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Heat Conduction in Chains of Nonlinear Oscillators
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We numerically study heat conduction in chains of nonlinear oscillators with time-reversible
thermostats. A nontrivial temperature profile is found to set in, which obeys a simple scaling
relation for increasing the numbe¥ of particles. The thermal conductivity diverges approximately
as N'/2, indicating that chaotic behavior is not enough to ensure the Fourier law. Finally, we show
that the microscopic dynamics ensures fulfilment of a macroscopic balance equation for the entropy
production. [S0031-9007(97)02611-2]

PACS numbers: 44.10.+i, 05.45.+b, 05.60.+w, 05.70.Ln

The approach to nonequilibrium statistical mechanicde damped by the scattering processes due to defects, thus
through the introduction of microscopically time- possibly removing the divergence of Unfortunately, it
reversible models has been shown to be rather powerfubas found that although isotopic disorder in a harmonic
in the context of many-particle dynamics [1]. If the chain yields a nonzero temperature gradient in the bulk
reversibility property is supplemented by the so-called8,9], it still implies a diverging conductivityx =~ N'/2)
chaotic hypothesjs the tools developed for strictly [10,11]. A finite x has been obtained only by placing all
hyperbolic systems allowed making general statisticathe oscillators in contact with independent thermal baths
predictions that have been successfully tested [2]. Amonfl2]. As a result, one can conclude that no physically
the achievements of this approach, we recall the derivatiosound description of Fourier law can be obtained with
of the Onsager reciprocity relations [3] and the expresharmonic chains.
sion of entropy production in terms of a self-generated More than disorder, anharmonicity has been invoked
dissipation rate [4]. as the key feature of real solids responsible for normal

So far, however, most of the numerical efforts inheat conduction [13]: Nonlinearities make phonons in-
this area have been restricted mainly to the descriptioteract among themselves, thus impeding free propagation.
of gases and fluids, where the thermostats, introducebh the spirit of the general theory of dynamical systems,
to keep the energy constant, affect each particle [lhonintegrability, rather than anharmonicity, is the prop-
(with a few exceptions, such as Refs. [3,5,6]). In theerty that should be responsible for a finite conductivity.
present Letter we investigate the possibility of extendindn fact, nonlinear normal modes (solitons) freely transport
the above approach to a chain of coupled nonlineaenergy along the chain. Our numerical simulations per-
oscillators, with specific reference to heat-conductiorformed with a Toda chain [see Egs. (1) and (2) for the
properties of insulating solids. In this context, the mostprecise definition of the model] do reveal the same sce-
natural choice is to put only the chain extrema in contachario as for linear chains (see also [14]).
with two thermal baths at different temperatures. Numerical experiments for chains with chaotic smooth

A further motivation for the present work is the lack potentials [14,15] have been performed with too few
of convincing results about the validity of the Fourier particles to allow, even in the most detailed investigation
conduction law in 1D systems. Let us briefly review[16], a conclusive study of the dependence ofon
the current state of the arts. In the simplest case oN. The same can be said for the case where both
coupled harmonic oscillators, it was rigorously shownanharmonicity and disorder have been simultaneously
[7] that, if the extrema of the chain are put in contactincluded [17,18].
with stochastic heat reservoirs operating at different Finally, we must recall two somehow artificial models
temperatures, a nonequilibrium stationary state sets ithat lead to contradictory conclusions: The first one is a
with no temperature gradient in the bulk. As a result,chain of harmonic oscillators with an infinite barrier set at
thermal conductivityx turns out to be proportional to a given distance [19]; the second is the so-called ding-a-
the number of oscillator®/. Such a divergence simply ling model, where harmonic oscillators alternate with free
follows from the existence of extended waves (phononsparticles [20]. While in the former case the conductivity
freely traveling and carrying energy along the latticehas again been found to diverge, in the latter the authors
without attenuation. found convincing evidence that it attains a finite value.

