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Stability of Elastic Glass Phases in Random Fiel&Y Magnets and Vortex Lattices
in Type-1l Superconductors
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A description of a dislocation-free elastic glass phase in terms of domain walls is developed and
used as the basis of a renormalization group analysis of the energetics of dislocation loops added
to the system. It is found that even after optimizing over possible paths of large dislocation loops,
their energy is still very likely to be positive when the dislocation core energy is large. This implies
the existence of an equilibrium elastic glass phase in three-dimensional randonX fiefdagnets,
and a dislocation-free, bond orientationally ordered “Bragg glass” phase of vortices in dirty type-II
superconductors. [S0031-9007(97)02715-4]

PACS numbers: 74.60.Ge

It has been believed for a long time that systemsallows one to analyze the energetics of a dislocation loop
with quenched randomness that couples to a continuoubat is added to the system. If the core energy of the
symmetry order parameter cannot exhibit long range ordettislocation line is sufficiently large, it is found that, even
in less than four dimensions [1-3]. Recently for a classafter optimizing over the possible paths of a dislocation
of random systems includingY magnets in a random loop, large loops cost energy with high probability. This
magnetic field, the absence of long range order has beesituation can be achieved for a weak random fi¥ld
proven rigorously [2]. Yet an intriguing open question model and we thus conclude that an elastic glass phase
remains: for weak randomness in such systems, are theshould exisin this system in three dimensions.
simply disordered at low temperatures or can phases exist By analogy, our results are applied to the elastic vortex
which exhibit some kind of topological or other type glass.
of order that distinguishes them from high temperature Our basic starting point will be the elastic glass model
disordered phases? This issue has resurfaced in thdth Hamiltonian
context of vortices in high temperature superconductors;
various authors have either implicitly assumed [4], raisedH = 3 Do) — oM - hZCOQQD(x) -y,
the question of [5], or conjectured [6], the existence of an (xy)
elastic vortex glasphase which is locally latticelike and (b
is free of large dislocation loops. Such a phase wouldvith y(x) independent quenched random variables
probably have power law Bragg-like singularities in itson each site uniformly distributed of—, 7] and
structure factor and true bond-orientational long rangep(x)e(—c, ). This model has been extensively studied
order, [6] thus providing a counterexample to the generaby renormalization group (RG) and other techniques
conjecture mentioned above [3]. [6,9]. At all temperatures the behavior is controlled by

In the simpler context of three-dimensional randoma zero temperature fixed point whose properties yield
field XY magnets, Gingras and Huse [7] have conjectureddisorder averaged (denoted by an overbar) mean square
and given some numerical evidence in support of, thehase variations
existence of a phase transition to a defect-free phase for — N _
weak randomngss at low temperatures. Yet at tﬁls point, {o@) = () = 24Inlx = y| 2)
no Conv|nc|ng analy‘“cal arguments to Support or den)ﬂt Iarge dIStanceS witlh a universal coefficient com-
the existence of an elastic glass phase have been pbdtable in a4 — e expansion [6]. It is believed that the
forth [6,8], although the delicate balance between elastlcmean correlation function will decay &si*™e=ie(»)) ~
randomness, and dislocation energies has been pointed % These results have primarily been obtained from
by Giamarchi and Le Doussal [6]. coarse graining or Fourier space representation of the

In this Letter, we explicitly study the stability of a phase variables. Unfortunately, this framework does not
putative elastic glass phase in a three-dimensional randoappear to be naturally amenable to consideration of dis-
field XY model to dislocation loops—to avoid confusion, locations, for these intrinsically involve physics on many
we will refer to the relevant topological defects in all length scales.
these systems as “dislocations.” To do this we must first A complementary and more complete picture of the
reconsider the behavior of the ground state and excitatioralastic glass phase can be constructed in terms of domain
of an elastic glass model with dislocations excluded bywalls which turn out to be the natural objects at long
fiat. The framework that will be developed naturally length scales. This is most easily seen by studying the
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limit & — o so thate(x) = y(x) + 27n(x) with {n(x)}  section of domain wall of scale/s. Roughly, these are
integers. The ground state can then be represented [umnsversely confined by the others on scaje. Thus

to a uniform shift in the{n(x)}] by the oriented surfaces we guess that the mean energy of a section will be of
(with a “+” side) through whichn(x) changes by+1.  order L/s yielding, with s* sections, a total increase in
The scale invariance suggests that the nested set tife mean energ¥; ~ Ls? in agreement with the result
closed surfaces enclosing a pomtwill typically occur  from the statistical symmetry.

