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Local Scale Invariance and Strongly Anisotropic Equilibrium Critical Systems
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A new set of infinitesimal transformations generalizing scale invariance for strongly anisotro
critical systems is considered. It is shown that such a generalization is possible if the anisot
exponentu ­ 2yN, with N ­ 1, 2, 3 . . .. Differential equations for the two-point function are derived
and explicitly solved for all values ofN. Known special cases are conformal invariance (N ­ 2) and
Schrödinger invariance (N ­ 1). For N ­ 4 andN ­ 6, the results contain as special cases the exact
known scaling forms obtained for the spin-spin correlation function in the axial next-nearest-neigh
spherical model at its Lifshitz points of first and second order. [S0031-9007(97)02617-3]
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The notion of scale invariance is central to the pres
understanding of critical phenomena. Here we are in
ested in strongly anisotropic criticality. There are ma
physical examples of this, like critical dynamics an
nonequilibrium dynamics [1], domain growth [2], mag
netic systems with competing interactions [3], or partic
reaction systems such as directed percolation. By de
tion, these systems are characterized by the condition
the critical two-point functionsC transform under rescal
ing as

C sbr , butd ­ b22xC sr, td , (1)

where r , t label “space” and “time” coordinates,x is
a scaling dimension, andu ­ nkyn' is the anisotropy
exponent (in many cases, it is also referred to as
dynamic exponentz). In this Letter, we confine ourselve
to strongly anisotropicequilibriumsystems.

Equation (1) can be rewritten as

C sr , td ­ t22xyuF

√
ru

t

!
, (2)

where Fsud is a scaling function. Some informatio
on the form of Fsud is readily available. Forr ­ 0,
one expectsC s0, td , t22xyu and for t ­ 0, one expects
C sr , 0d , r22x. This impliesFsud . F0 for u ! 0 and
Fsud . F`u22xyu for u ! `, whereF0,` are generically
nonvanishing constants.

Is it possible to obtain more information aboutFsud
on a general basis without going back to explicit mod
calculations?

Indeed, this has been affirmatively answered in t
cases. First, forisotropiccritical systems, that is, foru ­
1, the extension of Eq. (1) to space-dependent resca
factors b ­ bs$rd leads to the requirement ofconformal
invarianceof the correlation functions [4]. (We are no
going to restrict ourselves to two dimensions and sh
thus sidestep the extremely powerful and elegant w
done in 2D, as initiated in Ref. [5].) Then the critica
two-point correlation function is, up to normalization [4]

C s$rd ­ kf1s$r1df2s$r2dl ­ dx1,x2 j$r1 2 $r2j
22x1 , (3)
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wherex1,2 are the scaling dimensions of the (scalar) fiel
f1,2 which are assumed to be quasiprimary in the sense
Ref. [5].

Second, for u ­ 2, the extension of Eq. (1) to
space-time-dependent scalingb ­ bs$r, td leads to the
requirement ofSchrödinger invariance[6,7]. Since this
corresponds to the “nonrelativistic” limit of the conforma
group [8], local fieldsfi are characterized by two quan
tum numbers, the scaling dimensionsxi , and the masses
Mi $ 0. For scalar quasiprimary fields, the two-poin
function is, up to normalization [9,10]
kf1s$r1, t1dfp

2s$r2, t2dl ­ dx1,x2st1 2 t2d2x1dM1,M2

3 exp

√
2

M1

2
s$r1 2 $r2d2

t1 2 t2

!
(4)

with t1 . t2. In comparing Eqs. (3) and (4), we note th
the first line of (4) is similar to the conformal invarianc
result, while the terms containing the masses reflect
nonrelativistic nature of the problem foru ­ 2. For
u ­ 1, Eq. (3) is completely standard and there are qu
a few statistical mechanics models withu ­ 2 which
reproduce (4); see Refs. [10,11].

What are common features of conformal an
Schrödinger transformations which might serve as
basis for generalizing beyondu ­ 1, 2? For notational
simplicity, we shall work from now on in two space
dimensions or one time and one space dimensi
respectively, but the generalization to any number
dimensions is immediate. Working in (complex) ligh
cone coordinatesz ­ x 1 iy, z ­ x 2 iy, the conformal
transformations are

z ! z0 ­
az 1 b

gz 1 d
; ad 2 bg ­ 1 , (5)

and similarly for z. The infinitesimal generators ar
,n ­ 2zn11≠z and satisfy the commutation relation
f,n, ,mg ­ sn 2 md,n1m. The seth,61, ,0j generates the
Möbius transformations (5). The space-time transform
tions of the Schrödinger group are [6,7]

t ! t0 ­
at 1 b

gt 1 d
, r ! r 0 ­

r 1 yt 1 a
gt 1 d

, (6)
© 1997 The American Physical Society
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(with ad 2 bg ­ 1) which contains the Galilei group
as a subgroup. As is well known from nonrelativis
quantum mechanics, the wave functioncsr , td transforms
under a unitaryprojectiverepresentationU of the Galilei
transformation [12]

