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Propagation of a Rippled Shock Wave Driven by Nonuniform Laser Ablation
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A simple analytical model is presented to study hydrodynamic perturbation growth in the start-up
phase in laser fusion, namely propagation of a rippled shock driven by nonuniform laser ablation
induced by initial target roughness or nonuniform laser irradiation. Analytical results agree quite well
with experimental data for the rippled shock propagation in the case of uniform irradiation on a rough
surface. Approximate formulas expressing both the time evolution of the shock front and the asymptotic
behavior of the ablation front are obtained in the weak shock limit. [S0031-9007(97)02627-6]

PACS numbers: 52.35.Tc, 52.35.Py, 52.50.Jm

To achieve ignition and high gain in inertial confinement At first, we sketch briefly the zeroth order profiles of a
fusion (ICF) [1], a spherical pellet must implode efficiently stationary shock wave driven by a steady laser ablation.
and symmetrically. A shock wave driven by the laser abla-The domain can be separated into four regions by the
tion propagates through a shell, and shell acceleration theshock front, ablation front, and sonic point as shown in
follows. Hydrodynamic perturbation growth in the shock- Fig. 1. We label these regions 0, 1, A, and 2 from right
compressed phase seeds the Rayleigh-Taylor (RT) instée left. The region 0 is a uniform state ahead of the shock,
bility [2,3] in the subsequent acceleration. The study ofthe region 1 is the shock-compressed region, the region A
the hydrodynamic perturbation growth is thus essential fors an ablation region between the ablation front and the
a better understanding of the RT instability that is impor-sonic point, and the region 2 beyond the sonic point is an
tant not only in ICF but also in supernova explosions [4]. isothermal rarefaction region. We can apply the RH jump

When ablation pressure is applied on a target withconditions at the shock front:

a rippled surface, a rippled shock wave is launched in

accordance with the target surface. Also, when a uniform % -5 ‘_/ Uxl 1/1‘;1 : 1‘)/0, (1a)
target is nonuniformly irradiated by a laser beam, a 0 ! 0 !
rippled shock is driven by nonuniform ablation pressure. (voVo — Vi)po — (w1Vi — Vo)p1 = 0, (1b)

The oscillation of the rippled shock would generate _ N _
hydrodynamic perturbations [5]. In this paper, a simpleand the CJ jump conditions at the ablation front:

analytical model is developed to study propagation of a ,, — 4 , Uy — Vo 72 = P )
rippled shock associated with an initial surface roughness v = v Ay, -y, M7 PiVa
of a target and nonuniform laser irradiation on a smooth ! 2 ! 2 (2a)
target. It will be shown that the temporal evolution
of the rippled shock front and the deformation of the 21
Vi—V - Vo, =V =—-——, (2b
(v1V1 2)P1 (12 V2 1)p2 " (2b)

ablation surface can be obtained by solving a linear wave

ﬁquagon in trée;_shocr-compreslsedhregionk_with SUitabI%vhereu uq, andv, are the shock and ablation surface
oundary conditions, for example, the Rankine-Hugoniot ST U -

(RH) jump condition at the shock front [6-9], and the velocities and fluid velocity in a laboratory frame, and

Chapman-Jouguet deflagration (CJ) jump condition at the

laser ablation surface [10]. We show explicit analytical (a) t. S0 4 (b) py

solutions of the model equation, and obtain approximate A a 8

formulas in the weak shock limit [11]. Some of the .

solutions are compared with recent experimental result: g | 2 1 s B

[5]. It should be mentioned that since the model is basec F ; K

on the linear theory and the assumption of a stationar so

laser ablation as the zeroth order hydrodynamics, the :" 0

theory may be difficult to be applied directly to imprint 0 - > X 0 - > X
Distance Distance

experiments [12]. In those experiments, a significant T _ _
imprint may be created by nonuniform laser irradiationFIG. 1. Schematic diagram of shock propagation driven by
before the stationary laser ablation takes place. Despit@Ser ablation: (ax-r diagram, and (b) density profile at certain

