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We discuss a topological property which we believe provides a useful conceptual characterization of a
variety of strange sets occurring in nonlinear dynamics (e.g., strange attractors, fractal basin boundaries,
and stable and unstable manifolds of chaotic saddles). Sets with this topological property are known as
indecomposable continuaAs an example, we give detailed results for the case of an indecomposable
continuum that arises from the entrainment of dye advected by a fluid flowing past a cylinder.
We show for this case that the indecomposable continuum persists in the presence of small noise.
[S0031-9007(97)02530-1]

PACS numbers: 05.45.+b, 47.20.Ky

Sets that are loosely called “strange” occur commonlycompact and connected [2], and is hence a continuum.
in nonlinear dynamics. Examples are strange attractor$ is also indecomposable. For example, consider the
of chaotic systems, fractal basin boundaries, the stableomponent subsets lying inside and outside the dividing
and unstable manifolds of chaotic scattering sets (or othesval shown in the figure. Noting the Cantor structure of
chaotic transients), and strange nonchaotic attractors. Thhbe attractor transverse to the apparent smooth variation
singular fine-scaled structure of such sets is most comalong the unstable direction, we surmise that the compo-
monly characterized by saying that these sets are fractalent subsets contain an uncountable number of disjoint
In this paper we wish to introduce a concept from topol-pieces (corresponding to the uncountable number of dis-
ogy with we believe provides another useful characterizajoint points in a Cantor set). Note that, by definition,
tion of many (not all) sets that would commonly be called
strange. In particular, we discuss the applicability of the (
concept ofindecomposable continuyd] in nonlinear dy-

namics. We also provide a detailed example involving , \
the indecomposable continuum arising from the entrain-

ment of dye advected by a fluid flowing past a cylinder,

and for that example we show that the existence of an in-

decomposable continuum persists in the presence of small

noise. In formulating the latter result, the concept of in- \

decomposable continuum is essential, because the usual

approach to the noise-free problem is to show the pres-
ence of a fractal chaotic invariant set, and with noise there .
are no invariant sets. L (b)
A continuumis a compact, connected [2] set. Itis called
decomposablerhen it can be regarded as the union of two
overlapping subcontinua. For example, the shaded area
in Fig. 1(a) is a continuum. It is decomposable because
we can divide it into two subsets by the line shown in
the figure, and each of the two subsets are continua (they
overlap if we take the two subsets to each include the
dividing line). Other examples of decomposable continua
are a line segment, the three-dimensional volume on a solid
cube, and the surface of the cube. On the other hand,
every indecomposable continuum has the strange property
that if you attempt to divide it into two parts, then each S——
of those parts has an uncountable number of connected e
pieces. That is,_th_e _division causes the original object tchG 1. (a) Example of a decomposable continuum
“shatter” into an infinite number of pieces [3]. . (b) A strange attractor exemplifying an indecomposable
As an example of an indecomposable continuum, concontinuum which arises from the Ikeda map,.; =