U21csr , tdU ­ exp

∑
im
2

°
y2t 1 2yr

¢∏
csr 1 yt, td ,

(7)

wherem $ 0 is the mass of the particle. This gives ri
to the Bargmann superselection rule [12,7] already pre
in (4). If a wave functionc is characterized by the mas
m $ 0, its complex conjugatecp is characterized by2m.
This correspondence between a fieldf and fp is to be
kept when going over to diffusive behaviorm ! iM .
An analogous statement applies to the full Schrödin
group [7,13]. The infinitesimal generators must theref
contain mass terms and may be written in the form [10

Xn ­ 2tn11≠t 2
n 1 1

2
tnr≠r 2

nsn 1 1d
4

M tn21r2,

Ym ­ 2tm11y2≠r 2

µ
m 1

1
2

∂
M tm21y2r , (8)

Mn ­ 2tnM .

and the nonvanishing commutators are

fXn, Xmg ­ sn 2 mdXn1m ,

fXn, Ymg ­

µ
n
2

2 m

∂
Yn1m ,

fXn, Mmg ­ 2mMn1m, fYn, Ymg ­ sn 2 mdMn1m .

The set hX61, X0, Y61y2, M0j generates the transform
tions (6).

We now specify the conditions under which we sh
attempt to consider an arbitrary value of the exponenu.
These conditions are formulated as to remain as clos
possible to the known situations of either conformal
Schrödinger invariance.

(1) Since in both cases, Möbius transformations pla
prominent role, we shall seek space-time transformat
which in the time coordinate undergoes a Möbius tra
formation

t ! t0 ­
at 1 b

gt 1 d
; ad 2 bg ­ 1 . (9)

(2) The generator for scale transformations should r
X0 ­ 2t≠t 2

1
u r≠r .

(3) Spatial translation invariance is required.
(4) The generators should contain “mass” terms, b

in analogy to the mass terms foru ­ 2 in (8).
(5) We want to use these transformations to derive

ferential equations for the two-point functions. We sh
require that when applied to a two-point function, t
generators will yield afinite number of independent con
nt
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ditions. Thus the operators applied to the two-point fun
tions should provide a realization of a finite-dimension
Lie algebra.

We now proceed to list the consequences of t
above assumptions. The generatorXn, n ­ 21, 0, 1 of
the Möbius transformations must contain the termXn ­
2tn11≠t 1 . . . and thus satisfy the commutation relation
fXn, Xmg ­ sn 2 mdXn1m. In order to keep the “confor-
mal” structure of the transformations, we must require th
these commutation relations are also satisfied by the fi
generatorsXn. Then the explicit form ofX0 implies that
up to mass terms,Xn ­ 2tn11≠t 2 u21sn 1 1dtnr≠r .
Next, we study the action ofXn on the space transla-
tion operator2≠r . We shall writeu ­ 2yN and define,
up to mass terms, the operatorsYm ­ 2tNy21m≠r with
m ­ 2Ny2 ­ k, k ­ 0, 1, . . . . The nonvanishing com-
mutators ofXn andYm are

fXn, Xmg ­ sn 2 mdXn1m ,

fXn, Ymg ­

µ
N

n
2

2 m

∂
Yn1m ,

(10)

In particular, fX1, Y2Ny21kg ­ sN 2 kdY2Ny21k11.
Thus, the repeated action ofX1 on Y2Ny2 ­ 2≠r is cre-
ating an infinite set of generators. This can be truncat
only if N ­ 2yu is a positive integer,N ­ 1, 2, . . ..
Therefore the list of possible values ofu is

u ­
2
N

­ 2, 1,
2
3

,
1
2

,
2
5

,
1
3

, . . . . (11)

A few remarks are in order. The conformal propertie
of the tranformations sit in the time direction. It shoul
thus be the temporal degrees of freedom which rend
the system critical. Therefore one should expect th
the results for the two-point function to be derive
below should apply independently of whether or not th
“spatial” degrees of freedom by themselves furnish
critical system. One might think of interchanging th
roles of space and time coordinates and thus obtain a
of anisotropy exponentsu ­

1
2 , 1, 3

2 , 2, . . .. To do this,
however, one must impose conformal invariance on t
spatial degrees of freedom and this means that the spa
degrees of freedom alone should describe a system
a critical point. While that would be fine for a study
of critical dynamics, many other examples of strong
anisotropic critical systems are not at a static critical poin
In s1 1 1dD, however, this distinction should not be ver
important, since a one-dimensional subsystem with sho
ranged interactions cannot order by itself.

