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Self-Similar Magnetoresistance of a Semiconductor Sinai Billiard
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We investigate the transition to a Sinai geometry by introducing a circular pattern at the center of a
square mesoscopic billiard defined in a high quality AIG&BaAs crystal. The transition induces a
novel quantum interference structure in the magnetoresistance with a characteristic field scale over an
order of magnitude smaller than previously reported in mesoscopic billiards. A systematic comparison
of fine and coarse structures, which differ by an order of magnitude in field scale, demonstrates the
first observation of geometry-induced “self-similarity” in the magnetoresistance of a semiconductor
system. [S0031-9007(97)02544-1]

PACS numbers: 72.20.My, 05.45.+b, 73.20.Dx, 73.20.Fz

Quantum interference phenomena such as weak lawith the Sinai diffuser before escaping through the leads
calization (WL) and aperiodic conductance fluctuationsncreases: In this way the Lyapunov exponent describing
(ACF) can be viewed as “magneto-fingerprints” of thethe system [9] can effectively be tuned. For a physical
mesoscopic scattering processes determining electrongystem, such as a semiconductor billiard, the exact char-
transport in semiconductors and metal films [1,2]. Atacter of the profiles defining the geometry is important.
low temperatures, electron phase coherence is maintain@epartures from strict hard-wall profiles for the Sinai dif-
over large distances and a semiclassical analysis involvdaser may lead to a mixed (regular and chaotic) classical
monitoring the phase accumulated by electrons as theyhase space, as found for other systems [7,10,11]. The
move along classical trajectories shaped by elastic scatature of the square-Sinai geometry evolution is of fun-
tering events. Quantum interference processes then resdihmental interest. Furthermore, the ability to induce a
from pairs of trajectories which form closed loops, anddistinct geometry change within a single device offers a
are sensitive to the distribution of enclosed areas. Origicomparatively unambiguous result—comparisons of two
nally observed in disordered systems, improvements idevices featuring different geometries [4,5] are potentially
semiconductor growth and device fabrication have led taestrictive as, for a physical system, variations attributed
the realization of cavities smaller than the average imputo geometry must be separated from other changing pa-
rity spacing, and studies of WL and ACF have found arameters, in particular, those related to the host material.
new role as a probe of “quantum chaos.” For these “bil-We will show that, during this novel transition, quantum
liards,” at low temperatures large angle scattering occursterference structure emerges in the magnetoresistance
predominantly at the device boundaries so that distinctlyvith a characteristic magnetic field scale over an order
different characteristics are expected for idealized cavityf magnitude smaller than that reported in previous stud-
geometries which generate regular or chaotic scattering aés of mesoscopic billiards with significantly lower elec-
the classical electron trajectories [3]. Differences in thetron mobilities [4,5]. Furthermore, this structure exhibits
quantum behavior were investigated in experiments pera striking similarity to structure observed on a coarser
formed on circular (regular) and stadium (chaotic) shapednagnetic field scale. This first experimental observation
billiards. Analysis of the power spectrum of the ACF [4] of geometry-induced “self-similarity” in the magnetore-
and the line shape of the WL peak [5] observed in the lowsistance has important implications for the relationship
field magnetoresistance confirmed the predicted relatiorbetween quantum interference processes and the classical
ships between quantum behavior and classical scatterimghase space realized in a semiconductor billiard: Frac-
dynamics. This link has also recently been explored irtal behavior has recently been predicted in the ACF for
resonant tunneling diodes [6] and antidot superlattices [7]mixed classical phase space [10].

In this Letter, we investigate the transition to a Sinai The device configuration is shown in the insets to
geometry by introducing a circular pattern at the centeFig. 1. Three “outer” electrostatic gates deposited on the
of a square billiard. For a system described by hard-walburface of an AlGaA8GaAs heterostructure form adm
profiles, the convex surface of the circular scatterer acts asjuare with 0.2um wide entrance and exit leads. This
a “Sinai diffuser” producing exponentially diverging clas- square is significantly smaller than the g25n mean free
sical trajectories [8], in sharp contrast to the regular dyspath(/,) but larger than the 0.0am Fermi wavelength
namics supported by the empty square. As the size of thorresponding to an electron density2od x 105 m~2)
circle is increased, the rate at which trajectories interacdf the two-dimensional electron gas (2DEG) located
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Classical features, seen in the high temperature magneto-
resistance T = 3.3 K, top traces), are used to monitor
the evolution of the electron trajectories as the antidot is
formed. General characteristics of the 3.3 K traces are
confirmed by a classical trajectory analysis used previously
to successfully model circular billiards [14]. In particular,
we note that for the square billiard the resistance maximum
at zero field is due to reflection of trajectories from the
far wall back into the entrance lead. In contrast, the Sinai
billiard has a minimum at zero field because a number of
trajectories hit the antidot and are focused into the exit
lead. The features markédo Cin Fig. 1 are absent from
4 W\M/\f the classical analysis and exhibit a sharper temperature

