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Probability Distribution Functions for the Random Forced Burgers Equation
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We propose a new approach for the analysis of stationary correlation functions of the 1D Burgers
equation driven by a random force. We use this to study the asymptotic behavior of the probability
distribution of velocity gradients and velocity increments. [S0031-9007(97)02681-1]

PACS numbers: 47.27.Gs, 03.40.Gc

Statistical properties of solutions of the random forcedit is clear that the statistical behavior of the soﬁytions
Burgers equation have been a subject of intensive studlepends on the decay properties of the coefficiéfi 3}

ies recently (see Refs. [1-6]). Of particular interestand {\’}. In this paper we deal with the simplest

are the asymptotic properties of probability distributioncase, when the forcing is limited to a finite number
functions associated with velocity gradients and velocityof modes.

increments. Aside from the fact that such issues are of Our Study of Stationary correlation functions is based

direct interest to a large number of problems such agn an idea that appeared earlier in Ref. [7]. We will

the growth of random surfaces [1], it is also hoped thakonstruct a statistically stationary functional of the forces
the field-theoretic techniques developed for the Burgerﬁ(x 1 = ‘I’({Bil)(T) Bkz)(r) r=1)) such thatu is a

equation will eventually be useful for understanding moreg| tion of (1). The stationary distribution of (12 is then
complex phenomena such as turbulence. ) by the distribut U — B(l) B 2)

In this paper, we propose a new and direct approach fog'\fr(]) y the distribution of¥o = ¥({By (7). B¢ (7),
analyzing the scaling properties of the various distribution” — ).

functions for the random forced Burgers equation. Wet. Ou_r (Lonst(rjuctlcm O]PPI? (a_nd hdencelé_by tlme_tr_?_nflsl—t
will consider the problem ion) is based on the following idea. Given an initial data,

(1) as a hyperbolic differential equation can be solved
u; + %(uz)x = vuy, — Vilx,1). (1) using the method of characteristics. The characteristics

. . . . . satisfy Newton’s equation,
Most of our discussion will be limited to the inviscid case fy d
when v = 0. But we will summarize, at the end, the dx _ dv _ Vi) 3
necessary changes for the case whed » < 1. The ar v e F X, 1) (3)

potentialV of the force is a random function
The solutionu at (x, ) is given by the velocity of the

V)= > {C,(Cl) COSM BV () characteristic which reachesat timez. Of course the so-

k|=k L lution as well as the field of characteristics depends heav-

@ . @) ily on the initial data. To get the stationary distribution
+ Csin By (’)]y- (2)  of solutions, we need to select special initial data which

O ) amounts to selecting a special field of characteristics.
HereB,” andB;~ are identically distributed independent This special class of characteristics is given by what we
white noises and. is the size of the system. We will call minimizers [8]. A curve{[x(z),t],r = 0} is a mini-
consider only periodic solutions of (1) with periabl. | mizer if it minimizes the action,

2mkx
L

0 2 TTKX . T KX
A(x(0)}) = fioO(%(%) + |k|zs:ko[C]((l) cos% Bf)(r) + C,(f) sm%Bf)(r)})dr, 4)

with respect to arbitrary perturbations on finite time intér—eachx, there existsy = v(x) such that the solution of
vals. It is easy to see that minimizers satisfy Newton's(3) with an initial value[x, v(x)] gives rise to a mini-
equation for characteristics. mizer. Furthermore, two different minimizers never in-
Using a limiting procedure for action-minimizing char- tersect in the past, i.e., ifi(7) andx,(7) are two different
acteristics on increasingly large time intervals, we caminimizers, thenx;(7) # x,(7) for all + < 0. This re-
show that with probability 1, minimizers exist, i.e., for markable property is a consequence of the randomness,
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and endows minimizers with an intrinsic meaning: The
minimizers are unique, except for a s&tof countably

0 0
x1(r) =x1 + v1(0)7 — f dtj: Vi(x1(s), s)ds ,

many points. This is because the minimizers can only 0 0

intersect atr = 0. If xo is a point where two minimiz- x(7) = x0 + v2(0)7 — f dtf Ve(xa2(s), s)ds .
ersx;(7) and x,(7) intersect, thernx; andx, enclose an T !

interval atr = —1. Intervals corresponding to different [12(0) — v1(0)]/(x2 — x1) is large, in the absence of

xo's do not intersect. Hence there can only be countyg ces these characteristics would intersect very quickly in
ably many points of intersection. Now the functional {,¢ past at time-(x; — x2)/[v1(0) — v2(0)]. However,

