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Local Scale Invariance and Strongly Anisotropic Equilibrium Critical Systems
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A new set of infinitesimal transformations generalizing scale invariance for strongly anisotropic
critical systems is considered. It is shown that such a generalization is possible if the anisotropy
exponentyd = 2/N, with N = 1,2,3.... Differential equations for the two-point function are derived
and explicitly solved for all values aV. Known special cases are conformal invarian¥e=f 2) and
Schrodinger invarianceM = 1). ForN = 4 andN = 6, the results contain as special cases the exactly
known scaling forms obtained for the spin-spin correlation function in the axial next-nearest-neighbor
spherical model at its Lifshitz points of first and second order. [S0031-9007(97)02617-3]

PACS numbers: 64.60.Ht, 05.20.-y

The notion of scale invariance is central to the presenivherex; , are the scaling dimensions of the (scalar) fields
understanding of critical phenomena. Here we are interep; , which are assumed to be quasiprimary in the sense of
ested in strongly anisotropic criticality. There are manyRef. [5].
physical examples of this, like critical dynamics and Second, for # = 2, the extension of Eq. (1) to
nonequilibrium dynamics [1], domain growth [2], mag- space-time-dependent scaliig= b(7,t) leads to the
netic systems with competing interactions [3], or particlerequirement ofSchrodinger invariancg6,7]. Since this
reaction systems such as directed percolation. By defincorresponds to the “nonrelativistic” limit of the conformal
tion, these systems are characterized by the condition thgroup [8], local fields¢; are characterized by two quan-
the critical two-point function€ transform under rescal- tum numbers, the scaling dimensians and the masses
ing as M; = 0. For scalar quasiprimary fields, the two-point

Cbr.b’t) = b=2C(r.1), (1) function is, up to normalization [9,10]

_ _ _ (1(F1, 1) 5 (F2, 1)) = b, 0, (11 — 12)" 6 m,.m,
where r,t label “space” and “time” coordinates; is

a scaling dimension, and = v /v, is the anisotropy X ex _M M) 4)
exponent (in many cases, it is also referred to as the 2 - nh
dynamic exponent). In this Letter, we confine ourselves with ¢; > t,. In comparing Egs. (3) and (4), we note that
to strongly anisotropiequilibrium systems. the first line of (4) is similar to the conformal invariance
Equation (1) can be rewritten as result, while the terms containing the masses reflect the
0 nonrelativistic nature of the problem fa# = 2. For
C(r,1) = t‘zx/9d><—>, (2) 6 =1, Eq. (3) is completely standard and there are quite
t a few statistical mechanics models with= 2 which

where ®(u) is a scaling function. Some information reproduce (4); see Refs. [10,11].

on the form of ®(u) is readily available. For = 0, What are common features of conformal and

one expect< (0,7) ~ 1~2*/? and forr = 0, one expects Schrédinger transformations which might serve as a

C(r,0) ~ r~2*. This implies®(u) = ®, foru — 0 and basis for generalizing beyonél = 1,2? For notational

D (u) = Pou~2/? for u — o, whered, . are generically simplicity, we shall work from now on in two space

nonvanishing constants. dimensions or one time and one space dimension,
Is it possible to obtain more information abo@t(x)  respectively, but the generalization to any number of

on a general basis without going back to explicit modeldimensions is immediate. Working in (complex) light-

calculations? cone coordinates = x + iy,Z = x — iy, the conformal
Indeed, this has been affirmatively answered in twdransformations are
cases. First, foisotropiccritical systems, that is, fat = az + B
i i z—7 = ——7; ad — By =1 (5)
1, the extension of Eq. (1) to space-dependent rescaling yz + 6 ’

factors b = b(F) leads to the requirement @onformal 4.4 similarly forz. The infinitesimal generators are
invariance of the correlation functions [4]. (We are not ¢, = —z"*19, and satisfy the commutation relations

going to restrict ourselves to two dimensions and shaltgn €] = (n — m)€nsnm. The setl.y, €} generates the

thus sidestep the extremely powerful and elegant worlg;shiys transformations (5). The space-time transforma-
done in 2D, as initiated in Ref. [5].) Then the critical tjons of the Schrédinger group are [6,7]

two-point correlation function is, up to normalization [4] at + B F 4+ vt +a
t— 1t = ——2 r—r =