L L L dependence than expected classically [13—15], indicating
10 MMM a quantum mechanical origin. The structure marked
matched to the Shubnikov-de Haas oscillations in the bulk
M/\A/\/\ 2DEG. Featurd\ is a weak localization peak, and its full
width at half maximum(ABgwam = 10 mT) is con-
8 /WA/\M firmed for our Sinai billiard by solving the Schrodinger
MMMW\ equation using the finite-element numerical scheme de-

scribed elsewhere [16]. Approximating the characteristic

R (kQ)

6 A A trajectory loop ared using the equatio Brwum = h/
(b) | AB C 2meA [4], the WL process involves loop areas substantially
-0.3 -0.15 0 0.15 0.3 smaller than the cavity, as has recently been reported in
B(T) other devices [13,17]. The structure mark@dmerges

as the antidot is formed and is strikingly different to
P () s 50 b o SAYPical ACE scen in devies wih emalit [41
08 1.6, 25 and 3.3 K (top) Ve — —052 V. Ses text for  (2~5 M compared to our system's 26m). Evidence
the labelsA, B, and C. The insets show a scanning electron for _CondUCtance fluctuatlon§ which are periodic in mag-
micrograph and dimensions of the device. netic field has been seen in other billiards [4,5,19] and

attributed to unstable periodic orbits. If we interpret
103 nm below the semiconductor surface. The “innerthe structure as oscillations which are periodic in mag-
circular gate (with a diameter 0,8m) is connected by netic field, and apply the magnetic flux relationship
a bridging interconnect [12] and biased at the volti#ge AB = ¢¢/A (where ¢y = h/e) to the magnetic field
The potential profiles defined in the 2DEG are not affectegeriod A B, assuming a circular trajectory for the loop area
by the interconnect itself [12]. By applying a negative A, the corresponding radiuB is physically reasonable:
bias V; to the outer gates to define the square, we evolv@.32 um for V; = —3.0 V. However, by fine tuning
the device geometry by tuniny;. For V; = +0.7 V, V; and V, the amplitudes of neighboring maxima are
the presence of the central gate is minimized [13]. Asshown to evolve independently (see later), and an al-
the positive bias is reduced, the region under the gatternative picture of distinct resistance peaks is appropriate.
becomes partially depleted, followed by full depletion Figure 2 shows the evolution of the classical and
at V; = 0V, at which point the associated antidot at quantum structure as the device undergoes the transition
the center of the square changes the device geometry foom square{; = +0.7 V, bottom trace) to Sinai billiard
a Sinai billiard. The radius® of the channel formed (V; = —2.9 V, top trace) for a fixedV, and a lattice
around the antidot is estimated to increase linearly withemperature off’ = 30 mK. The initial sharp rise in
approximate increments oAR = +40 nm for AV; =  background resistance observed ¥s is changed is
—0.5 V (see below) [12]. The maximum bias ef3.3 V  associated with the formation of the antidot, followed by
is determined by gate leakage current considerations. The more gradual increase as the antidot radius increases.
conducting channel around the antidot can be furtheA close inspection of the WL peak reveals the fine scale
narrowed by an increase in the negative bigsand, as structure shown in Fig. 3. Features on this fine magnetic
the channel approaches pinch-off, the device geometrffeld scale have not previously been reported for billiards.
evolves beyond a Sinai billiard description. FurtherThe temperature dependence of the fine structure, shown
characterization details will be presented elsewhere. in Fig. 4, implies a quantum mechanical origin. For both

Classical and quantum contributions to the magnetorethe Sinai and square billiards, the conductance amplitude

sistance can be distinguished using the temperature d&Gr of the fine central peak decreases exponentially with
pendences of the squaf®, = +0.7 V) and Sinai(V; = increasing temperature, consistent with recent studies
—3 V) billiards shown in Figs. 1(a) and 1(b), respectively.of WL processes in billiards [13,18]. The conductance
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FIG. 2. The magnetoresistance showing the transition from a 3 _0'4 0 '4
square (bottom tracé/, = +0.7 V) to Sinai billiard (top trace, L - L . L
V; = —2.9 V). The intermediate traces have an increment of -4 0 4
04VinV,, T=30mK. Vo, =-051V. B (mT)

amplitude of the fine structure increases as the channglI G= 33(') m(li) ‘T,:e: Er(l)%ls\}rucu%r}:ae at?ach fu;rgtmcerggg”y