sider the strange attractor in Fig. 1(b). This set is clearlyt + 0.9z, exp{i[0.4 — 6(1 + |z, 7'}, z = x + iy.
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this applies for any smooth division of an indecompos-egion,x < 0,y > 0, is dyed [we takéx, y) = (0,0) to be
able continuum. In particular, assume that we construct ¢he center of the cylinder] and that the flow is in the positive
tiny square about a point on the attractor in Fig. 1(b), and: direction. Figure 2(a) shows a depiction of a snapshot
take the division of the attractor to be the inside and outof the fluid taken at a later timeT’, wheren is an integer.
side of the tiny square. Then the tiny square must contaiithe dyed fluid is shown as black. Asis increased the
an infinite number of disconnected components. Thus wboundary of the black region asymptotes to a set which
always see structure as we examine stronger and strongécludes the fractal unstable manifold of a chaotic invariant
magnifications about the point [see the inset in Fig. 1(b)]set. This set is also an indecomposable continuum [7].
Hence, the indecomposable continuum property impliedhe focus of the present Letter is the question of what
structure on an arbitrarily small scale. happens when the periodic flow is perturbed by noise.
As another example, which we pursue further in thisThat is, the fluid velocity is now = vy + v, where
paper, we consider a two-dimensional incompressibl@o is the original time periodic flow andv is a small
fluid flowing past a cylinder. As the flow velocity (i.e., honperiodic fluctuating perturbation. If one integrates the
Reynolds number) increases, it is well known that thetrajectory equationdé/dt = v, forward from timenT to
steady flow becomes unstable, and the flow becomedme (n + 1)T, then a map which is explicitly dependent
time periodicyv(¢,1) = v(&,t + T), whereé = (x,y), T  onnresults,é,+; = F,(&,), & = €0T). Inthe case of
denotes the period, arvdis the Eulerian fluid velocity. In a time periodic flow,6v = 0, the map isn independent,
this time periodic regime, vortices are alternatively shed,+1 = F(&,). We shall show that fractal properties, as
from either side of the cylinder and advected downstreamn Fig. 2(a), persist for smalbv. (In this case the map
This situation has been extensively considered from théeviation from the purely periodic case,(¢) — F(¢), is
dynamical systems point of view [4—6]. In these workssmall and varies irregularly with time; see also [8].)
evidence has been presented that the dynamics of fluid In particular, assume that a finite cloud of dye is
trajectories given bydé/dr = v(&,t) yields a chaotic initialized upstream from the cylinder. As time proceeds,
invariant set for the associated tiffemap. Furthermore, it is swept toward the cylinder, and most, not all, of it is
it has also been noted that this should lead to fractatubsequently advected downstream from the cylinder. A
properties of tracer particles originally placed upstreamsmall amount (which continually decreases with time) is

from the chaotic invariant set. entrained by the flow in the region of the cylinder. As
An example is shown in Fig. 2 with the flow specified time increases the pattern formed by this entrained dye
by a stream functio(x,y, ). Herev, = —d¢/0y and asymptotes to a fractal indecomposable continuum which

vy, = dy/dx, and fory(x,y,t) we use a form given in we call the “entrainment set.” Note that, in the presence
Ref. [4] to model the previously described periodic vortexof noisedv this set is not invariant but “jumps around” in
shedding flow. Imagine that at= 0 the fluid in the a temporally irregular manner.

To begin, we first present an analysis of the cése=
0 with v,y specified by the time periodic stream function
used in Ref. [4] and Fig. 2(a). There is a symmetry of the
time periodic flow inherent in our description of alternate
shedding of vortices from the top and bottom of the
cylinder, namely,(x,y,t) = ¥ (x,—y,t + T/2). This
has the consequence that the nfajpas a “square root”
G, that is,F = G2. To show this, we writdf = H,H,,
where H,(H,) is the map obtained via integration
, | . . . . of d¢/dt = v from timet = nT to timet = (n + %)T
[fromt = (n + %)T tor = (n + DT]. If we write H,
asH,(x,y) = [p(x,y),q(x,y)], then, by the symmetry,
Hy(x,y) = [p(x,=y), —q(x,—y)].  Hence, F(x,y) =
[p(p(x,y), =q(x,¥)), —q(p(x,y), —q(x,y))],  which
can be expressed @ = G? with G(x,y) = [p(x,y),
—qg(x,y)]. We can numerically generate the m&p
by integrating the flowd¢/dtr = v from ¢ = nT to
t=(n+ %)T and then reflecting the resulting position
about thex axis,y — —y. Doing this, we numerically
FIG. 2. (a) The fluid an = 3. Particles of dye whose initial find that the mapG has a horseshoe. That is, there is
positions are inx < 0, y > 0 are marked black and the rest g rectangleQ such thatG(Q) horizontally stretcheg)

are marked white. (b) The vertical line of dye is advected by, ; ; ;
the fluid and accumulates on the unstable manifold of a chaoticomplete'y acrossy) at least wo times (in this case,

saddle, which is also an indecomposable continuum. The ins‘fpree times), aruG(Q) does not intersect the horizontal
in (b) shows a blowup of the small rectangle in (b). Thesides ofQ. Using a theorem of Barge [9], the existence
cylinder is shown crosshatched. of a horseshoe implies that there is an indecomposable
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continuum for the mags, and hence also for the map
We numerically obtain a picture of the indecomposable

. . . B C A
continuum resulting from this horseshoe as follows. We
find that each point on the vertical line segment shown
in Fig. 2(b) is mapped strictly to the right of the line
segment and that the segment is to the lef@of Thinking
of the line segment as a line of dye, we take it forward

many iterates of and obtain the entrainment set shown %V///////////////////%Z;
entranmen: et by the blawu shown e et )

