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Self-Similar Magnetoresistance of a Semiconductor Sinai Billiard
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We investigate the transition to a Sinai geometry by introducing a circular pattern at the cente
square mesoscopic billiard defined in a high quality AlGaAsyGaAs crystal. The transition induces
novel quantum interference structure in the magnetoresistance with a characteristic field scale o
order of magnitude smaller than previously reported in mesoscopic billiards. A systematic comp
of fine and coarse structures, which differ by an order of magnitude in field scale, demonstrat
first observation of geometry-induced “self-similarity” in the magnetoresistance of a semicond
system. [S0031-9007(97)02544-1]

PACS numbers: 72.20.My, 05.45.+b, 73.20.Dx, 73.20.Fz
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Quantum interference phenomena such as weak
calization (WL) and aperiodic conductance fluctuatio
(ACF) can be viewed as “magneto-fingerprints” of t
mesoscopic scattering processes determining electr
transport in semiconductors and metal films [1,2].
low temperatures, electron phase coherence is mainta
over large distances and a semiclassical analysis invo
monitoring the phase accumulated by electrons as t
move along classical trajectories shaped by elastic s
tering events. Quantum interference processes then r
from pairs of trajectories which form closed loops, a
are sensitive to the distribution of enclosed areas. Or
nally observed in disordered systems, improvements
semiconductor growth and device fabrication have led
the realization of cavities smaller than the average im
rity spacing, and studies of WL and ACF have found
new role as a probe of “quantum chaos.” For these “
liards,” at low temperatures large angle scattering occ
predominantly at the device boundaries so that distin
different characteristics are expected for idealized ca
geometries which generate regular or chaotic scatterin
the classical electron trajectories [3]. Differences in t
quantum behavior were investigated in experiments p
formed on circular (regular) and stadium (chaotic) shap
billiards. Analysis of the power spectrum of the ACF [
and the line shape of the WL peak [5] observed in the l
field magnetoresistance confirmed the predicted relat
ships between quantum behavior and classical scatte
dynamics. This link has also recently been explored
resonant tunneling diodes [6] and antidot superlattices

In this Letter, we investigate the transition to a Sin
geometry by introducing a circular pattern at the cen
of a square billiard. For a system described by hard-w
profiles, the convex surface of the circular scatterer act
a “Sinai diffuser” producing exponentially diverging cla
sical trajectories [8], in sharp contrast to the regular
namics supported by the empty square. As the size of
circle is increased, the rate at which trajectories inter
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with the Sinai diffuser before escaping through the lea
increases: In this way the Lyapunov exponent describ
the system [9] can effectively be tuned. For a physic
system, such as a semiconductor billiard, the exact ch
acter of the profiles defining the geometry is importan
Departures from strict hard-wall profiles for the Sinai di
fuser may lead to a mixed (regular and chaotic) classi
phase space, as found for other systems [7,10,11]. T
nature of the square-Sinai geometry evolution is of fu
damental interest. Furthermore, the ability to induce
distinct geometry change within a single device offers
comparatively unambiguous result—comparisons of tw
devices featuring different geometries [4,5] are potentia
restrictive as, for a physical system, variations attribut
to geometry must be separated from other changing
rameters, in particular, those related to the host mater
We will show that, during this novel transition, quantum
interference structure emerges in the magnetoresista
with a characteristic magnetic field scale over an ord
of magnitude smaller than that reported in previous stu
ies of mesoscopic billiards with significantly lower elec
tron mobilities [4,5]. Furthermore, this structure exhibi
a striking similarity to structure observed on a coars
magnetic field scale. This first experimental observati
of geometry-induced “self-similarity” in the magnetore
sistance has important implications for the relationsh
between quantum interference processes and the clas
phase space realized in a semiconductor billiard: Fr
tal behavior has recently been predicted in the ACF f
mixed classical phase space [10].

The device configuration is shown in the insets
Fig. 1. Three “outer” electrostatic gates deposited on t
surface of an AlGaAsyGaAs heterostructure form a 1mm
square with 0.2mm wide entrance and exit leads. Thi
square is significantly smaller than the 25mm mean free
path sled but larger than the 0.05mm Fermi wavelength
(corresponding to an electron density of2.3 3 1015 m22)
of the two-dimensional electron gas (2DEG) locate
© 1997 The American Physical Society
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FIG. 1. Magnetoresistance of the square (a) and the S
billiard (b) for the temperatures 30 mK (bottom), 0.1, 0.
0.8, 1.6, 2.5, and 3.3 K (top).V0 ­ 20.52 V. See text for
the labelsA, B, and C. The insets show a scanning electro
micrograph and dimensions of the device.