Afterwards, the role of impurities has been taken into In this Letter we study the Fermi-Pasta-Ulam (FPU)
account, since it was expected that phonon waves shoutdodel, which represents the simplest anharmonic
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approximation of a monoatomic solid. Specifically, we 150
consider a chain ofN oscillators, indicating withg; T,
the displacement of théth particle from its equilib-

rium position. Fixed boundary conditions are assumed 120 |
(g0 = gn+1 = 0), while the dynamics of the central

N — 2 oscillators is ruled by the equations of motion % o~
gi = fi — fi+1, (1) ™
wheref; = —V/(g; — gqi—1) andV(x) = x2/2 + Bx*/4 S
is the interaction potential § has been fixed equal to 0T
0.1). Nosé-Hoover thermostats [1,21] act on the first and S
the last particle, keeping them at temperatfifeand7—, 3 |
respectively, :
0.0 0.5 . 1.0
1= =i T 1= 2 e = T, L, FIG. 1. Scaling of the temperature profiles for the FBU
gy = —f—é]N + fx — fyels model. '_I'he imposed temperatures @&re= 152 and7_ = 24,
.5 and chain lengths ar& = 128, 194, and256 (dashed, dotted,
gi _ 4N _ | @) and solid lines, respectively). Averages are carried over a time
T_ ' interval =10°, after a transient=10*.

The dynamical equations are left invariant under time re- o
versal composed with the involutiop, — —p;. Recent the re_Ievant role played by bo_undary_ co_ndltlons, indeed, a
numerical observations [22] show that time-reversibles'eemm.gly square-root-type smgulan_ty in the temperature
nonequilibrium dynamics yields results compatible withpr(_)l_f;:g I?l(f)i\t/v?é/:ucl)tbsc:%?]/sgrr?; t?ﬁec:ﬁgleﬁgg{nﬁﬁ& 9
the predictions of Ref. [2], despite the fact that the .~ "™ .~ X N 0
system under investigation is not strictly Anosov. WeWhICh is implicitly defined by the continuity equation,
expect that this should hold also for our model at suffi-
ciently high temperatures. However, we shall not further
address this point here; this will be the subject of a forth-
coming papeFr) [23]. J where H =3, H;5(x — x;), H;= pi/2 + Vigi —
We have performed extensive numerical simulationg/i~1) @nd x; = ia + g;. By Fourier transforming (in

with several values aV andT-, integrating the equations space) Eq. (3), and upon expgndlng in powers of the
of motion with an improved fourth-order Runge-Kutta- "2V€ numbet, one eventually finds that the heat flux at

Ghil algorithm. The first clear result is the convergencethmth position is given by [23,24]

to a well defined spatial profile of the local temperature _ 4
T; = (p?) ((-) denoting time average). The asymptotic Ji(t) = apifisr, 4)
stationary state satisfies the local equilibrium condition, as

confirmed by the fluctuations df, that are in agreement "/Nerepifi+1 has the simple interpretation of the flow of
X y ! 1 ag otential energy from théth to the neighboring particle.

with the canonlcal.ones. The only exceptions are repre\F—;\/e have checked that = (J;(¢)) is independent of the

sented by the particles close to the boundaries, where ﬂ?gttice positioni, as it should indeed be for a stationary

temperature profile seems to exhibit a singularity. Glo ‘nonequilibrium state.

ally, the pro_files satisfy a simple scaling relation, as clearly The only physically meaningful setting for the compari-
shown n F'g.' 1, where the values B, corresponding to son of heat fluxes for different values &fis achieved by
different chain lengths (and the same boundary temper?i_xing a =1, as it is the case in real systems where the

tures), are plotted versugN. - The adoption of the above lattice spacing is determined by the mutual interactions.

Sca"?d. units Is tantamount to considering the contmu:l.he data reported in Fig. 2 shows thiascales to zero as
um limit with the lattice spacing equal tol/N. How-

L . . N~ ¢, with @« = 0.55 = 0.05. The same scaling behavior
ever, this is to be taken only as a formal interpretation, a . . ;
. i . . as been obtained for different choices of the temperatures
the mass density obviously diverges wh&n— «; con-

X . . and T-, provided that they are sufficiently large
versely, if the equations are rescaled in such a way thagtw+ ensure a pchaotic behavior?/ This implies );hat gthe

both energy and mass densities are kept constant, one finds

H(x,t) + divJ(x,7) = 0, (3)

that the nonlinearity coefficien® should diverge. conductivity,
The nonlinear shape of the profiles could be interpreted o J 5
as an indication of a temperature-dependent conductivity, = dT/dx’ (5)

but this is incorrect, since simulations done with such small
temperature differences @&s — 7- = 4 still reveal clear  diverges av! ¢, since the temperature gradient vanishes
deviations from linearity. This is rather an indication of as N~!'. Therefore, we are forced to conclude that
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0.16 y : . Returning to the usual case, the energy balance at the
10 , , ) o
- " o chain extrema implies that
042 {051 o7 ' P J = —{Lepin) = —({)T=, (6)
o N
00 o0 200 300 c where the last equality is obtained from the condition
0.08 & (dZ2/dty = 0. The above equation expresses the general
scenario arising in time-reversible models that a nonequi-
‘,»" librium stationary state corresponds to a spontaneous
o - emergence of dissipation [2,4]. The global volume con-
0.04 1 o 1 traction ratey in phase space is given by the average of
¢ . . the divergence of the velocity field, i.ey, = (Z+ + ).
5 10 15 n 20 In all simulations we checked that > 0, as long as

