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Probability Distribution Functions for the Random Forced Burgers Equation
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We propose a new approach for the analysis of stationary correlation functions of the 1D Bu
equation driven by a random force. We use this to study the asymptotic behavior of the proba
distribution of velocity gradients and velocity increments. [S0031-9007(97)02681-1]
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Statistical properties of solutions of the random forc
Burgers equation have been a subject of intensive s
ies recently (see Refs. [1–6]). Of particular intere
are the asymptotic properties of probability distributi
functions associated with velocity gradients and veloc
increments. Aside from the fact that such issues are
direct interest to a large number of problems such
the growth of random surfaces [1], it is also hoped t
the field-theoretic techniques developed for the Burg
equation will eventually be useful for understanding mo
complex phenomena such as turbulence.

In this paper, we propose a new and direct approach
analyzing the scaling properties of the various distribut
functions for the random forced Burgers equation. W
will consider the problem

ut 1
1
2 su2dx ­ nuxx 2 Vxsx, td . (1)

Most of our discussion will be limited to the inviscid cas
when n ­ 0. But we will summarize, at the end, th
necessary changes for the case when0 , n ø 1. The
potentialV of the force is a random function

V sx, td ­
X

jkj#k0

Ω
C

s1d
k cos

2pkx
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k std

1 C
s2d
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L

B
s2d
k std

æ
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HereB
s1d
k andB

s2d
k are identically distributed independe

white noises andL is the size of the system. We wi
consider only periodic solutions of (1) with periodL.
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It is clear that the statistical behavior of the solutio
depends on the decay properties of the coefficientshCs1d

k j
and hCs2d

k j. In this paper we deal with the simples
case, when the forcing is limited to a finite numb
of modes.

Our study of stationary correlation functions is bas
on an idea that appeared earlier in Ref. [7]. We w
construct a statistically stationary functional of the forc
usx, td ­ CssshBs1d

k std, B
s2d
k std, t # tjddd such that u is a

solution of (1). The stationary distribution of (1) is the
given by the distribution ofC0 ­ CssshBs1d

k std, B
s2d
k std,

t # 0jddd.
Our construction ofC0 (and henceC by time transla-

tion) is based on the following idea. Given an initial dat
(1) as a hyperbolic differential equation can be solv
using the method of characteristics. The characteris
satisfy Newton’s equation,

dx
dt

­ y,
dy

dt
­ 2Vxsx, td . (3)

The solutionu at sx, td is given by the velocity of the
characteristic which reachesx at timet. Of course the so-
lution as well as the field of characteristics depends he
ily on the initial data. To get the stationary distributio
of solutions, we need to select special initial data wh
amounts to selecting a special field of characterist
This special class of characteristics is given by what
call minimizers [8]. A curvehfxstd, tg, t # 0j is a mini-
mizer if it minimizes the action,
Assshxstdjddd ­
Z 0

2`

µ
1
2

µ
dx
dt

∂2

1
X

jkj#k0

(
C

s1d
k cos

2pkx
L

B
s1d
k std 1 C

s2d
k sin

2pkx
L

B
s2d
k std

æ∂
dt , (4)
-
’s

n-

ess,
with respect to arbitrary perturbations on finite time int
vals. It is easy to see that minimizers satisfy Newto
equation for characteristics.

Using a limiting procedure for action-minimizing cha
acteristics on increasingly large time intervals, we c
show that with probability 1, minimizers exist, i.e., fo
n

eachx, there existsy ­ ysxd such that the solution of
(3) with an initial valuefx, ysxdg gives rise to a mini-
mizer. Furthermore, two different minimizers never i
tersect in the past, i.e., ifx1std andx2std are two different
minimizers, thenx1std fi x2std for all t , 0. This re-
markable property is a consequence of the randomn
© 1997 The American Physical Society
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and endows minimizers with an intrinsic meaning: Th
minimizers are unique, except for a setE of countably
many points. This is because the minimizers can on
intersect att ­ 0. If x0 is a point where two minimiz-
ers x1std and x2std intersect, thenx1 and x2 enclose an
interval at t ­ 21. Intervals corresponding to differen
x0’s do not intersect. Hence there can only be coun
ably many points of intersection. Now the functiona
C0 can be defined by the initial velocity of the minimiz
ers:usx, 0d ­ C0ssshBs1d

k std, B
s2d
k std, t # 0jddd ­ ysxd. This

is well defined everywhere, except onE which corre-
sponds to the locations of shocks wherey is discontinu-
ous. At each location of shocks, there are at least tw
minimizers corresponding to limits of velocities from th
left and right.