103 nm below the semiconductor surface. The “inne
circular gate (with a diameter 0.3mm) is connected by
a bridging interconnect [12] and biased at the voltageVI .
The potential profiles defined in the 2DEG are not affec
by the interconnect itself [12]. By applying a negativ
biasV0 to the outer gates to define the square, we evo
the device geometry by tuningVI . For VI ­ 10.7 V,
the presence of the central gate is minimized [13].
the positive bias is reduced, the region under the g
becomes partially depleted, followed by full depletio
at VI ­ 0 V, at which point the associated antidot
the center of the square changes the device geometr
a Sinai billiard. The radiusR of the channel formed
around the antidot is estimated to increase linearly w
approximate increments ofDR ø 140 nm for DVI ø
20.5 V (see below) [12]. The maximum bias of23.3 V
is determined by gate leakage current considerations.
conducting channel around the antidot can be furt
narrowed by an increase in the negative biasV0 and, as
the channel approaches pinch-off, the device geom
evolves beyond a Sinai billiard description. Furth
characterization details will be presented elsewhere.

Classical and quantum contributions to the magneto
sistance can be distinguished using the temperature
pendences of the squaresVI ­ 10.7 Vd and SinaisVI ­
23 Vd billiards shown in Figs. 1(a) and 1(b), respective
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Classical features, seen in the high temperature magn
resistance (T ­ 3.3 K, top traces), are used to monito
the evolution of the electron trajectories as the antidot
formed. General characteristics of the 3.3 K traces a
confirmed by a classical trajectory analysis used previou
to successfully model circular billiards [14]. In particula
we note that for the square billiard the resistance maxim
at zero field is due to reflection of trajectories from th
far wall back into the entrance lead. In contrast, the Sin
billiard has a minimum at zero field because a number
trajectories hit the antidot and are focused into the e
lead. The features markedA to C in Fig. 1 are absent from
the classical analysis and exhibit a sharper temperat
dependence than expected classically [13–15], indicat
a quantum mechanical origin. The structure markedC is
matched to the Shubnikov-de Haas oscillations in the b
2DEG. FeatureA is a weak localization peak, and its ful
width at half maximumsDBFWHM ø 10 mTd is con-
firmed for our Sinai billiard by solving the Schrödinge
equation using the finite-element numerical scheme
scribed elsewhere [16]. Approximating the characteris
trajectory loop areaA using the equationDBFWHM ­ hy
2peA [4], the WL process involves loop areas substantia
smaller than the cavity, as has recently been reported
other devices [13,17]. The structure markedB emerges
as the antidot is formed and is strikingly different t
typical ACF seen in devices with smallerle [4,18]
(2–5 mm compared to our system’s 25mm). Evidence
for conductance fluctuations which are periodic in ma
netic field has been seen in other billiards [4,5,19] a
attributed to unstable periodic orbits. If we interpre
the structure as oscillations which are periodic in ma
netic field, and apply the magnetic flux relationsh
DB ­ f0yA (where f0 ­ hye) to the magnetic field
periodDB, assuming a circular trajectory for the loop are
A, the corresponding radiusR is physically reasonable:
0.32 mm for VI ­ 23.0 V. However, by fine tuning
VI and V0 the amplitudes of neighboring maxima ar
shown to evolve independently (see later), and an
ternative picture of distinct resistance peaks is appropria

Figure 2 shows the evolution of the classical an
quantum structure as the device undergoes the transi
from square (VI ­ 10.7 V, bottom trace) to Sinai billiard
(VI ­ 22.9 V, top trace) for a fixedV0 and a lattice
temperature ofT ­ 30 mK. The initial sharp rise in
background resistance observed asVI is changed is
associated with the formation of the antidot, followed b
a more gradual increase as the antidot radius increa
A close inspection of the WL peak reveals the fine sca
structure shown in Fig. 3. Features on this fine magne
field scale have not previously been reported for billiard
The temperature dependence of the fine structure, sho
in Fig. 4, implies a quantum mechanical origin. For bo
the Sinai and square billiards, the conductance amplitu
DGF of the fine central peak decreases exponentially w
increasing temperature, consistent with recent stud
of WL processes in billiards [13,18]. The conductanc
1953
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FIG. 2. The magnetoresistance showing the transition from
square (bottom trace,VI ­ 10.7 V) to Sinai billiard (top trace,
VI ­ 22.9 V). The intermediate traces have an increment
0.4 V in VI . T ­ 30 mK. V0 ­ 20.51 V.

amplitude of the fine structure increases as the chan
around the antidot is formed, consistent with quantu
interference of trajectories shaped by the channel wit
the Sinai geometry. Furthermore, ifV0 is now increased
and the channel approaches pinch-off, a decrease
conductance amplitude is observed for all fine struct
features (note, because the background resistancR
increases significantly asV0 is increased, a decreas
in conductance amplitudeDG produces an increase i
resistance amplitudeDR for certain features becaus
DR ­ 2DGR2. See later). The conductance amplitud
of the individual features evolve independently asV0

is increased, with the narrow central resistance p
decreasing most dramatically. We attribute this pe
sDBFWHM ­ 0.3 mTd to a second WL process. Usin
DBFWHM ­ hy2peA, the calculated typical loop are
is twice that of the lithographic square, correspondi
to multiple orbits of the billiard. Such long trajectorie
sample all features of the device geometry, and the
shape of the WL peak would be expected to chan
from linear (regular) to Lorentzian (chaotic) [5] as th
device geometry evolves from a square to a Sinai billia
Figure 3(b) shows the observed change in line shape.