C(7) = (¢1(F) b)) = BumlFt — 72l 720, (3) vt i+ 0 ©
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(with «6 — By = 1) which contains the Galilei group ditions. Thus the operators applied to the two-point func-
as a subgroup. As is well known from nonrelativistic tions should provide a realization of a finite-dimensional
guantum mechanics, the wave functig(r, ) transforms Lie algebra.

under a unitaryprojectiverepresentatioril of the Galilei We now proceed to list the consequences of the
transformation [12] above assumptions. The generalyy, n = —1,0,1 of
. the Mobius transformations must contain the texjn=

U 'y(r,nU = ex;{%(vzt + 2vr)}¢(r + vt,1), —t"*19, + ... and thus satisfy the commutation relations

(X1, Xm] = (n — m)X,+m. Inorder to keep the “confor-
(7)  mal” structure of the transformations, we must require that
wherem = 0 is the mass of the particle. This gives rise these commutation relations are also satisfied by the final

to the Bargmann superselection rule [12,7] already preseiEneratorst,. Then the exP'fl't form (_)?(0 implies that
in (4). If a wave functiony is characterized by the mass UP 10 mass termsX, = —¢""'9, — 6~ (n + 1)i"rd,.
m = 0, its complex conjugates” is characterized by-rm. Next, we study the action 0,1(,.1 on the space trapsla—
This correspondence between a figddand ¢ is to be ~ tion operator—a,. We shall write¢ = 2/11\Y§nd define,
kept when going over to diffusive behavier — ;M. UP t0 mass terms, the operatdfs = —rV/2*"9, with
An analogous statement applies to the full Schrédingef? = ~N/2 =k, k =0,1,.... The nonvanishing com-
group [7,13]. The infinitesimal generators must thereforénutators ofX,, andY,, are

contain mass terms and may be written in the form [10] [X,. X, ] = (0 — m)X,sp .

_ _4ntl _ n+1 n _ n(n + 1) n—1.2 (10)
Xn =t 9 2 o, 4 Mi " [Xn’ Ym] = <N % - m>Yn+m»
1 _
Y, = —1""129, — <m + E>3Vlt’” 12y (8) In particular, [X1,Y-np]l = (N — K)Y-n/2sk+1-
Thus, the repeated action & onY_y/,, = —d, is cre-
M, = —t"M. ating an infinite set of generators. This can be truncated
and the nonvanishing commutators are only if N =2/ is a positive integerN =1,2,....
Therefore the list of possible values @fis
[an Xm] = (I’l - m)Xn+m s ) s 1 2 1
n 0=—=21,—,—,—, —,.... (11)
(X Yul = (5 = m JYusm, N 3'2°5°3
[X,, M,,] = —mM, s, [Y,, Y] = (1 — m)M,. A few remarks are in order. The conformal properties

of the tranformations sit in the time direction. It should

The set{X-i,Xo, Y=1/2, Mo} generates the transforma- thus be the temporal degrees of freedom which render
tions (6). the system critical. Therefore one should expect that

We now specify the conditions under which we shallthe results for the two-point function to be derived
attempt to consider an arbitrary value of the expor&ent pelow should apply independently of whether or not the
These conditions are formulated as to remain as close agpatial” degrees of freedom by themselves furnish a
possible to the known situations of either conformal orcritical system. One might think of interchanging the
Schrédinger invariance. o . roles of space and time coordinates and thus obtain a set

(l)_Slnce in both cases, Mobius trarjsformatlons plgy ®f anisotropy exponent§ = % 1, %2 To do this,
prominent role, we shall seek space-time transformation§owever, one must impose conformal invariance on the
which in the time coordinate undergoes a Mdbius transgpatial degrees of freedom and this means that the spatial

formation degrees of freedom alone should describe a system at
. at+ B a critical point. While that would be fine for a study
t—t = vit o ; ad — By =1. (9)  of critical dynamics, many other examples of strongly