We now discuss the case where the original time (b) Mn (B)
periodic flow vy is perturbed by the small noisév.
We assume thalF,(¢) — F(€)] < € and |DF,(&) —
DF(¢)| < € for all n and &, and we calle the “noise
level.” In particular, sinceF is a horseshoe map on the
regionQ, each of the perturbed majps are individually
horseshoe maps ap for sufficiently smalle. Below, we ©
shall state and discuss a rigorous result applicable when
this hypothesis for smalk is satisfied. Proofs will be FIG.3. Horseshoe illustration for the random map
provided elsewhere [6]. sequenceM,.

Let S*(xo) be the set of such that the noisy trajectory

points (generated by the sequerite starting from¢ at _ _
time n = 0 remain to the right ofx, for all positive and topology states that any nested intersection of compact

negative timen [7]. sets is nhonempty and compact. Finally, we can surmise
Theorem—For every x, to the left of O §+(XO) from the fractal structure evident from the process of suc-
contains an indecomposable continuum. cessively intersecting the seM™ (D) that 2, is indecom-

In the casee = 0, the set§+(x0) contains the un- Posable. Thu& is an indecomposable continuum.
stable manifold of the chaotic invariant set, and for ei- We now discuss the applicability of the model sequence
there = 0 or e # 0 the setS* (xo) can be identified with M= illustrated in Fig. 3 to the sequenck, realized
an entrainment set. We can give some of the key fealy our noisy flow [10]. The most important difference
tures leading to this theorem by considering a simplerPetweenM, andF, arises because the maps are area
but essentially equivalent, problem. In particular, we conPreserving. On the other hand, we see from Fig. 3(b) that
sider a sequence of map4, (analogous to our sequence M. MapsA into a subset of.  Thus the mapM, are
F,). TheM, are random, but we choose them all to in-area decreasing o While we do not give the argument
dividually have the property that they map the stadium-here, it can be shown that the construction in Fig. 3 can be
shaped regionD = AUBUC shown in Fig. 3(a) to a recast in such a way as to make it topologically equivalent
region of the form shown crosshatched in Fig. 3(b). Weto the area preserving case. (This is done by allowing
emphasize that the exact location and shape of the cros1e regionsA and B to extend tog = = [7] and to have
hatched region in Fig. 3(b) is different for eaeh but  infinite area. ThusF,(A) and F,(B), while of infinite
the general property tha,,(C) stretches twice acrogs,  area, can both be contained within)
and thatM,,(A) and M,,(B) are both located LA holds In conclusion, we have explored a numerical
for eachM,.. We now introduce the notatioM™(¢) =  €xample of a fluid past a cylinder. Our goal has
Mo(M_;(M_5(...M_¢,—1)(£))...). Thatis, we look at been to study a fluid flow which is temporally periodic

the trajectory starting frong _(,,—1) at the negative time flow plus a time varying perturbation. ~Under such
—(m — 1) and ask, “What is the trajectory location at Circumstances, no bounded invariant sets are preserved.

time zero &?” (In the usual case where all the mapsWe show that it is nonetheless possible to discuss fractal
are equal,ﬁm reduces toM”, the mth iterate of M.) sets that remain. These_are indecomposable continua
The action ofM™ on the regiond = AUBUC is illus- Whlcr_l correspond to phyS|caIIy ob;ervable remnants of
trated in Fig. 3(c) form = 1 andm = 2. In particular, dye introduced earlier into the .f|UId. More general[y,
M! = M. maosD to a redion contained withi . and 2 we suggest that the concept of indecomposable continua
0 Maps’ 9! L~ ’ may be useful for characterizing a variety of types of sets
mapsD to a region contained withiM' (D). In general,  commonly occurring in chaotic dynamics.
M"*!(D) C M"(D). Each of theM™(D) is a compact  The figures have been created using thewamics
continuum. We now consider the Set= (), _, M"(D).  software [11]. M.A.F.S. acknowledges a grant from
An elementary theorem from topology tells us that the in-the Spanish Ministry of Education (DGICYT PR95-091).
tersection of nested continua is itself a continuum. Thudhis work was also supported by the National Science
Y is a continuum. In particular, another theorem fromFoundation (Mathematical Sciences Division) and the
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