The remarkable similarity of the “magneto-fingerprint
observed over the coarse (Fig. 2) and fine (Fig. 3) m
netic field scales for the Sinai billiard is explored furth
in Fig. 5. Figure 5(a) details the fine structure observed
top of the coarse WL peak shown in Fig. 5(b). The tw
pictures have been scaled such that the widths of the
and coarse WL peaks are approximately the same. B
field ranges exhibit a WL peak and a set of quasiperiod
independent peaks which emerge on formation of the S
billiard. Figures 5(c) and 5(d) and 5(e) and 5(f) show t
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FIG. 3. (a) The fine structure as a function ofVI .
T ­ 30 mK, V0 ­ 20.51 V. The traces are vertically
offset for clarity. From the bottom, theVI and R0 values
are s10.7 V, 3.24 kVd, s10.3 V, 3.71 kVd, s20.7 V, 4.1 kVd,
s21.9 V, 4.96 kVd, s22.3 V, 5.26 kVd, s22.7 V, 5.58 kVd,
s22.9 V, 5.72 kVd, and s23.3 V, 6.05 kVd. (b) The VI ­
22.3 V (fine) trace approximately vertically aligned to the
VI ­ 10.3 V (bold) trace to facilitate a comparison of the line
shapes of the fine central peak.

corresponding pairs of traces asV0 is made more nega-
tive. The evolution of the fine structure follows closel
that observed on the coarse scale, suggesting a no
self-similarity in the magnetoresistance [20]. To qua
tify these observations, we estimate the fractal dimens
[21] for the pair of traces asD ø 2 2 flnsDRCyDRFdy
lnsDBCyDBFdg, whereDRF andDRC are the amplitudes
of the fine and coarse features.DBF and DBC are the
corresponding magnetic field scales. A comparison
the WL peaks in Figs. 5(a) and 5(b) givesD ø 1.5.
Given thatDB is inversely proportional toA, the expres-
sion for D implies that over the experimentally observe
scalesDR ~ A2g, whereg ­ 2 2 D ø 0.5. The trajec-
tory lengths corresponding to the observed values ofDB
are of the order of 1–10mm and are not therefore pre-
dominantly affected by phase-breaking scattering eve
(assuming the phase coherence length to be significan
larger than thele value of 25mm [18,22]). However, the
trajectory lengths are comparable to the calculated ty
cal dwell length within the billiard of 10mm [16], which
therefore determines the distribution of loop perimete
This suggests a possible explanation for the relative sc
ing of the features:DR is proportional to the number of
quantum interference loops confined in the billiard, whic
for generic chaotic systems is expected to obey a power l
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FIG. 4. (a) Exponential temperature dependence of the
ductance amplitudeDG of the fine WL resistance peaks for th
Sinai (VI ­ 22.8 V, V0 ­ 20.52 V, circles) and square (VI ­
10.7 V, V0 ­ 20.51 V, squares) billiards. (b) Fine magn
toresistance structure for the Sinai billiardsVI ­ 22.8 Vd. The
temperatures andsB ­ 0 Td resistances are (0.03 K, 6.81 kV,
bottom), (0.8 K, 7.42 kV), (1.6 K, 8.61 kV), and (1.9 K,
8.64 kV).

dependence onA [10]. Within this picture, it is importan
to establish the range ofDB for which self-similar struc-
ture can be experimentally observed. The largest sca
limited to magnetic fields significantly below that at whi
the cyclotron radius matches the device sizesø150 mTd.

FIG. 5. ”Fine” structure (a), (c), (e) and correspond
“coarse” structure (b), (d), (f) observed for the Sinai billia
sVI ­ 22.7 Vd. T ­ 30 mK. The V0 and sB ­ 0 Td resis-
tances are (a), (b)20.51 V, 4.8 kV, (c), (d) 20.52 V, 7.5 kV,
and (e), (f)20.55 V, 22 kV.
n-

is

The smallest scale is set by the capability to resolve
value of DR calculated fromD: When we examine the
fine WL peak, we see remnants of structure at an ev
finer scale, with a characteristic peak width of 0.03 m
The expected amplitude estimated fromD for this field
scale is 14V, of a similar order to the observed value o
5 V. This indicates the possibility of a third hierarch
of self-similarity, although experimental resolution limit
a clear identification to two field scales. Finally, we no
that fractal magnetoresistance behavior has been rece
predicted for mixed (chaotic and regular) classical pha
space [10]. It was shown that for billiards defined by par
bolic potentials, a self-similar phase space structure c
taining a hierarchy of cantori, produces fractal behavior
the ACF. The fascinating quality of the self-similar be
havior observed in our experiments is that the magne
fingerprint is not a rich spectrum of ACF patterns but ve
distinct WL peaks and quasiperiodic structure.
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