_ anisotropic critical systems are not at a static critical point.
(2) The generator for scale transformations should reath (1 + 1)D, however, this distinction should not be very

Xo = —td; — éra,. important, since a one-dimensional subsystem with short-
(3) Spatial translation invariance is required. ranged interactions cannot order by itself.
(4) The generators should contain “mass” terms, built Finally, we have to see whether it is possible to include
in analogy to the mass terms fér= 2 in (8). mass terms into the generataxs, Y,, without spoiling

(5) We want to use these transformations to derive difthe commutator relations (10). Indeed, this can be done.
ferential equations for the two-point functions. We shallThe details of this calculation will be presented elsewhere;
require that when applied to a two-point function, thehere we merely quote the result. One solution for the
generators will yield dinite number of independent con- generatorsX; andY_y,»+; (which generate the so-called
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“special” and “Gallilei” transformations) is a QY V() - 220 w) — (vQ) =0 (17)
X) = —129, — Ntro, — ar*ol ™!, subject to the boundary condition@(0) = const and
) Q(v) ~ v ¢ asv — . The general solution (foN =
@ . N-1 :
Y—N/2+1 = —1d, — W ro; -, (12) 2) of Eqg. (17) IS

wherea is a dimensionful, in general nonuniversal, con- () () = Z byv? Fy

stant which parametrizes the mass term. When apply-

ing these generators to a two-point functién= (¢ ¢,), L+ p p p—1
where the fields are characterized by two quantum num- Fr = ZFNl(T, L+ =1+ ,

bers, the scaling dimension and the “mass’w;, consis- N N
tency can be achieved only if p+2 oV ) 18)
ar = (—1)Va,. (13) N ' NVN“2q

We point out that for systems withi even, the distinction where ,Fy-; is a generalized hypergeometric function
between¢ and ¢* becomes unnessary. In principle, it and theb, are free parameters. In order to check the
is even possible to introduce universal mass constant boundary conditions, we recall the known [14] asymptotic
a which is the same for all fields. On the other behavior of theF,. The leading behavior fov — < for
hand, for N odd, the @; must be kept as peculiar each term is of the order efp(N — 2)v"¥/V=2], where

quantum numbers of the field$;. To each fieldg;, the constanft > 0. For N = 3 the condition

characterized by the numbeps, «;), there is a conjugate N-2 T(p + 1)

field ¢; characterized byx;, —«;). Furthermore, it can Z T ,,+117 e < 2>P/N =0 (19)

be checked using (13) that the two-particle operators built ST (AN

from the X,,, Y, provide onC a realization of the Lie g suffiment to cancel the entire exponential contribu-

algebra (10). _ _ tion. Eliminatingby -, the final result become@ (v) =
Two special cases can be easily recognized. Ncr N;g b,Q0,(v), with by # 0. The asymptotic behaviour

.- p pP=Ep

2, we recover the familiar conformal algebra, with =

€, +¢, and Y, =i, — €,), n = —1,0,1, provided QO ~ {v”; v—0, 20

that the massa = —c~? (where ¢ is the speed of r) Qev™¢ v (20)

light, normally set toc = 1 when introducing light-coneé s foynd to be in complete agreement with the requested
coordinatesz,z =t * /ar). For N = 1, we recover boundary conditions, where

the generators (8) of the Schrédinger algebra, with= _ _
M(p+1) TEFHTA + 45

%‘,Mi' Q,(v) =v? -

We are now ready to calculate the two-point function ” I N(RAS) Y S (N - 1)
explicitly. If X'@ is the generatoX, acting on particle ay \(PF2NIN
a, a = 1,2 (and simil)arly for thev,,), the two-particle X <ﬁ> VAN P (21)

operators ar&X,, = X»  + X» . We are interested in the (PN
two-point function Q. — < ) PN T(F) T(p + 1)

