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Chaos, Interactions, and Nonequilibrium Effects in the Tunneling Resonance Spectra
of Ultrasmall Metallic Particles
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We explain the observation of clusters in the tunneling resonance spectra of ultrasmall metallic
particles of a few nanometer size. Each cluster of resonances is identified with one excited single-
electron state of the metal particle, shifted as a result of the different nonequilibrium occupancy
configurations of the other single-electron states. Assuming the underlying classical dynamics of the
electrons to be chaotic, we determine the typical shift to beDyg whereD is the single particle mean
level spacing andg is the dimensionless conductance of the grain. [S0031-9007(97)02682-3]
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An interacting many-body system exhibits, in genera
very complicated behavior. Usually, one can analytica
characterize only statistical properties of the spectru
The fact that, for high enough energies, these proper
are very well described by random matrix theory (RM
[1] was first attributed to the complexity of the man
body system. More recently, it has become clear t
RMT also describes single-particle quantum dynam
which is chaotic in the classical limit [2,3]. Example
are noninteracting electrons in small disordered meta
grains [4], and in ballistic quantum dots [5]. Re
systems, however, contain a large number of interac
particles, and a question which naturally arises is h
does chaos in a single-particle description manifest it
in the properties of the true many-body problem?

Experimental [6], as well as theoretical [7,8] studi
of this problem, have been mainly focused on two
sues: the statistical properties of the ground state en
of quantum dots as the number of electrons changes,
the lifetime of a quasiparticle in such structures. He
we consider the nonequilibrium tunneling resonance sp
tra of ultrasmall metallic particles [9]. These spec
can be measured experimentally with high precision [
Figs. 1(a) and 1(b)] and interpreted within the Hartre
Fock approximation. They constitute a clear demons
tion of the interplay between many-body interactions a
quantum chaos.

The experimental system consists of a single alumin
particle connected to external leads via high resista
(1 5 MV) tunnel junctions formed by oxidizing th
surface of the particle. In Figs. 1(a) and 1(b) we plot t
differential conductance,dIydV , of two different particles
(of sizes roughly 2.5 and 4.5 nm) as a function of t
source-drain bias energy eV. The spectra display th
clear features: (1) The low energy resonances are grou
0031-9007y97y78(10)y1956(4)$10.00
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in clusters. The distance between nearby clusters is
order the mean level spacingD of the noninteracting
electrons in the dot. (2) The first cluster contains on
a single resonance. (3) Higher clusters consist of sev
resonances spaced much more closely thanD.

In this Letter, we explain these features as con
quences of the underlying chaotic dynamics of the co
fined electrons. Each cluster of resonances is identifi
with one excited single-electron state, and each re
nance in turn is associated with a different occupan
configuration of the metal particle’s other single-electr
states. The appearance of multiple resonances reflects
strongly nonequilibrium state of the particle.

Our model for the system is given by the Hamiltonia
H ­ H0 1 HT 1 Hint. HereH0 describes the noninter-
acting electrons in the left (L) and right (R) leads and
the metallic grain,

H0 ­
X

a­L,R

X
q

eaqdy
aqdaq 1

X
l

elc
y
l cl . (1)

Tunneling across the barriers is described by

HT ­
X

a­L,R

X
q,l

T
sad
ql dy

aqcl 1 H.c., (2)

whereT
sad
ql are the tunneling matrix elements. Interactio

effects are taken into account only for the electrons
the grain, but including screening by image charges in
leads. Thus

