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We demonstrate population inversion and sub-Poissonian excitation statistics ofN two-level atoms
in the context of collective resonance fluorescence. This occurs within photonic band gap and
confined photonic systems that exhibit sharp features in the optical density of states. When the de
in the photon density of states between the Mollow spectral components is considerable, the
switch collectively from ground to excited states at a critical value of the applied laser field.
suggests a new mechanism of sub-Poissonian pumping of lasers, fast optical switching, and
transistor action. [S0031-9007(97)02714-2]

PACS numbers: 42.65.Pc, 42.50.Fx, 42.50.Lc
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Quantum optics in confined photonic systems [1] su
as microcavities, optical fibers, optical wires, and photo
band gap (PBG) materials exhibits novel features aris
from our ability to tailor the photon density of states (DO
in a prescribed manner. These features include inhibi
of spontaneous emission [2–4], photon localization in
PBG [5,6], quantum collapses and revivals of atomic po
lation inversion [7,8], quantum Rabi splitting of atom
levels, and photon-atom bound states [9–11]. The dis
guishing common feature of the confined photonic syste
is that the photonic mode density exhibits rapid variat
with frequency at certain edge or cutoff frequencies. In
optical fibers, the mode density vanishes abruptly be
a waveguide cutoff frequencyv0. Forv $ v0, the mode
density of the fiber diverges assv 2 v0d21y2 [3]. A simi-
lar situation appears in the optical wires [4]. In ph
tonic band gap materials, the DOS exhibits band e
and other van Hove singularities. At the band edge
quencyvedge, this can take the form of a step discon
nuity (two-dimensional PBG) or a singularity of the for
jv 2 vedgej

1y2 in a true three-dimensional PBG.
In this paper, we study collective atomic populatio

inversion and statistics of atoms driven by a laser fi
in confined photonic systems. When the deviation
the photonic mode density between the two Mollo
sidebands is large, strong atomic population invers
occurs. We show that when the number of atoms,N ,
is large, collective switching from the ground state in
excited state occurs at a sharp threshold value of
applied field intensity. We show that, under certa
conditions, the statistics of the atoms in the excit
state can be strongly sub-Poissonian. This sugges
new mechanism of sub-Poissonian pumping for las
fast optical switching, and large differential optical ga
relevant to an all-optical transistor.

Consider a system ofN identical two-level atoms driven
by a strong external laser field and coupled to the radia
field reservoir of the confined photonic material. T
atoms have excited statej2l, ground statej1l, resonant
transition frequencyv21, and may interact with lattice
0031-9007y97y78(10)y1888(4)$10.00
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vibrations of the host photonic material. The Hamiltonia
of the system in the interaction picture takes the for
H ­ H0 1 H1 1 Hdephase, where

H0 ­
1
2

"DJ3 1 "´sJ12 1 J21d 1
X
l

"dla
y
lal , (1)

H1 ­ i"
X
l

glsay
lJ12 2 J21ald . (2)

Here Jij ­
PN

k­1 jilkk jjk si, j ­ 1, 2d are the collective
atomic operators;J3 ­ J22 2 J11 describes the atomic
population inversion;al and a

y
l are the radiation field

annihilation and creation operators;D ­ va 2 vL; and
dl ­ vl 2 vL. va, vL, andvl are the atomic resonan
frequency, the applied field frequency, and the frequen
of a model, respectively.´ is the resonant Rabi frequenc
of the applied field andgl is the atom-radiation field
coupling constant. The HamiltonianHdephase describes
additional dephasing interactions which may arise fro
atomic collisions and the scattering of phonons from t
impurity atoms if the atoms are embedded in the solid p
of a dielectric material. We assume for simplicity that th
phononDOS is broad and displays no sharp features.
this case, the dephasing part of the master equation for
atomic density operator can then be written as [12]µ