Finally, we have to see whether it is possible to includ
mass terms into the generatorsXn, Ym without spoiling
the commutator relations (10). Indeed, this can be do
The details of this calculation will be presented elsewhe
here we merely quote the result. One solution for th
generatorsX1 andY2Ny211 (which generate the so-called
1941
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“special” and “Galilei” transformations) is

X1 ­ 2t2≠t 2 Ntr≠r 2 ar2≠N21
t ,

Y2Ny211 ­ 2t≠r 2
2a

N
r≠N21

t , (12)

wherea is a dimensionful, in general nonuniversal, co
stant which parametrizes the mass term. When ap
ing these generators to a two-point functionC ­ kf1f2l,
where the fields are characterized by two quantum nu
bers, the scaling dimensionxi and the “mass”ai , consis-
tency can be achieved only if

a1 ­ s21dNa2 . (13)

We point out that for systems withN even, the distinction
betweenf and fp becomes unnessary. In principle,
is even possible to introduce auniversal mass constant
a which is the same for all fields. On the othe
hand, for N odd, the ai must be kept as peculia
quantum numbers of the fieldsfi. To each fieldfi,
characterized by the numberssxi, aid, there is a conjugate
field f

p
i characterized bysxi, 2aid. Furthermore, it can

be checked using (13) that the two-particle operators b
from the Xn, Ym provide onC a realization of the Lie
algebra (10).

Two special cases can be easily recognized. ForN ­
2, we recover the familiar conformal algebra, withXn ­
,n 1 ,n and Yn ­ is,n 2 ,nd, n ­ 21, 0, 1, provided
that the massa ­ 2c22 (where c is the speed of
light, normally set toc ­ 1 when introducing light-cone
coordinatesz, z ­ t 6

p
a r). For N ­ 1, we recover

the generators (8) of the Schrödinger algebra, withai ­
1
2Mi .

We are now ready to calculate the two-point functio
explicitly. If Xsad

n is the generatorXn acting on particle
a, a ­ 1, 2 (and similarly for theYm), the two-particle
operators areeXn ­ X

s1d
n 1 X

s2d
n . We are interested in the

two-point function

Gsr1, r2; t1, t2d ­ kf1sr1, t1dfp
2 sr2, t2dl , (14)

and the covariance ofG is expressed through the cond
tions (meaning that thefi are quasiprimary [5])

eX0G ­
x1 1 x2

u
G,

eX1G ­

µ
x1

u
t1 1

x2

u
t2

∂
G , (15)

eX21G ­ eYmG ­ 0 ,

with m ­ 2Ny2, 2Ny2 1 1, . . . , Ny2. We write t ­
t1 2 t2 andr ­ r1 2 r2. In addition, we putz ­ sx1 1

x2dyu. The scaling of the two-point function can b
written as

G ­ Gsr , td ­ dx1,x2 da1,a2r
22x1V

µ
t

r2yN

∂
, (16)

whereVsyd satisfies the differential equation
1942
-
y-

-

ilt

a1VsN21dsyd 2 y2V0syd 2 z yVsyd ­ 0 (17)

subject to the boundary conditionsVs0d ­ const and
Vsyd , y2z asy ! `. The general solution (forN $

2) of Eq. (17) is

Vsyd ­
N22X
p­0

bpypFp ;

Fp ­ 2FN21

√
z 1 p

N
, 1; 1 1

p
N

, 1 1
p 2 1

N
,

. . . ,
p 1 2

N
;

yN

NN22a1

!
, (18)

where 2FN21 is a generalized hypergeometric functio
and thebp are free parameters. In order to check th
boundary conditions, we recall the known [14] asymptot
behavior of theFp . The leading behavior fory ! ` for
each term is of the order expfAsN 2 2dyNysN22dg, where
the constantA . 0. For N $ 3 the condition

N22X
p­0

bp
Gsp 1 1d

Gsp11
N dGsp1z

N d

µ
a1

N2

∂
pyN ­ 0 (19)

is sufficient to cancel the entire exponential contribu
tion. EliminatingbN22, the final result becomesVsyd ­PN23

p­0 bpVpsyd, with b0 fi 0. The asymptotic behaviour

Vpsyd >
Ω

yp ; y ! 0 ,
V`y2z ; y ! `

(20)

is found to be in complete agreement with the request
boundary conditions, where

Vpsyd ­ ypFp 2
Gsp 1 1d

Gs p11
N dGs p1z

N d

Gs N21
N dGs1 1

z22
N d

GsN 2 1d

3

µ
a1

N2

∂s p122NdyN

yN22FN22 , (21)

V` ­ 2

µ
a1

N2

∂sz 1pdyN Gs12z

N d
Gs1 2 z d

Gsp 1 1d
Gsp11

N d

3
p sinf p

N sp 1 2dg

Gs p1z

N d sinf p

N sp 1 z dg sinf p

N sz 2 2dg
.