: . . ime. s, a, and so denote shock front, ablation front, and sonic
this fact, analytical solutions are useful to understand theyine respectively. 0, 1, A, and 2 denote unperturbed, shock

underlying physics and the dependence on laser and targ@mpressed, deflagration, and isothermal rarefaction regions,
parameters. respectively. Dashed line in (a) shows fluid flow.
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p, p, andV are pressure, density, and specific volume Eq. (1a), the time derivative of the shock front ripple,
respectively. v, is the ablation velocity in a reference is given by:
frame moving with the fluid in the compression region. yi + 1
m and I are the mass ablation rate and absorbed laser ag(t) = duy(t) = ———-
intensity, respectively, and = (y + 1)/(y — 1) andy 4pocoM;
is isentropic exponent. The subscripts 0, 1, and 2 denotghere M, is the shock Mach number, and we assume
the values of the regions 0, 1, and 2, respectively. Theg, = v, hereafter. At the ablation surface, linearizing
fluid velocity of the sonic point relative to the ablation Eq. (2), we get three equations which give relations
surface is equal to the sound speed of the sonic poinhetween the perturbations at the ablation front and those at
u, — vy = +/p2Vo. We can uniquely determine the the sonic point [14]. For instance, linearizing Eq. (2a), the
zeroth order variables in each region by using thes&ime derivative of the ablation surface ripple,(= du,),
conditions, once the uniform state ahead of the shocis given by:
(po, Vo) and the absorbed laser intensity and the density - _

. ; ) aq(t) — vy (ugt,t)
at the sonic point(f,V,) are given. We assume the

Spi(ust, 1), 5)

density of the sonic point is the laser cut-off density [13]. Va
The sonic point density may not always be the cut-off _ 1 <5p1(uat,t) — opa(t)
density especially for short wavelength lasers. However, 1-M Pi
this assumption is not so inaccurate in the case that Y
S . OVi(ugt,t) — MSEV,(t
low-Z target is irradiated b9.53 wm laser. For a shorter 1 )V 2 )>, (6)
1

wavelength laser, we can solve the zeroth order jump
conditions by using the observed ablation presfyre  where we assume that the distance of the region A is
or mass ablation raten). very short compared with the perturbation wavelength,
We consider a rippled shock wave and a nonuniformA(= 27 /k), andM = vy (v,/c1)>. v./ci represents the
laser ablation caused by an initial surface roughness afblation Mach number, which is much smaller than unity
a target or nonuniform laser irradiation on a smooth tarin general. We assume that the first-order quantities at
get. We assume the surface modulation of the target tthe sonic point satisfy the condition that the local Mach
be given asiy exp(iky) in the former, and the nonuniform number is equal to unity:
laser irradiation to be given a8/ exp(iky) in the latter, aa(t) — Sup(t) 1 (8pa(t) | 8Va(t)
whereay, 61, andk are the surface amplitude, the pertur- - = 5( + ) (7)
bation of the absorbed laser intensity, and the perturbation
wave number, respectively. These nonuniformities inducén addition, we makeV, = 0 because the density of the
perturbations in the regions 1, A, and 2. According to thesonic point is taken to be the laser cut-off density [13].
linear theory [6—-9,11], the pressure perturbation in thdt is noted that we are not solving the perturbation in
shock-compressed region satisfies the wave equation inragion 2. Rather, we substitute that physics with Eq. (7)

c2 23 Vs

reference frame moving with the fluid: and the assumption that, = 0 at the sonic point. This
9? , 92 , ) , could, in principle, be done because the flow in region 2
2 dpi(x.t) = o -5 9772 Spi(x'.1) = ik p(x'. 1), expands supersonically, and neither sound nor entropy

(3) Wwaves can cross the abla}tion front and affect the flow
where ¢, is the sound speed andp, is perturbed M région 1. The assumption @V, = 0 may not be a
pressure, and’ = x — v,z andr’ = . We can write  Unique bogndary condition. As a matter of fact, we have
the general solution of Eq. (3) as: obtained S|m|Ia_r 'results as explained below even with the
boundary condition 067, = 0. Therefore, it should be
Sp1 = Z(A#e’“" + Bue M)[C,Ju(r) + D,N,(r)], possible to solve the problem in region 1, by choosing
2 @) “plausible” boundary conditions at the sonic point.