Hint ­
1
2

X
ijkl

Uijklc
y
i c

y
j ckcl , (3)

whereUijkl is the matrix element of the Coulomb interac
tion for the electrons inside the grain. We remark that f
the ultrasmall aluminum grains considered here one
© 1997 The American Physical Society
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FIG. 1. (a),(b) The low temperature (30 mK) differentia
conductancedIydV versus bias energy of ultrasmall Al
particles with volumes (a)ø40 nm3 (b) ø100 nm3 (Ref. [9]).
The first resonance is isolated while subsequent resonan
are clustered in groups. The distance between nearby gro
of resonances is approximately the single-particle mean le
spacingD. (c) Model differential conductance obtained from
nonequilibrium detailed-balance equations: solid line—in th
absence of inelastic processes,1ytin ­ 0; dashed line—with
inelastic relaxation rate larger than the tunneling rate,1ytin ­
5yttun.

neglect superconducting pairing since the single-partic
mean level spacing,ø1 meV, is larger than the BCS su-
perconducting gap which is 0.18 meV [10].

The interaction term of the electrons is general
approximated by

P
ijkl Uijklc

y
i c

y
j ckcl ø se

P
l c

y
l cld2yC,

whereC is the effective capacitance of the grain. Withi
this approximation, known as the orthodox model [11
the charging energy depends only on the total number
electrons in the dot, but not on their particular occupan
configuration. The orthodox model is able to account f
the Coulomb blockade [11], and the Coulomb stairca
behavior of the current as the number of extra tunneli
electrons in the dot increases. It can also be generali
to describe features on the scale of the single-parti
level spacing [12]. However, the orthodox model cann
account for the clusters of resonances in Figs. 1(a) a
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1(b), since these result from fluctuations,dU, in the
interaction energy between pairs of electrons. Befo
discussing the origin of these fluctuations we exami
their effect on the differential conductance of the dot.

We focus our attention on the (experimental) voltag
regime where there is no more than one extra tunneli
electron in the dot. At small voltage bias,V , within
the Coulomb-blockade regime [Fig. 2(a)], current doe
not flow through the system. Current first starts to flo
when one statei inside the grain becomes availabl
for tunneling through the left barrier, say, as illustrate
in Fig. 2(b). As the system becomes charged with
additional electron, the potential energy of the oth
electrons in the dot increases byU . e2yC, and some
of the lower energy occupied electronic states are rais
above the right lead chemical potential [in Fig. 2(b) the
“ghost” states are shown as dashed lines]. Electrons
tunnel out from these states into the right lead leaving t
particle in an excited state. There is, however, only o
configuration of the electrons which allows an electron
tunnel into leveli from the left lead, namely, all lower
energy levels occupied. This implies that only a sing
resonance peak appears in the differential conductanc

FIG. 2. An illustration of transport through the metal particl
at various values of the source-drain voltageV . Filled single-
particle levels are indicated by full circles and empty one
by open circles. U is the charging energy, andD is the
single-particle mean level spacing. (a) The system at sm
bias voltage within the Coulomb blockade regime. (b)V
corresponding to the first resonance in Figs. 1(a) and 1(
The thin dashed lines indicate the energy of a level after
electron has tunneled into the dot. (c)V near the first cluster
of resonances in Figs. 1(a) and 1(b). The splitting within th
first cluster originates from the sensitivity of leveli 1 1 to the
different possible occupation configurations as shown.
1957
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the onset of the current flow through the system (brok
spin degeneracy would cause splitting of this peak).

The situation changes whenV increases such that
electrons can tunnel from the left lead into the next high
available statei 1 1, as shown in Fig. 2(c). In this case
there are several possible occupancy configurations,
which the exact energy of leveli 1 1 depends. The
several possible energies of leveli 1 1 lead to a cluster
of resonances in the differential conductance of the gra
The scenario described above holds provided that inela
processes are too slow to maintain equilibrium in th
particle.

To explicitly demonstrate the splitting of resonances i
duced by fixed fluctuations in the interaction energydU,
model detailed-balance equations [12] were solved n
merically and the corresponding differential conductan
plotted in Fig. 1(c) by the solid line. The model system
consists of seven equally spaced levels, occupied al
nately by four or five electrons, in a current-carrying stea
state. For simplicity, the tunneling rate into each leve
1yttun [GLsRdseld in the notation of Ref. [12] ], is chosen
to be uniform, and the voltage is applied by increasing t
left chemical potential. The temperature is 1% of the me
level spacingD, and the variance of the fluctuationsdU
in the interaction energy isDy5. [In the absence of fluc-
tuations (dU ­ 0), dIydV consists of single resonance
spaced byD.]