Wo can be defined (tl))y the Egitial velocity of the minimiz- since they are minimizers, they cannot intersect. There-
ersiu(x,0) = Wo({By (1), By (7),7 = 0}) = v(x). This fore the action of the forces results in the inequality,

is well defined everywhere, except dn which corre-

sponds to the locations of shocks wherés discontinu- 0 < (1) = xi(1) = x — x1 + (12(0) — v1(0)7

ous. At each location of shocks, there are at least two 0 0
minimizers corresponding to limits of velocities from the - f dfft [Vi(xa(s), )
left and right. T
Another basic property of the minimizers is the hyper- = Valxi(s), 5)1ds

bolicity well known in the theory of dynamical systems. j o
Assume thaiu(x, 0) given by ¥ is continuous on an in-

terval [x;, x,]. Hyperbolicity means that the minimizers 1+ v2(0) — v41(0) r
emanating fromx; andx, converge exponentially fast to X2 — X
each other in the past, i.e., 0 0V (xa(s),s) — Vi(x;(s),s)
B | l >f dtf X > X ) dS

lx1(7) = x2(7)] = Clx1 = xale™'7, i X = X

. . 0 0 * x2(s) — x1(s)
where C is a random constant and is the Lyapunov — | dt | V(i) ) t— g5, (5)
exponent of the field of minimizers. Using the terminology T ' Xy —

of the dynamical systems theory, one can say that eaqj K
continuous component of the solutiax, 0) is an unstable aKer
manifold of any point on the grapfx, u(x,0)),x; = x <

x,. This implies that there are only finitely many shocks
at each time.

We now show how this construction can be used to stud
the stationary probability distribution of velocity gradients 0 0 N x2(s) — x1(s)
and velocity increments. The velocity gradiémt/ox can ‘ f_3/z dt ] Ve (67(s), s)x— ds
be represented as a sum of a continuous compa@ngpd x
and a sum of delta functions representing contribution fronThe ratio [x>(s) — x;(s)]/(x» — x;) is continuous and
the shocksdu,/ax = >, w;8(x — x;(t)), where(x;(z),t)  bounded, and the distribution of the random variable
is in D —the set of shocks in thig, 7) plane. Since shocks inside the absolute value sign in (6) is roughly the same as
can only be created and can merge but never disappear, ttiee distribution of the integral of Brownian motion over an
shock setD should basically have a spine structure withinterval of lengthr ~ % which is Gaussian with variance

a skeleton shock running from= —o to t+ = +o and  proportional toz 3. This gives the estimate
newly created shocks forming finite ribs that eventually

0 0 _

merge with each other and with the skeleton shock. pU dt] Ve (x"(s), S)M ds > 1}
Since we are concerned with stationary probabilities, |/ -3/z 1 X2 = X1

we can restrict ourselves to= 0. First, consider the ~ exp{—constx z°}. (7)

probability P{ou,/dx > z} for largez. These are asso- _ o _

ciated with steep ramps and are due to large fluctuationshe constant in the last expression is not universal and

of the force. To estimate this probability, let < x, be depends on the details of the distribution of the force.

close. Forr < 0, the minimizers passing through;,0) A Similar result was obtained in [3,5] using an entirely

~ —1/z (which is the time that the curves would
intersect in the absence of forces), e.g.= —3/z in

(5), then[v,(0) — v1(0)]/(x, — x1) is close todu/dx.
Therefore the left-hand side is negative with an absolute
)\/alue greater than 1. Thus

>1. (6)
t 2

and (x,, 0) satisfy different argument.
0 Next, we consider the case whém/dox < z < —1.
v1(7) = v1(0) — j V. (x1(s), s)ds These are associated with preshock events, i.e., places on
T the (x,¢) plane where shocks are generated. (See also
0 [9], where the concept of preshock events are discussed.)
va(7) = v2(0) — [ Vi(x2(s), s)ds, Take such a pointxo, tp); at (xo, tp), du/dx = —. We
7 will describe in more detail the set éf, r) near(xg, 1),
with v1(0) < v,(0), and wheredu/dx < z.
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Generically, we have Au = u(x,t)) — u(xo,ty) = Case 1. 8 > 1. In this case, the first term dominates.
C(x — x0)!/? nearx,, whereC is a random constant. For The crossover (the value ok™*) can be found from
small |+ — 1|, the action of forces is negligible. There- w~7/2 ~ (Ax)*w which givesw* ~ (Ax)~2/3.
fore the solution neafxy, fo) satisfies Case 2. B8 = 1. In this case, the second term domi-