on logarithmically spaced scaldsB, BZ,.... Since the The main lesson from the above is that sections of
orientations of these surfaces on widely separated scaleptimal domain walls on scales that arerestricted on
should be independent, the sum of thelogg [x — y|  the same scal&, typically have energy that is distributed
random terms inA¢ from crossing the surfaces that with positive mean and variations both of order If we
enclosex and then those that enclogewill yield ¢(x) —  try to put several distinct domain walls of scdleinto a
¢(y) ~ =/Infx — y|. In contrast, the coarse grained volume of orderL?, the energy of each of them will have
averaged over regions of size of orc%drc — y| willvary  toincrease.

from x to y by only O(1). We now consider inserting a single dislocation loop of

Rather than working with the surfaces across whictradiusR into a fixed position of the system by makigg
n(x) changes, it is useful, as for Ising spin glasses [10]multivalued withV X V¢ = 27 on plaquettes through
to consider configurationselative to the ground state Which the dislocation loop passes arWdX Vo = 0
{ng(x)} with some chosen fixed boundary conditions;elsewhere. The statistical symmetry implies, via Eq. (3),
any state can then be represented by the setriehted with ¢p the dislocation solution in the pure system, that
domain wallsacross whichn(x) — ng(x) increases by the extra ground-state energhg, due to the dislocation
one. A crucial question is the typical energy of thehas mean
minimal domain wall excitation,e;, that surrounds a Dx = 27R[ey + 7 INR], (4)
chosen volumé.’.

The observation that the coarse grainetias variation Wwhere €, is the core energy per unit length of the
of 0(1) strongly suggests from the scaling of the elasticdislocation. How can we understand this in terms of
energy in Eq. (1) thats, ~ L? with & = 1 (generally domain walls? The dislocation loop forces in a single
6 = d — 2). This can be seen more explicitly by fixing domain wall that spans the loop. The sections of the
@(x; = 0,x,x3) = 0 in a system of sizelL X L X L wall of scaleL = 1 adjacent to the loop are restricted
and letting ¢ (x; = L,x»,x3) change from zero, which on this scale by their attachment to the loop and thus each
defines the reference stafie; (x)}, to 247, with periodic have mean energy of order 1 and well-separated sections
boundary conditions in, — x, + L andxz — x3 + L. have roughly independent variations of this same order.
This forces a single domain wall spanning the system andhe sections of scalé = 2 are attached to these which
changes the energy ;. We can now make use of the restricts them on scalé = 2 and gives each a mean
powerful statistical symmetry of the model Hamiltonian energy of order 2; and so on, on scales 4, 8, 16—as
Eq. (1): if ¢ is replaced byp = ¢p + ¢ with ¢p single llustrated in Fig. 1—up ta. ~ R. Thus each factor of
valued modul@ 7 andV2¢, = 0 (with lattice derivative 2 in scale will contribute a factor at to D yielding the

operators) then thstatisticalproperties of RInR of Eq. (4). But the variation$Dgr = Dr — Dg
~ 1 will be much smaller: from each scale there will be a
Hy)=H - > Z|V¢7D|2 (3) random contribution=(R/L)>L, from the sum of order

) N ) ) R/L roughly independent variations of sections of scale
with constant boupdary conditions ah are |der1_t!cal t0 1. The typical variations iDx are thussDg ~ R which
those of H (¢) with gonstant boundary conditions on gre dominated by thiargestscale sections of the wall.
¢. Choosing ¢p = =T, this implies that the mean  For a largefixed dislocation loop, the energy is thus
energy of the forced domain wall I5; = %(277)2L. The very likely to be large and positive. But we must consider
necessary balance of the random part of the energy witthe optimization of the dislocation energy over all possible
the mean elastic paft-L), implies that this is consistent paths of the dislocation loop in a region of volume of order
only if the variations of the spanning wall energyE;, R>. We do this by an approximate RG analysis of the
are also of ordel; i.e.,, # = 1. The result thatt; is  effects of sections of the wall at each length scale on the
much less than the area of the walls implies that the wallsninimum energy path of a segment of the dislocation loop.
will be fractal. We focus on transverse deformations of a coarse-grained

If, in the L3 system, the boundary conditionat= L  dislocation segment), by distances of ordeW. The
is changed top = 27s, thens spanning domain walls position of the coarse-grained dislocation core cannot be
will be forced. Because these are closer together fospecified on scales less th#éf the actual dislocation path
larger s, they can less easily optimize their positionswill be the minimum energy dislocation which is restricted
and their energy will be larger. Following argumentsto be within a specified tube—the coarse-grained core—of
for confined directed polymers, [11] we consider eachdiameterW. The effects of smaller scale deformations of
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of order W. Thus thetotal differencein the energies of
3 and 3’ will be the sum of random terms and hence

of orderi(%)%W. Balancing this difference against the
excess effective core energy cost of the distortion, from
above, yields the typical lengthy, over which transverse
deformations of siz&v will occur:

Aw ~ Wey,, (5)

which is indeed>W if &y is large.