≠r

≠t

∂
dephase

­ sgpy2d s2J3rJ3 2 J2
3 r 2 rJ2

3 d , (3)

wheregp is a phenomenological dephasing decay rate.
It is convenient to express the atomic operatorJij in

the Schwinger (boson) representation [13,14]. We wr
Jij ­ a

y
i aj si, j ­ 1, 2d, wherea

y
i andai satisfy bosonic

commutation relations and describe creation and ann
lation of atoms in the statejil with the additional con-
straint thata

y
1 a1 1 a

y
2 a2 ­ N . The atom-applied field

part of the HamiltonianH0 can be diagonalized using th
following canonical transformation [13]:a1 ­ cosfq1 1

sinfq2, a2 ­ 2 sinfq1 1 cosfq2. This leads to the
dressed state Hamiltonian,

H0 ­ "VR3 1
X
l

"dla
y
lal , (4)
© 1997 The American Physical Society
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where sin2 f ­
1
2 f1 2 sgnsDdys4´2yD2 1 1d1y2g, V ­

s´2 1 D2y4d1y2, Rij ­ q
y
i qj si, j ­ 1, 2d are the dressed

atomic operators, andR3 ­ R22 2 R11. Clearly,q
y
i and

qi satisfy the bosonic commutation relations and repres
creation and annihilation of atoms in the dressed statejĩl.

In dressed state basisjĩl, J21 and J3 in the interaction
Hamiltonian H1 and s≠ry≠tddephase must be replaced
by J21 ­ sinf cosfR3 1 cos2 fR21 2 sin2 fR12 and
J3 ­ coss2fdR3 2 sins2fd sR21 1 R12d. We define
the time-dependent interaction picture Hamiltonia
H̃1std ­ UystdH1Ustd where Ustd ­ exps2iH0ty"d.
The dressed-state collective atomic operators in t
interaction picture exhibit the time dependenceR̃21std ­
R̃21s0d exps2iVtd, R̃12std ­ R̃12s0d exps22iVtd, and
R̃3std ­ R̃3s0d. Hereafter we drop the tilde on the inter
action picture operators. ClearlyR3, R12, andR21 can be
considered as the source operators for the central co
ponent, left and right sidebands of the Mollow triplet a
frequenciesvL, vL 2 2V, andvL 1 2V, respectively.
In this interaction picture, the interaction HamiltonianH1
takes the form

H1 ­ i"
X
l

gls sinf cosfa
y
lR3eidlt

1 cos2 fa
y
lR12eisdl22Vdt

2 sin2 fa
y
lR21eisdl12Vdtd 1 H.c. (5)

The dephasing part of the master equation remains in
same form (3) except with

J3 ­ coss2fdR3 2 sins2fd sR21e2iVt 1 R12e22iVtd .

(6)
The collective spectral and statistical properties of the
spectral components in free space (where the photo
DOS is smooth and featureless) can be found in [14,1
In this paper we consider the case when the DOS at
atomic transition frequency exhibits a step discontinu
or some other singularity so that the resulting Mollo
spectral components experience strongly different mo
densities. We also assume for simplicity that the photon
mode density, while singular at one frequency, is const
over the immediate spectral regions surrounding t
dressed-state resonant frequenciesvL, vL 2 2V, and
vL 1 2V. In this case, the radiative part [12] of th
master equation for the reduced atomic density opera
r, takes the formµ

≠r

≠t

∂
rad

­ 2
1

"2

Z t

0
dt0TrRhfffH1std, fH1st0d, xst0dg gggj .