We consider a rippled shock wave driven by an initial
wherer = kct'\/1 — (x'/c1t')?,0 = tanh '(x'/cit'), u  corrugated surface. The coefficients and the separation
is a separation constant, adg and N, are the Bessel constantof Eq. (4) are determined by the initial and bound-
and Neumann functions, respectively [6,7,11]. The coefary conditions. The solution containing the Neuman func-
ficientsA, B, C, andD as well as the separation constanttion N, must be dropped out to satisfy initial conditions at
u must be determined by the boundary and initial conthe ablation fron{57 = 0). Moreover, the indexu must
ditions. It should be noted that because entropy wavebe a positive odd integer to satisfy the initial and bound-
propagate with the fluid, an entropy perturbation in thisary conditions at the shock frofit;;(0) = a,(0) = ag].
region(ds; = 8pi/p1 + v18V1/V)) does not depend on Therefore, Eq. (4) becometp; = > o {E e ® D0 +
time in the reference frame moving with the fluid. F, e+(2”+1)0}J2”+1(r) where the separation constanis

The boundary conditions at the shock front are the saman integer, and the coefficien&, andF,, are determined
as in previous works [6-9]. For instance, linearizingby the boundary conditions. We can also expresand
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a, by using Egs. (5) and (6), respectively,, anda, are lation surface and also because of the deformation of the

functions of r, = ke ty/1 — [(uy — vy1)/ci? andr, =  ablation surface that accompanies the perturbed pressure.

keita/1 — [(uq — vy1)/c1? because the shock and abla- In the weak shock limit, it seems reasonable that the

tion fronts propagate along the trajectories= u,t and first terms €, and F,) are dominant in the solution for

X = uyt, respectively. 8 p1 [11]. In addition, since the ablation Mach number is
Figure 2 shows the shock front ripple (solid line), much smaller than unitf(u, — vyi)/c1 = va/ci <K 1],

as/ag, as a function ofr, and the ablation surface de- by expanding the coefficients into a power series gfc,

formation (dot-dashed liney,/ag, as a function ofr,.  and retaining the leading order term, we get:

The parameters used afe= 4 X 103 W/cen?, A, = a,(1) M2+ 2

0.53 um, po = 1.06g/cm’® (CH target),p, = 0.703 Mbar — (). (8)

(equivalent toTy = 1 V), A = 100 wm, yo = 3, y1 = 3, a0 Mg+ 1

and y, = 5/3, where A, is laser wavelength. Once a This approximate formula is shown by circles in Fig. 2,

rippled shock is launched, a pressure perturbation is inwhich agrees quite well with the exact solution even

duced by the lateral fluid motion behind the shock. Thefor relatively largeM (= 3.74). On the other hand, the

pressure perturbation causes the ripple of the shock fromfalculation ofa,(t) is not as straightforward as far(z).

to be reversed and subsequently oscillate, as the prestowever, we can get an asymptotic value dgr

= Jo(ry) +

sure perturbation increases the deformation of the ablation 2

front monotonously. The amplitude of the shock ripple () = SM;(M; — 1) a
decays as the shock propagates. Since the pressure per- 40 M + D[2yiM; — (y1 — D] vq
turbation at the ablation front also decays with time, the (9

deformatlon of the ablatyon front approaches_an asymprpe asymptotic value of the ablation surface deformation
totic value as shown in Fig. 2. It takes longer time for the;

. - ; increases monotonously as the shock intensity increases.
ablation surface deformation to reach the asymptotic Valuﬁowever the exact solution starts to saturate around

as compared with the oscillation period of the rippled he shock intensit -
: y of p1 — po)/p1 ~ 0.6. The shock

shock. I.t should be also no_ted _that_ the increase O?ntensity of 0.6 corresponds to the absorption intensity of

the ablation surface deformation is different from the~1013 W/cn? for the parameters used, since in our model