N T+ # T-, consistently with a theorem recently proved by
FIG. 2. Scaling of the heat fluy with the number of Ruelle [25]. In any case/;) is always negative (pro-
0$Ci”at0r31r\1’ for the FfPUB mﬁdel (Sam? temperaturgs as in yided thatT, > T_), as indeed prescribed by energy bal-
g:gdile)r'n (TTf _'n?ft) /r](\e] e(rge'g) tteft)cz\j}\?iteh Othzn S';nrﬁgsi ou%odnf;? nce. In fact, the energy is pumped in from the hot reser-
temperatures: Scaling with " implies that the conductivity  VOIr. flows through the chain, and is eventually absorbed
is constant. in the cold reservoir. Dynamically, it is at least bizarre
that the hot thermostat is characterized by a local expan-
sion of volumes: This is completely opposite to the ap-
proach in terms of stochastic baths, where dissipation is
always assumed. To what extent this peculiar feature is
physically meaningful is unclear; nevertheless, the inter-

fSurpgs_lnglg, the gbO\;]e_beha\_/tlr?r IS j'm'lar to the ?Lrllepretation in terms of entropy production makes perfect
ound in harmonic chains with random masses [ ]’sense. In fact, Eq. (6) can be rewritten as

as if disorder and anharmonicity played the same role.
However, we have no explanation for this fact. 1 1

Two further remarks should be added as a comment to ({+) + () = J(z - T_+> (7)
the scaling behavior of. First, from the very definitions

[Egs. (4) and (5)], one realizes that the assumptior  with the convention that/ > 0 is an incoming flux.
N~!'* implies an asymptotically finitec, but this is no  Equation (7) can be physically interpreted as a balance
more than just a formal statement. Second, notice thaglation for the global entropy production. According to
in the present philosophy, which is the standard ongnhe general principles of irreversible thermodynamics, the

adopted in the literaturd; and7- are kept fixed while |ocal rate of entropy productioa in the bulk is given by
N diverges, so that the temperature gradient (i.e., the

external field) goes to 0. Accordingly, in the limit of d < 1 )

Fourier law is not satisfied in the present framework
and that chaoticity is not sufficient to ensure its validity.

large N, the chain gets closer and closer to equilibrium o) =7 dx

so that, independently of7+ — T-), a linear regime
(in the Green-Kubo sense) is eventually attained. Thi¥Jpon integrating Eg. (8), the right-hand side of Eq. (7)
is at variance with other physical settings, such ass obtained, which can thus be interpreted as the global
electric charge transport, where the external field is a freproduction rate of entropy in the bulk. On the other hand,
parameter whose magnitude can be fixed independenticcording to general arguments on reversible thermostats
of the system size. Accordingly, it is not obvious how to[2], the left-hand side of Eq. (7) is identified with the
study nonlinear corrections in this framework, if they areentropy production from the heat baths. Equation (7) has
relevant at all. been numerically tested in a wide range of temperatures.
As a last comment on thermal conductivity in FPU A relevant consequence of Eg. (6) is that are
chains, we want to stress that a truly finikeis observed proportional toJ, so that not only the fluxes but also
when each particle is thermostated independently, accordhe dissipationy vanish in the thermodynamic limit
ing to a linear temperature profile. Obviously, in this caseN — «. This is indeed a remarkable difference with
(J:(r)) depends on the lattice site, but its average valueespect to other models of gases and fluids studied, e.g.,
over all sites is found to scale @& ' (see the inset of in Refs. [2,4,5], where the dissipation is always extensive.
Fig. 2). This is analogous to what was found in Ref. [12]In our opinion, this is due to the vanishing &f'/dx, and
with stochastic heat baths. Needless to say, this resuttot to the fact that thermostats act only at the boundaries.
sounds a bit artificial, as the profile is imposed from thelndeed, by globally thermostating the two halves of the
outside. lattice at two different temperatures [26], we find that
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