(22)

Equation (16) together with Eqs. (18) and (19) or (21
gives the solution to our question. After normalization
N 2 3 of the parametersbp are still arbitrary.

It remains to be seen whether there exist examp
which do reproduce these predictions. Here, we sh
consider the spin-spin correlator in spin systems wi
axial next nearest neighbor interactions [15,3]. The sp
Hamiltonian is

H ­ 2J
X
si,jd

0

sisj 1 kJ
X
ik

siksik11 , (23)

where si is a Osnd vector spin and the first term (J .

0) describes nearest-neighbor ferromagnetic interactio
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while the second term (k . 0) contains next-nearest
neighbor interactions along a single axis. By definiti
[15], the meeting point of the paramagnetic, ferroma
netic, and incommensurable phases of the model is ter
a Lifshitz point (of first order) and is known to show
strongly anisotropic scaling, with correlation length e
ponentsnk ­ n,4, n' ­ n,2 measured parallel and per
pendicular to the axis. The anisotropy exponentu ­
nkyn' ­ 1y2 independently [15] of the value ofn. This
corresponds toN ­ 4. The fact thatu ­

1
2 stays fixed at

its mean-field value may point toward the existence o
hidden symmetry which prevents its renormalization [1

In the n ! ` limit one recovers the spherical (o
ANNNS [3]) model and the spin-spin correlation functio
Csrk, $r'd ­ ksrk,$r'

s0,$0l at the Lifshitz point is exactly
known ind dimensions. The result is [17]

Csrk, $r'd ­ C0r
2sd2dpd
' C

0@d 2 dp

2
,

s
1

32c2

r2
k

r'

1A , (24)

where C0 and c2 are known (nonuniversal) constant
dp is the lower critical dimension, andCsa, xd ­P

`
k­0

s2xdk

k!
Gsky21ad

Gsky213y4d . On the other hand, forN ­ 4
Eq. (16) givesGsr , td , r2z y2Vsyd. As for the scaling
functionVsyd, we have from (21) that forN ­ 4

V0syd ­
Gs3y4d
Gsz y4d

C

√
z

4
,

y2

2
p

a1

!
. (25)

Thus, with the correspondencet $ rk, r $ r', and
a1 ­ 8c2, the order parameter scaling function for th
ANNNS modelat the first order Lifshitz point is exactly
reproduced for the parameter valueb1 ­ 0.

Higher order Lifshitz points [3] can be reached b
adding further axial interaction terms in (23). Seco
order Lifshitz points correspond tou ­

1
3 or N ­ 6. We

have checked that the exactly known spin-spin correlat
function for the ANNNS model [17] does agree with th
scaling form (21).

A tempting open question is whether the scali
function of the spin-spin correlator of the ANNNI mode
at the Lifshitz point (in 3D [3]), which still correspond
to N ­ 4 [15], can be described in the same framewo
with a different value ofb1. Recently, a new asymmetri
six-vertex model with au ­

1
2 critical point has been

described [18]. Further examples might be provided
the superintegrable chiralN-state Potts model, wher
[19] nt ­ 2yN, nx ­ 1 at the self-dual point or else
by a non-Hermitian quantum chain obtained from t
asymmetric clock model, where [20]nx ­ 0.95s4d and
nt ­ 0.67s4d. The possibility of applying the above
scheme to the Kardar-Parisi-Zhang (KPZ) equation [
which in s1 1 1dD has u ­

3
2 , seems worth exploring

[21]. Finally, it appears possible to extend the pres
approach to yield the scaling forms for the respon
functions out of equilibrium (as already checked [10]
a few cases for Schrödinger invariance) and to highern-
n
-
ed

-

a
].

,

d

n

g
l

k

y

e

],

nt
e

point functions. This will be reported elsewhere. All in
all, further explicit model results will be needed in orde
to gauge the merits of this or any other general approa
to strongly anisotropic scaling.

In conclusion, we have examined a set of infinites
mal transformations which foru ­ 2yN , N ­ 1, 2, 3, . . .
generalize scale invariance. We have seen how to c
culate from these the two-point functions for strongl
anisotropic equilibrium critical systems. Lifshitz points in
the ANNNS (spherical) model apparently provide mode
examples which realize these transformations.
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