_ 1
Glrioraitit) = ($1(r (), (14) Fa =0 1y
and the covariance dfi is expressed through the condi- 7S (p + 2)]

tions (meaning that they; are quasiprimary [5]) F(P+§)SIF{N (p + Olsinz( — 21
),\(, _xp tx (22)
o6 =0, Equation (16) together with Egs. (18) and (19) or (21)
gives the solution to our question. After normalization,
X,G = <x_1 no+ 2 t2>G, (15) N — 3 of the parameters, are still arbitrary.
0 0 It remains to be seen whether there exist examples
X_.,G=Y,G =0, which do reproduce these predictions. Here, we shall

consider the spin-spin correlator in spin systems with
axial next nearest neighbor interactions [15,3]. The spin
Hamiltonian is

with m = —=N/2,—-N/2 + 1,...,N/2. We write t =
ty — andr = r; — rp. Inaddition, we put = (x; +
x2)/6. The scaling of the two-point function can be

written as
= ‘JZ sisj + KJZS isif+1,  (23)
t i
G = G(r’t) = 6x1,xz6a1,a2r_2xlﬂ<ﬂ>, (16) (i)
r wheres; is a O(n) vector spin and the first ternv (>
where() (v) satisfies the differential equation 0) describes nearest-neighbor ferromagnetic interactions
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while the second termx«(> 0) contains next-nearest- point functions. This will be reported elsewhere. All in
neighbor interactions along a single axis. By definitionall, further explicit model results will be needed in order
[15], the meeting point of the paramagnetic, ferromagto gauge the merits of this or any other general approach

netic, and incommensurable phases of the model is termed strongly anisotropic scaling.

a Lifshitz point (of first order) and is known to show
strongly anisotropic scaling, with correlation length ex-
ponentsy| = v, v, = v¢p Measured parallel and per-
pendicular to the axis. The anisotropy exponént=
v/vy = 1/2 independently [15] of the value af. This
corresponds t&V = 4. The fact that = %stays fixed at

In conclusion, we have examined a set of infinitesi-
mal transformations which fo§ = 2/N, N =1,2,3,...
generalize scale invariance. We have seen how to cal-
culate from these the two-point functions for strongly
anisotropic equilibrium critical systems. Lifshitz points in
the ANNNS (spherical) model apparently provide model

its mean-field value may point toward the existence of @&xamples which realize these transformations.

hidden symmetry which prevents its renormalization [16]
In the n — o limit one recovers the spherical (or
ANNNS [3]) model and the spin-spin correlation function
C(ry,71) = (857,505 at the Lifshitz point is exactly
known ind dimensions. The result is [17]
>, (24)

adrg(d—d [ 1 i
"N 32¢, 1)

2
where Cy and ¢, are known (nonuniversal) constants,
d. is the lower critical dimension, andV(a,x) =
o S A9 On the other hand, fonv = 4
Eq. (16) givesG(r,1) ~ r~¢/2Q(v). As for the scaling
function Q(v), we have from (21) that faN = 4
2

_ I G/4) W(i v )
T(Z/4)  \ 4 2Jar )’

Thus, with the correspondence«< r|, r < r,, and

a; = 8¢y, the order parameter scaling function for the
ANNNS modelat the first order Lifshitz point is exactly
reproduced for the parameter valbie= 0.

Higher order Lifshitz points [3] can be reached by
adding further axial interaction terms in (23).
order Lifshitz points correspond # = % orN = 6. We
have checked that the exactly known spin-spin correlatio
function for the ANNNS model [17] does agree with the
scaling form (21).

C(ry,71) = Cor,

Qo(v) (25)

A tempting open question is whether the scaling[15]

function of the spin-spin correlator of the ANNNI model
at the Lifshitz point (in 3D [3]), which still corresponds

to N = 4 [15], can be described in the same framework

with a different value ob,. Recently, a new asymmetric
six-vertex model with ad = 5 critical point has been

2
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