To estimate the fluctuations in the interaction energ
consider the Hartree term of the interaction energy,UH .
We wish to calculate the interaction energy differenc
associated with different occupation configurations of lo
energy states. Suppose that, as illustrated in Fig. 2(
these differ by a single occupation number, namely,
one configuration the statej is empty andj0 is full while
in the otherj0 is empty andj is full. Then

dUH ­
Z

dr1dr2jcisr1dj2Usr1, r2d

3 fjcj0sr2dj2 2 jcjsr2dj2g , (4)
where the indexi labels an electron state other thanj or
j0, Usr1, r2d is the interaction potential. ClearlykdUHl ­
0, where k· · ·l denotes ensemble or energy averagin
We are therefore interested in fluctuations ofdUH which
emerge from the nonuniform probability distributions o
the single-particle eigenstates in real space. To calcul
kdU2

H l we approximate the interaction byUsr1, r2d .
n21dsr1 2 r2d, wheren is the density of states, then

kdU2
H l ­ 2n22

Z
ddrddr 0C 2sr, r0d , (5)

where C sr, r0d ­ kjcsrdcsr0dj2l 2 kjcsrdj2l kjcsr0dj2l is
the probability-density correlation function. For disor
dered systems it takes the form (see, e.g., [7])

C sr, r0d ­
aD

p h̄V

X
nfi0

fp
nsrdfnsr0d

Dq2
n

, (6)

wherea is a symmetry factor (2 for Gaussian orthogon
ensemble systems and 1 for Gaussian unitary ensemb
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V is the volume of the grain,D is the diffusion constant,
and the sum is over the diffusion modesfnsrd. Introduc-
ing the dimensionless conductanceg ­ h̄p2DyL2D ­
EcyD, whereL is the linear size of the system we ob
tain from (5) and (6) [13]

kdU2
H l ­

µ
c

D

g

∂2

, (7)

wherec ­
p

2 a
P

n jnj24yp is a constant of order unity.
Equation (7) also applies for general chaotic systems, w
g . g1yD, where g1 is the first nonvanishing Perron-
Frobenius eigenvalue [14]. In essence, smallerg implies
less uniform wave functions, so fluctuations in the inte
action energy increase asg decreases. Experimentally we
find g ø 5. Unfortunately, an analytical estimate ofg re-
quires precise knowledge of the shape and disorder of t
particle which we lack [15].

Within our approximation for the interaction potentia
the Fock term,dUF, is equal to2dUH; thus apparently
dUF 1 dUH ­ 0. However, for a more realistic inter-
action potentialdUF fi 2dUH, and, moreover, the Fock
term exists only for electrons with parallel spins.dUH is
therefore the typical single-electron level splitting due t
interaction.

More generally, whenM available states below the
highest accessible energy level (including spin) are o
cupied by M 0 , M electrons, there ares M

M 0 d different
occupancy configurations. The typical width of a clus
ter of resonances in this case isW1y2cDyg, whereW ­
min sM 2 M 0, M 0d. The width of a cluster of resonances
therefore increaseswith the source-drain voltage. The
distance between nearby peaks of the cluster, on the ot
hand,decreasesasW 1y2ys M

M 0 d. This behavior can be seen
in Fig. 1(c).