around the antidot is formed, consistent with quantumyyfset for clarity. From the bottom, thé&, and R, values
interference of trajectories shaped by the channel withimre (+0.7 V,3.24 kQ), (+0.3 V,3.71 kQ), (=0.7 V, 4.1 kQ),
the Sinai geometry. Furthermore,Vf is now increased (=19 V,4.96 kQ), (-2.3V,5.26 kQ}), (=2.7 V,5.58 kQ),
and the channel approaches pinch-off, a decrease @_22'390/ ’(?i'gé)kga)léear;%é@i'i?ngfeﬁ'osvléﬁi)c'al|(béligggdvltozthe
conductance amplitude is observed for all fine _structurq,l = 10.3 V (bold) trace to facilitzﬁe a comgarison of the line
features (note, because the background resistatice shapes of the fine central peak.
increases significantly a%, is increased, a decrease
in conductance amplitudAG produces an increase in corresponding pairs of traces &g is made more nega-
resistance amplitudeAR for certain features because tive. The evolution of the fine structure follows closely
AR = —AGR?. See later). The conductance amplitudesthat observed on the coarse scale, suggesting a novel
of the individual features evolve independently Bs  self-similarity in the magnetoresistance [20]. To quan-
is increased, with the narrow central resistance peakfy these observations, we estimate the fractal dimension
decreasing most dramatically. We attribute this peal21] for the pair of traces a® = 2 — [InN(ARc/ARfr)/
(ABrwam = 0.3 mT) to a second WL process. Using IN(ABc/ABr)], whereARr and AR are the amplitudes
ABrwum = h/2meA, the calculated typical loop area of the fine and coarse featurefABr and AB¢ are the
is twice that of the lithographic square, correspondingcorresponding magnetic field scales. A comparison of
to multiple orbits of the billiard. Such long trajectories the WL peaks in Figs. 5(a) and 5(b) givés = 1.5.
sample all features of the device geometry, and the lin&iven thatAB is inversely proportional t@é\, the expres-
shape of the WL peak would be expected to changsion for D implies that over the experimentally observed
from linear (regular) to Lorentzian (chaotic) [5] as the scalesAR « A™Y, wherey = 2 — D = 0.5. The trajec-
device geometry evolves from a square to a Sinai billiardtory lengths corresponding to the observed valued Bf
Figure 3(b) shows the observed change in line shape. are of the order of 1-1@m and are not therefore pre-
The remarkable similarity of the “magneto-fingerprints” dominantly affected by phase-breaking scattering events
observed over the coarse (Fig. 2) and fine (Fig. 3) magfassuming the phase coherence length to be significantly
netic field scales for the Sinai billiard is explored furtherlarger than thé, value of 25um [18,22]). However, the
in Fig. 5. Figure 5(a) details the fine structure observed ofrajectory lengths are comparable to the calculated typi-
top of the coarse WL peak shown in Fig. 5(b). The twocal dwell length within the billiard of 1Qum [16], which
pictures have been scaled such that the widths of the finderefore determines the distribution of loop perimeters.
and coarse WL peaks are approximately the same. Bothhis suggests a possible explanation for the relative scal-
field ranges exhibit a WL peak and a set of quasiperiodicing of the features:AR is proportional to the number of
independent peaks which emerge on formation of the Sinajuantum interference loops confined in the billiard, which
billiard. Figures 5(c) and 5(d) and 5(e) and 5(f) show thefor generic chaotic systems is expected to obey a power law
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The smallest scale is set by the capability to resolve the
value of AR calculated fromD: When we examine the
fine WL peak, we see remnants of structure at an even
finer scale, with a characteristic peak width of 0.03 mT.
The expected amplitude estimated frainfor this field
scale is 14Q), of a similar order to the observed value of
5 Q. This indicates the possibility of a third hierarchy
of self-similarity, although experimental resolution limits
a clear identification to two field scales. Finally, we note
that fractal magnetoresistance behavior has been recently
predicted for mixed (chaotic and regular) classical phase
space [10]. It was shown that for billiards defined by para-
bolic potentials, a self-similar phase space structure con-
taining a hierarchy of cantori, produces fractal behavior in
the ACF. The fascinating quality of the self-similar be-
havior observed in our experiments is that the magneto-
fingerprint is not a rich spectrum of ACF patterns but very
distinct WL peaks and quasiperiodic structure.

We thank J.P. Bird, T.M. Fromhold, and G. Morriss
for helpful discussions.

FIG. 4. (a) Exponential temperature dependence of the con-
ductance amplitudAG of the fine WL resistance peaks for the
Sinai (V; = —2.8 V, V, = —0.52 V, circles) and squaréd/{ =

+0.7 V, Vy = —0.51 V, squares) billiards. (b) Fine magne-
toresistance structure for the Sinai billigid, = —2.8 V). The
temperatures an@B = 0 T) resistances are (0.03 K, 6.800k
bottom), (0.8 K, 7.42R), (1.6 K, 8.61 K2), and (1.9 K,
8.64 K2).
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