Another basic property of the minimizers is the hype
bolicity well known in the theory of dynamical systems
Assume thatusx, 0d given byC0 is continuous on an in-
terval fx1, x2g. Hyperbolicity means that the minimizers
emanating fromx1 andx2 converge exponentially fast to
each other in the past, i.e.,

jx1std 2 x2stdj # Cjx1 2 x2je
2mjtj,

where C is a random constant andm is the Lyapunov
exponent of the field of minimizers. Using the terminolog
of the dynamical systems theory, one can say that ea
continuous component of the solutionusx, 0d is an unstable
manifold of any point on the graphsssx, usx, 0dddd, x1 # x #

x2. This implies that there are only finitely many shock
at each time.

We now show how this construction can be used to stu
the stationary probability distribution of velocity gradient
and velocity increments. The velocity gradient≠uy≠x can
be represented as a sum of a continuous component≠u1y≠x
and a sum of delta functions representing contribution fro
the shocks:≠u2y≠x ­

P
i widsssx 2 xistdddd, wheresssxistd, tddd

is in D —the set of shocks in thesx, td plane. Since shocks
can only be created and can merge but never disappear
shock setD should basically have a spine structure wit
a skeleton shock running fromt ­ 2` to t ­ 1` and
newly created shocks forming finite ribs that eventual
merge with each other and with the skeleton shock.

Since we are concerned with stationary probabilitie
we can restrict ourselves tot ­ 0. First, consider the
probability Ph≠u1y≠x . zj for largez. These are asso-
ciated with steep ramps and are due to large fluctuatio
of the force. To estimate this probability, letx1 , x2 be
close. Fort , 0, the minimizers passing throughsx1, 0d
andsx2, 0d satisfy

y1std ­ y1s0d 2
Z 0

t
Vxsssx1ssd, sdddds ,

y2std ­ y2s0d 2
Z 0

t
Vxsssx2ssd, sdddds ,

with y1s0d , y2s0d, and
y

-

o

h

y

he

,

s

x1std ­ x1 1 y1s0dt 2
Z 0

t

dt
Z 0

t
Vxsssx1ssd, sdddds ,

x2std ­ x2 1 y2s0dt 2
Z 0

t

dt
Z 0

t
Vxsssx2ssd, sdddds .

If fy2s0d 2 y1s0dgysx2 2 x1d is large, in the absence of
forces these characteristics would intersect very quickly
the past at time2sx1 2 x2dyfy1s0d 2 y2s0dg. However,
since they are minimizers, they cannot intersect. Ther
fore the action of the forces results in the inequality,

0 , x2std 2 x1std ­ x2 2 x1 1 sssy2s0d 2 y1s0ddddt

2
Z 0

t
dt

Z 0

t
fVxsssx2ssd, sddd

2 Vxsssx1ssd, sdddgds ,

i.e.,

1 1
y2s0d 2 y1s0d

x2 2 x1
t

.
Z 0

t

dt
Z 0

t

Vxsssx2ssd, sddd 2 Vxsssx1ssd, sddd
x2 2 x1

ds

­
Z 0

t

dt
Z 0

t
Vxxsssxpssd, sddd

x2ssd 2 x1ssd
x2 2 x1

ds . (5)

Taket , 21yz (which is the time that the curves would
intersect in the absence of forces), e.g.,t ­ 23yz in
(5), then fy2s0d 2 y1s0dgysx2 2 x1d is close to≠uy≠x.
Therefore the left-hand side is negative with an absolu
value greater than 1. ThusÇ Z 0

23yz
dt

Z 0

t
Vxxsssxpssd, sddd

x2ssd 2 x1ssd
x2 2 x1

ds

Ç
. 1 . (6)

The ratio fx2ssd 2 x1ssdgysx2 2 x1d is continuous and
bounded, and the distribution of the random variabl
inside the absolute value sign in (6) is roughly the same
the distribution of the integral of Brownian motion over an
interval of lengtht , 1

z which is Gaussian with variance
proportional toz23. This gives the estimate

P

ΩZ 0

23yz
dt

Z 0

t
Vxxsssxpssd, sddd

x2ssd 2 x1ssd
x2 2 x1

ds . 1

æ
, exph2const3 z3j . (7)

The constant in the last expression is not universal an
depends on the details of the distribution of the force
A similar result was obtained in [3,5] using an entirely
different argument.

