hSz

j . (5)

Clearly, if D ¿ 1, all the spins are first fixed toSz ­ 1y2
with increasing field before any of the spins go in
the Sz ­ 3y2 state, corresponding to a gappedm ­ 1y2
plateau. The presence of finite gap and plateau is pro
rigorously for a sufficiently large but finiteD [19], by
applying the general theorem in Ref. [20]. This situati
is reminiscent of that which occurs in the large-D phase in
a zero fieldS ­ 1 chain. Numerically, we found a finite
m ­ 1y2 plateau at least forD $ 2.

Another kind of trial ground state for anS ­ 3y2
chain, corresponding to anm ­ 1y2 plateau is shown
in Fig. 1 in the valence bond notation [21]. Regardi
eachS ­ 3y2 operator as being a symmetrized product
threeS ­ 1y2’s, oneS ­ 1y2 is polarized by the applied
field at each site while the other two form a valence-bo
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FIG. 1. The partially magnetized VBS state forS ­ 3y2. A
solid line denotes a valence bond (singlet formed from t
spin-1y2’s). An up arrow denotes a spin-1y2 with Sz ­ 1y2.
A dashed circle represents the symmetrization of spin-1y2
variables at each site.

solid (VBS) ground state as occurs for anS ­ 1 chain in
zero field. In Ref. [22], this partially magnetized VB
state was proposed and the relevance to the magnetiz
process was suggested. A generalization of this kind
VBS-type state and further analysis were later done
Ref. [23]. (See also [16].) Clearly this sort of VBS-typ
state exists for allS andm such thatS 2 m is an integer.

We can construct a model to realize theS ­ 3y2 VBS-
type state in Fig. 1 as a ground state,

H ­
X

j

P
s j,j11d
3 1 a $Sj ? $Sj11 2 hSz

j , (6)

where P
s j,j11d
3 is the projection operator onto the spa

with total spin 3 for sites j and j 1 1. At a ­ 0,
any state constructed with one valence bond betw
neighboring sites is a ground state. The ground stat
thus infinitely degenerate due to the “free” spin-1y2 at
each site. Applying an infinitesimal magnetic field, t
degeneracy is lifted and the ground state is the abo
mentioned VBS-type state (Fig. 1). Thus the mod
with a ­ 0 has anm ­ 1y2 plateau starting from zero
magnetic field. Turning on the Heisenberg term,a, the
degeneracy ath ­ 0 is lifted and a finite magnetic field
is required to reachm ­ 1y2. For small value ofa,
however, we might still expect a finitem ­ 1y2 plateau.
We studied this model with periodic boundary conditio
by numerical diagonalization for up to12 sites and found
the m ­ 1y2 plateau exists at least fora # 0.06. In
contrast to the plateau at large positiveD, which is related
to the large-D phase inS ­ 1 chains, it is natural to relate
this state to theS ­ 1 Haldane phase.

For S ­ 1, the Haldane phase is known to be distin
from the large-D phase; these two massive phases
separated by a critical pointDc, where the gap vanishe
[17,24]. The Haldane phase is characterized by
existence of a topological long-range order [25], a
gapless edge excitations in the open boundary condit
[26]. These are understood as consequences of a hi
symmetry breaking [20]. One might suspect that the t
types ofS ­ 3y2 massive phases at them ­ 1y2 plateaus
discussed above, correspond to distinct phases.

If they are distinct, there should be a phase transit
between them. In terms of Abelian bosonization, t
phase transition may be understood as the vanishing o
coefficient of the allowed relevant operator cossfyRd, as
in the case ofS ­ 1 [17]. We numerically measured th
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gap (width of the plateau) for the model

H ­
X

j

a $Sj ? $Sj11 1 DsSz
j d2 1 P

s j,j11d
3 2 hSz

j , (7)

which interpolates between (5) and (6). Fora ­ 0.03
(fixed), we find the plateau vanishes atD , 4.5, separating
the “Haldane gap” type plateau and the “large-D” type
plateau. Moreover, we compared the spectrum ata ­
0.03 and D ­ 0 between open and periodic boundar
conditions, and found evidence for edge states. In t
large-D region, there are no such edge states. The
indicate that the “Haldane phase” atm ­ 1y2 plateau,
which accompanies the edge states, is distinct from
“large-D phase.”

We also numerically examined the standardS ­ 3y2
Heisenberg AF chain with open boundary conditions, b
DMRG up to 100 sites. We did not find anm ­ 1y2
plateau in this case, in agreement with Refs. [5–7]. W
emphasize that the absence is nota priori obvious. As
we have shown, in terms of the free boson theory, t
plateau would be present if the compactification radiusR
is greater than the critical valueRc and the coefficient
of the most relevant operator cossfyRd is nonvanishing.
We have determined the compactification radius from t
spectrum for the open boundary condition obtained
DMRG, asR ­ 0.95Rc , Rc. We note thatR is rather
close to the critical value, and possibly we can realize
plateau by a small perturbation of the standard Heisenb
Hamiltonian [14]. On the other hand, while the radius
not completely well defined at themassiveD ­ 2 plateau,
a similar analysis gives the estimateR , 1.2Rc . Rc.
This result is consistent with the presence of the platea

The plateaus that we have found are closely relat
[14] to Mott insulating (or charge density wave) phase
in models of interacting fermions or bosons [27,28
Similarly to those cases [14,29], we have found that t
singular part of the magnetization curve near a plateau
proportional to

p
jh 2 hcj wherehc is the critical field at

(either) edge of a plateau, at least for examples we ha
studied. Our approach will also give new insights int
models of interacting fermions or bosons [14].
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Note added.—After the submission of the presen
Letter, we received a preprint by Totsuka, which
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a substantial enhancement of his presentation [9]
Japanese Physical Society meeting Fall 1996, and cont
some of our general arguments using bosonization.
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