(7)
Here x is the density operator of the full atomic system
plus electromagnetic reservoir,r ­ TrRhxj, and TrR de-
notes a trace over the reservoir variables. In the Bo
approximation [12,14–16], we replacexst0d in Eq. (7) by
rst0dR0, whereR0 is an initial reservoir density operator
This corresponds to the second order perturbation the
in the interaction between atoms and reservoir. It assum
nt

n

is

m-
t

he

e
ic
].

he
y

e
ic
nt
e

r,

rn

ry
es

that changes in reservoir as a result of atom-reservoir
teraction are negligible. Our second major simplificatio
is the Markovian approximation which replacesrst0d by
rstd. That is to say, we ignore the memory effects such
those arising form photon localization [6]. The dresse
state master equation for the density operatorr in the
Born-Markoff approximationfor the case of a strong ex
ternal field takes the form

2
≠r

≠t
­ A0fR3rR3 2 R2

3rg 1 A2fR21rR12 2 R12R21rg

1 A1fR12rR21 2 R21R12rg 1 H.c. (8)

Here A0 ­ g0 sin2 f cos2 f 1 gp cos2s2fd, A2 ­
g2 sin4 f 1 gp sin2s2fd, and A1 ­ g1 cos4 f 1

gp sin2s2fd. The spontaneous emission decay ra
g0 ­ 2p

P
l g2

ldsvl 2 vLd, g2 ­ 2p
P

l g2
ldsvl 2

vL 1 2Vd, g1 ­ 2p
P

l g2
ldsvl 2 vL 2 2Vd are

proportional to the density of modes at the dressed-s
transition frequencies. In deriving (8), we have also us
the secular approximation [14–16] for strong applie
laser field with V ¿ Ng0, V ¿ Ng2, V ¿ Ng1.
That is, the fast oscillating terms with frequencies2V

and4V in the master equation were ignored. Physical
it means the three Mollow spectral components are w
separated and the overlap between them is negligi
We note, finally, that the master equation (8) reduces
the free space case 14,15] wheng0 > g2 > g1.

It is convenient to introduce the dressed state ket vec
jnl ; jN 2 n, nl which denotes a symmetrizedN-atom
state in whichN 2 n atoms are in the lower dressed sta
j1̃l andn atoms are excited to the upper dressed statej2̃l.
Using the harmonic oscillator property of the Schwing
bosons, it follows thatR12jnl ­

p
nsN 2 n 1 1d jn 2 1l,

R21jnl ­
p

sN 2 nd sn 1 1d jn 1 1l, and R3jnl ­
s2n 2 Nd jnl. Using these rules and the master equati
(8), it is straightforward to verify that diagonal matri
elements of the density operatorPn ; knjrjnl satisfy the
equation

≠Pn

≠t
­ nsN 2 n 1 1d fA2Pn21 2 A1Png

2 sn ! n 1 1d . (9)

In the steady state limit,≠ry≠t ­ 0, the off-diagonal
elements of the density matrix vanish, and the diag
nal elements can be found by the detailed balance fr
Eq. (9) as Pn ­ P0jn, where j ­ A2yA1 and P0 ­
sj 2 1dysjN11 2 1d. Using atomic distribution function
Pn, we deriveknl andkn2l in the form

knl ­ P0fNjN12 2 sN 1 1djN11 1 jgysj 2 1d2,

(10)

kn2l ­ P0fN2jN13 2 s2N2 1 2N 2 1djN12

1 sN 1 1d2jN11 2 j2 2 jgysj 2 1d3, (11)

wherek· · ·l stands for a steady state expectation value. T
1889
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atomic population per atom on the upper dressed state
bare state can be found for the case ofN ¿ 1 as

kR22lyN >

8<: 1, if j . 1 ,
1y2, if j ­ 1 ,
0, if j , 1 ,

(12)

kJ22lyN >

8<: cos2 f, if j . 1 ,
1y2, if j ­ 1 ,
sin2 f, if j , 1 .