Richt[;r_}yer-rl:/lesh_kov f(.R.M) instatl;ility I?ecause in dthﬁ RM the shock intensity is determinate by the absorbed laser
instability there is a finite growth rate,, # 0, and thus intensity through the CJ jump conditions.

no asymptotic amplitude [341]- I_n _comparison with Fhe In Fig. 3, we compare the theoretical values with the
Uppl_ed shock driven by a rippled rigid piston (dotted_ line experimental results [5]. Figures 3(a) and 3(b) show the
in Fig. 2) [7,9], the amplitude of the shock surface rIIOpIenormalized shock front ripples,/ag, and the normalized

dr!ven by Iase_r_ablgtion dec_ay_s, much faster than th‘%erturbation of the areal mass densidyp!/(8pl)o, re-
driven by the rigid piston. This is due to the fact that in ectively, as functions of the normalized tima,'t/)\
the laser ablation case the pressure perturbation behind t ere(ép'l)o is an initial value of the areal mass deﬁsity

shock is weakened because of the mass flow across the a&érturba\tion. The parameters used are the same as those

in Fig. 2. Both the oscillation period and decay rate of the
Normalized time r rippled shock front agree quite well with the experimental
0 10 20 30 : 40 50 results as shown in Fig. 3(a). In Fig. 3(b), agreement be-
' tween the theory and the experiment is also found on the
areal mass density perturbation.

We now also investigate a rippled shock driven by
nonuniform laser irradiation on a smooth target. We
can determine the coefficients and separation constant of
Eq. (4) by using the boundary conditions and the initial
conditions given bya,(0) = a,(0) = 0 and 61 = const.

o
o

0
[{]

s
ala
a

Shock front ripple
ala
o

Ablation surface deformation

st 12 As a result, Eq. (4) become8p, = > _{E,e " +
L/ F,et?9}J,,(r). In this problem, since the nonunifor-
L - v v " mity is continuously supplied by laser, there is a finite

_ ) asymptotic value of the velocity perturbation of the abla-
Normalized time r, tion front contrary to the previous case. In the weak shock
FIG. 2. Shock front ripplea,/ao, and ablation surface de- limit, we can obtain the approximate formulas for both the
formation, a, /ao, as functions of normalized times andr,,  Shock front ripplea,(z), and the asymptotic growth rate
respectively. Solid line and circles show the exact solutionof the ablation surfacey, (<):
and approximate formula af;/a,, respectively. A dotted line N p2
showsa,/aq driven by a rippled piston. Dot-dashed line shows ka (1) = K| Ji(ry) + 2 - BoM; +3
the exact solution of, /ao. 81/1 A1 2+ B)M2 + 1

5 | a0
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) FIG. 4. Shock front rippleka;/(81/I), and growth rate of
25 af ablation surface(a,/c)/(81/I), as functions of normalized
97 times r; and r,, respectively. Solid line and circles show
(it the exact solution and approximate formula kf,/(81/1),
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. respectively. Dot-dashed line shows the exact solution of

oS :

89 (aa/c1)/(BI/1).

ER 2

e

<5 form laser ablation induced by an initial surface roughness
& of a target or nonuniform laser irradiation on a smooth

0 s " e 1 target. In the weak shock limit, we obtain approximate
formulas for the shock front ripple and the asymptotic

behavior of the ablation surface.

FIG. 3. (a) Shock front ripplea,;/ay, and (b) areal mass We are grateful to Dr. J. G. Wouchuk for valuable

density perturbationgpl/(8pl), as functions of normalized suggestions relating the asymptotic formulas. We thank

time, u,z/A. Solid lines are theoretical values, and squares\r, K. Shigemori, Professor H. Azechi, and Professor

experimental results. K. Mima for many useful discussions.
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