Central to our analysis is the assumption that th
steady-state occupation configurations of the electrons
the dot are far from equilibrium. This condition holds
when the rate1ytin of inelastic relaxation processes is
smaller than the tunneling rate of an electron into and o
of the dot,1yttun. In the opposite limit,1ytin . 1yttun,
the system relaxes to equilibrium between tunnelin
events, and the electrons effectively occupy only on
configuration. In this case one expects each resonan
cluster to collapse to a single peak. This behavior
illustrated by the dashed line in Fig. 1(c) where a larg
inelastic relaxation rate1ytin ­ 5yttun was included in
the detailed-balance equations.

The results shown in Fig. 1 indicate that the meta
particle in the experimental system is indeed in a strong
nonequilibrium state. It is useful, however, to conside
the various relaxation processes in our system in order
delimit the expected nonequilibrium regime. Relaxatio
of excited Hartree-Fock states may occur due to (
electron-electron interaction in the dot beyond Hartre
Fock, (2) electron-phonon interaction, (3) Auger process
in which an electron in the dot relaxes while another on
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in the lead is excited, (4) relaxation of an electron in t
dot as another electron tunnels out to the lead, and
thermalization with the leads via tunneling. The last tw
processes are small corrections since they clearly hap
on time scales larger than the tunneling time.

In Ref. [8] it was shown that excited many-body stat
of closed systems with energye smaller thansgy ln gd1y2D

are merely slightly perturbed Hartree-Fock states.
other words, the overlap between the true many-b
state and the corresponding Hartree-Fock approxima
is very close to unity. This justifies the use of our mod
for the low energy resonances sinceg ø 5; therefore the
energy interval0 , e , sgy ln gd1y2D contains at leas
the first few excited states. At high source-drain volta
however, when the dot is excited to energyg1y2D ,

e , gD, tunneling takes place into quasiparticle states
width e2ysg2Dd [7]. This width is larger than the typica
separation between nearby resonances but smaller thaD.
Therefore, electron-electron scattering will obliterate t
fine structure of resonances for high energy excitation
the dot.

Consider now the electron-phonon interaction. T
temperature, 30 mK, is much smaller than the mean le
spacing; therefore, the probability of phonon absorption
negligible, and only emission may take place. The sou
velocity in aluminum isys ­ 6420 mysec, therefore the
wavelength of a phonon associated with relaxation
energy v , D ­ 1 meV is approximately 50 Å, the
same as the system size. In this regime, we estimate
phonon emission rate to be

1
te-ph

,
µ

2
3

eF

∂2 v3tD

2rh̄4y5
s

, (8)

where eF is the Fermi energy (11.7 eV in Al), andr
is the ion mass density (2.7 gycm3 in Al). This rate is
that of a clean metal but reduced by a factor oftDyh̄
where t is the elastic mean free time [16]. In ballist
systems,t is the traversal time across the system of
electron at the Fermi level. Assuming ballistic motion th
factor is of order1023. The resulting relaxation rate fo
v ­ D is therefore of order1yte-ph ø 108 sec21 which
is similar to the tunneling rate1yttun ø 6 3 108 sec21

(corresponding to a current of10210 A through the
particle). Thus, by increasing the resistance of the tun
junctions one should be able to cross over to the ne
equilibrium regime shown by the dashed line in Fig. 1(

Relaxation due to the Auger process is estimated to
negligible. Two factors reduce this rate considerably:
it is exponentially small inwyx wherew is the width of
the tunnel junction andx is the screening length, and (2
interaction between electrons on both sides of the tun
junction can take place only within a very limited volum

In conclusion, we have shown that the low-volta
tunneling-resonance spectrum of an ultrasmall meta
grain reflects nonequilibrium electron configurations ea
e
(5)
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of which leads to a different energy of the single-electr
level used for tunneling. Consequently, the tunneli
resonances appear in clusters of widthDyg. This
phenomenon is a result of electron-electron interact
beyond the orthodox model [11]. Relaxation due
electron-phonon interaction, which becomes important
high resistance tunnel barriers, will collapse the cluste
This effect can be used to probe the electron-phon
relaxation rate in nanometer size metal particles.
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