Next, we consider the case when≠uy≠x , z ø 21.
These are associated with preshock events, i.e., places
the sx, td plane where shocks are generated. (See al
[9], where the concept of preshock events are discusse
Take such a pointsx0, t0d; at sx0, t0d, ≠uy≠x ­ 2`. We
will describe in more detail the set ofsx, td nearsx0, t0d,
where≠uy≠x , z.
1905
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Generically, we have Du ­ usx, t0d 2 usx0, t0d ­
Csx 2 x0d1y3 nearx0, whereC is a random constant. Fo
small jt 2 t0j, the action of forces is negligible. There
fore the solution nearsx0, t0d satisfies

usx, td ­ u0s yd, y ­ x 2 usx, td st 2 t0d . (8)

From (8) we have

≠u
≠x

­
du0ydy

1 1 sdu0ydyd st 2 t0d
. (9)

This shows that nearsx0, t0d the sethsx, td, ≠uy≠x , zj
is a curvilinear region centered atsx0, t0d and bounded
by the curvesx ­ x0 1 u0sx0d st 2 t0d 6 f23zyCs1 1

zjt 2 t0jdg23y2 7 Cf23zyCs1 1 zjt 2 t0jdg21y2st 2 t0d.
The width of this region behaves asOsjzj23y2d and
the height is roughlyOsjzj21d. Therefore its area is
approximatelyOjzj25y2.

The set of preshocks forms a stationary random po
field in the sx, td plane with densityqdxdt. Station-
arity means thatq is independent oft, i.e., q ­ qsxd.
Hence we conclude thatPh≠uy≠x , zj is proportional to
Qjzj25y2, Q ­

RL
0 qsxddx. The density of this distribu-

tion decays asQjzj27y2.
We turn now to the probability distribution ofw ­

DuyDx ­ fusx2, td 2 usx1, tdgyx2 2 x1. For large posi-
tive values ofw, the analysis remains essentially the sa
and gives the superexponential behavior exph2constw3j.
For negative values the distribution ofDuyDx remains
close to that of≠uy≠x until some threshold valuewp,
after which it deviates due to the contribution fro
existing small shocks. We can split this contributio
into two parts: one part due to shocks generated
cently, and one part due to shocks generated in
distant past. This means that, forDu ø 1, the density
of the distribution of the size of the shock inside
interval sx, x 1 Dxd can be written asfsDu, Dxd ­
f1sDu, Dxd 1 f2sDu, Dxd, where f1sDu, Dxd is the
probability density that a shock of sizeDu has appeared
at approximatelyt ­ DxyDu , 2sDud3yDu ­ 2sDud2

in sx, x 1 Dxd. Since the size of the shock after i
first appearance grows assDtd1y2 [10], the probability
of having shocks of sizeDu in an interval of length
Dx should beqDxDt ­ qDxsDud2. Taking the deriva-
tive with respect toDu, we get the probability density
f1 ­ qDxDu.

f2 comes from solutions having shocks (of sizeDu)
which originated in the distant past and become wea
due to fluctuations of the forces. For smallDu, f2 should
have a powerlike behavior:f2sDu, Dxd , sDxd sDudb.
So far, our analysis has yielded little specific inform
tion about the value ofb, but there are indications
that b should depend on details of the distribution
the force and hence is nonuniversal. Numerical w
is now going on to validate this assumption. Assu
ing this, we havepsDuyDx ­ wddw ­ C1sDxd3wdw 1

C2sDxdb12wbdw.
1906
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Case 1. b . 1. In this case, the first term dominates
The crossover (the value ofwp) can be found from
w27y2 , sDxd3w which giveswp , sDxd22y3.

Case 2. b # 1. In this case, the second term dom
nates andwp , sDxd2s2b14dys2b17d.

The overall picture for the probability distribution of
≠uy≠x andDuyDx is summarized in Fig. 1. We end this
paper with several remarks.

(1) The asymptotic behavior ofpsDuyDxd found above
implies intermittency, i.e.,

ksDudnl ,
Ω

sDxdn, for n # 1 ,
Dx, for n . 1 ,

i.e., the behavior is bifractal.
(2) Our calculation of the probability distribution ofw

is valid only for the regimejDuj ø 1. When jDuj ø

1, the behavior is again superexponential and can
estimated with the same exponent as was used earlier.

(3) In the presence of a finite viscosity we can sho
that the stationary probability distributions converge
that of the inviscid ones as viscosity goes to zero [8
Therefore, for n ø 1, the picture presented in Fig. 1
remains valid forz ¿ 1 and 2n21 ø z ø 21. For
z ­ Osn21d, viscous corrections to shock profiles hav
to be taken into account.

(4) Our results imply seemingly erroneous result th
ks≠uy≠xd2l , `. This is because we avoid contribution
from the neighborhood of shocks. In other words, w
usedks≠uy≠xd2l ­ limR!1` limn!0ks≠uy≠xd2ln,R, where
ks≠uy≠xd2ln,R is computed for nonzero viscosityn by av-
eragings≠uy≠xd2 over realizations such thatj≠uy≠xj , R.
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FIG. 1. Probability density function for velocity gradients an
velocity increments.
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