 — (Ax)~@B+4/QB+T)
1) = , —x — a0t — ). (8) hatesandv’ ~ (Ax) T
ulx, 1) = uo(y) y=x = ulxsn( 0) ®) The overall picture for the probability distribution of

From (8) we have ou/dx andAu/Ax is summarized in Fig. 1. We end this
du dug/dy paper with several remarks.
a1+ (duo/dy) (t — t0) (9) (1) The asymptotic behavior @f(Au/Ax) found above

implies intermittency, i.e.,
This shows that neafxy, 7y) the set{(x, 1), du/dx < z}

is a curvilinear region centered &ty, 7)) and bounded (Au)"y ~ {(Ax)"’ forn =1,
by the curvesx = xo + ug(xo) (t — 1o) + [-3z/C(1 + Ax,  forn>1,
zlt = 1)) 732 F C[-3z/C(1 + zlt = 1])]7V2(t = 10). ... the behavior is bifractal.

The width of this region behaves a8(|z| *) and (2) Our calculation of the probability distribution of
the height is roughlyOo(|z|™'). Therefore its area is jg yalid only for the regimeAu| < 1. When |Au| <

approximatelyo |z| /2. ] _ 1, the behavior is again superexponential and can be
~ The set of preshocks forms a stationary random poingstimated with the same exponent as was used earlier.
field in the (x,7) plane with densitygdxd:. Station- (3) In the presence of a finite viscosity we can show

arity means thay is independent of, i.e., ¢ = g(x).  that the stationary probability distributions converge to
Hence we CO”C|LUde thdt{ou/dx < z} is proportional to  that of the inviscid ones as viscosity goes to zero [8].
Qlz172,0 = [y q(x)dx. The density of this distribu- Therefore, for» < 1, the picture presented in Fig. 1
tion decays ag|z| /2. remains valid forz > 1 and —» ! <z < —1. For
We turn now to the probability distribution of = 7 = O(» '), viscous corrections to shock profiles have
Au/Ax = [u(xz, 1) — u(x1,1)]/x2 — x1. Forlarge posi- to be taken into account.
tive values ofw, the analysis remains essentially the same (4) Our results imply seemingly erroneous result that
and gives the superexponential behavior{exgonstw’}.  ((9u/9x)*) < . This is because we avoid contributions
For negative values the distribution dfu/Ax remains  from the neighborhood of shocks. In other words, we
close to that ofou/dx until some threshold value *, used((au/ax)2> = IimR_,+ooIimy_,()((au/ax)z)”e, where
after which it deviates due to the contribution from ((9u/9x)*),  is computed for nonzero viscos’ityby av-

_existing small shocks. We can split this contributioneraging(au/ax)z over realizations such thitu/ox| < R.
into two parts: one part due to shocks generated re- \va thank a. Polyakov, V. Yakhot, V. Lebedev

cently, and one part due to shocks generated in th@ chekiov, S. Chen, and U. Frisch for helpful discus-
distant past. This means that, fAu < 1, the density ¢i54s  The work of E was supported in part by the
of the distribution of the size of the shock inside anpacearch Grant Council of Hong Kong. The work of

interval (x,x + Ax) can be written asf(Au,Ax) = « k and A M. was supported bv REFR under Grant
18w, Ax) + fo(Au,Ax), where fi(Auw,Ax) is the T T pported by

probability density that a shock of sizeu has appeared
at approximatelyr = Ax/Au ~ —(Au)*/Au = —(Au)? e
in (x,x + Ax). Since the size of the shock after its JUCIRRG D)
first appearance grows dar)'/? [10], the probability
of having shocks of size\u in an interval of length
Ax should beqAxAt = gAx(Au)?. Taking the deriva-
tive with respect toAu, we get the probability density
f1 = qAxAu.

f> comes from solutions having shocks (of siAe)
which originated in the distant past and become weake
due to fluctuations of the forces. For small, f, should

have a powerlike behaviorf,(Au, Ax) ~ (Ax) (Au)?. .

So far, our analysis has yielded little specific informa-, -7/ ;
tion about the value ofB, but there are indications e "t
that B8 should depend on details of the distribution of e

the force and hence is nonuniversal. Numerical work
is now going on to validate this assumption. Assum-

ing this, we havep(Au/Ax = w)dw = Ci(Ax)’wdw + FIG. 1. Probability density function for velocity gradients and
Co(Ax)P 2wl aw. velocity increments.
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