At the next length scal@W, the effective core energy
& will change since it should include the effects of
the dislocation deformations and wall sections within
a core tube of diameteeW. The inclusion of the
wall segments of scal@V attached to the dislocation
FIG. 1. Schematic of a straight dislocation segmekf,of  increases the mean energy of a lendth segment by
length A, and a distorted segment’ with the corresponding ~W (Aw /W) but the optimization analyzed above over

minimum energy wallsS andX' attached. At distances more the scaleW deformation of the dislocation decreases it by
than the scale of the distortio/, from A and A/, 3 and A ! I Th find th
S’ coincide as shown. The magnified region illustrates the™(Aw/W)>W—a smaller amount. us we find that

argument discussed in the text: the various different scale 2 /23
sections of the wall shown have roughly independent energies. G ~ &y + 7In2 — a/&y, 6)
In actuality, the walls will be fractal. with & some coefficient.

This is our key result: although the arguments leading

the dislocation and the concomitant changes in the sectio§ EQ. (6) will break down for smaléy, the form should
of the wall, 3, attached to it on scales smaller thahare ~ be correct for largegy. The RG flow of Eq. (6) implies
included in an effective mean dislocation energy per unithat the delicate balance [6] between t®hén R terms in
length, &y, with local variations around this value. If the Dr and its*R variations, as well as that implied by the
dislocation were straight on smaller scalés, would be ~ @lmost linear growth in Eq. (5) of dislocation, distortions
simply o + o InW but it will be reduced from this by Wa., with A, is resolved for large& by the dominance of
optimization over the smaller scale deformations. Our taskhe deterministic terms in the dislocation energy over even
is to iteratively understand how the deformations on a scalthe optimal random ones.
W changeg on larger scales. For sufficiently largeey, the renormalized energy of the
In the continuum approximation (valid on large scales)/owest energy dislocation loop of radius in a volume
the typical excess energy cost of a transverse distortionr R’ can now be obtained by renormalizing until a scale
of a segment of lengthh of the dislocation segment by Wz at which Ay ~ R. On longer scales, the optimal
an amountW < A will be %EWWZ/A from the extra dislocation loop of radiug will look essentially circular
length of the dislocation. Such a distorted dislocationPut can still reduce its energy by rotating or moving
segment,A’, will have a different spanning wally/,  Within the region of volume~R”. From scalesV in the
attached to it. But ifS’ were typically different from ranger > W > W, the renormalization of will have a
S, out to distances of ordeA from A, it would imply ~ Similar form to Eq. (6) but with the last term replaced by
the existence of many~(A/W) distinct minimal walls in ~ —a'(W/R)>. The mean energy of the optimal dislocation
a volumeA3, as can be seen by considering a sequenc®op of radiusr in a volume of ordele will thus be
of roughly parallel dislocation segments each separated = _ 3 2
by W. From the energetics of many walls forced by Dr=27R{mInR + & = Oleg, INR) ]} (7)
boundary conditions analyzed earlier, we see that thifor largee.
would imply an energy per wall much larger than(A), Because the energies of small scale distortions of
contradicting the requirement that these all be minimaHistant parts of the dislocation loop will be uncorrelated,
walls. What should be expected, instead, is that théhe largest scale® ~ R should dominate the variations
minimal spanning wallsX, and X/, attached toA and in Dg, yielding
A’, will typically only differ in a strip of width W near

the dislocation, with®, and 2’ coinciding further away, as 0D ~ R < Dr. (8)

shown in Fig. 1. Large dislocation loops with negative energy will thus be
Each wall section of scal@ attached ta\ or A’ willbe  very improbable.

roughly independent and the mean enefgy¥) of each To complete the analysis we need to consider the

of these sections of the two wall configurations will be effects of dislocation loops on each other. Some small
the same but with random differences between them alslmops will of course appear for angy. In the presence
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of an appliedVe the effect of these will be to decrease range order and power law singularities at Bragg peak
the effective long wavelength elastic constant of thepositions should be observable in the resulting elastic
elastic glass phase and concomitantly the mean energjtass phase, [6] especially if the exponents small, and

of large dislocation loops, by allowing spanning wallsthe linear resistivity should be zero [4]. An intermediate

with small holes in them. But ife; is greater than quasi-long range ordered hexatic phase with no large
some critical value,ey., these effects will yield only disclination loops can also exist [3]. Analogous phases
finite renormalizations and the elastic glass phase will bean exist for solids in porous media and in other systems.
stable. In contrast, foeg < eg., €w Will decrease with | thank David Huse, Terry Hwa, and Matthew Fisher

length scale eventually becoming negative and leadinfpr useful conversations. This work is supported in part
to the proliferation of dislocations of size greater thanby the NSF via DMR 9106237, 9630064, and Harvard
a correlation lengthé, even at zero temperature. The University’s MRSEC.

decrease of with length scale for smalé can be seen

from Eq. (6); although not quantitatively correct for small

&, the arguments leading to Eq. (6) include enough of the

relevant physics to yield a critica.
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