(13)

Clearly, the atomic population displays a sharp collect
jump in which the active region of the photonic materi
switches from an absorptive medium to a gain mediu
as a function of the control laser field (change in t
anglef). A probe laser beam will experience a substa
tial differential gain when the control laser amplitude
in the vicinity of j ­ 1. In this sense, the system ac
as a quantum optical transistor. For asingle atom case,
Eq. (12) is replaced bykR22lyN ­ jysj 1 1d. That is,
there is no jump in a single atom case. It is apparent fr
the above analysis that phonon mediated dephasing
cesses have a tendency to destroy the collective swi
ing. However, the influence of dephasing can be redu
or eliminated by increasing the number of atomsN or by
detuning the control laser field frequency so that sin2s2fd
is small. In Fig. 1 we plotkJ22lyN as functions of reso-
nance Rabi frequencýfor the case ofg2yg1 ­ 1023 and
gpyg1 ­ 0.5. A large jump in the DOS, of this nature
may arise in a 3D PBG material [17,18]. In other confin
photonic systems such as wires and fibers, the jump in
DOS may be much weaker. In Fig. 2, we show the c
lective jump for0.3 , g2yg1 , 0.5 for N ­ 5000. It
is clear that a sizable switching behavior can be achie
even for small DOS variations and substantial phonon
phasingsgpyg1 ­ 0.5d when a large number of atom
responds collectively. This is possible when the left sid
band lies in the gap of a PBG or in the cutoff region of t
optical fibers and wires, while the right sideband lies o

FIG. 1. Atomic population per atom on the bare excit
states kJ22lyN as a function of´yjDj for g2yg1 ­ 1023,
gpyg1 ­ 0.5, D ­ 21, and for N ­ 10 (dotted curve), 500
(dashed curve), and 5000 (solid curve).
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side of the gap or of the cutoff region. It is apparent fro
Figs. 1 and 2 that in the case ofN ¿ 1 (N ­ 5 3 103

for Fig. 2 and the solid curve in Fig. 1) the atomic syste
switches very sharply from the ground state to the exc
states at the critical value of́. We note finally that the
collective time scale for this switching is proportional
N21. As a result, this effect may be relevant for very fa
optical switching devices [19].

To characterize atomic fluctuations in the excit
dressed and bare states, we introduce the Mandeq
parameters Qd ­ skR2

22l 2 kR22l2dykR22l and Qb ­
skJ2

22l 2 kJ22l2dykJ22l. The detailed analytical expressio
for Qd and Qb can be easily found using Eqs. (10) a
(11). In particular, whenN ¿ 1, Qd andQb are found as

Qd >

8<: 1yN , if j . 1 ,
Ny12, if j ­ 1 ,
1ys1 2 jd, if j , 1 ,

(14)

Qb >

8<: sin2 fsj 1 1dysj 2 1d, if j . 1 ,
sN 1 2dy6, if j ­ 1 ,
cos2 fsj 1 1dys1 2 jd, if j , 1 .

(15)

It is apparent from Eqs. (14) that forN ¿ 1 and
j . 1, the q-Mandel parameterQd > 0. That is, the
dressed-state atomic population inversion with strong s
Poissonian atomic statistics occurs. Clearly, the dip
dephasing due to phonons has only a limited influe
on the sub-Poissonian distribution of atoms on the up
dressed state. In contrast, the atom statistics on the ex
bare statej2l depends quite strongly on the dephasi
decay rategp. For example, in the case ofg2yg1 ø 1,
Eq. (15) reduces toQb > cos2 f 1 8sgpyg1d sin2 f.
That is, Qb tends to zero only if cos2 f ø 1 and
gpyg1 ø 1. It is useful to note here that in free spa
no population inversion is available in this system [14,1
and that the distribution of atoms on the excited statej2l
is super-Poissonian rather than sub-Poissonian.

FIG. 2. Atomic population per atom on the bare excited sta
kJ22lyN as a function of´yjDj for gpyg1 ­ 0.5, D ­ 21,
N ­ 5000, and for g2yg1 ­ 0.3 (dashed curve), 0.4 (solid
curve), and 0.5 (dotted curve).



VOLUME 78, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 10 MARCH 1997

1
m
e

i

o
s
el
be
s
to

d
b

ta
o
a

s
n
g
i

ts
e

h
d

d
d
In
e
b

r
i

l
a
tr

5);

J.

z-

le,

H.

m

,
ic

pt.

r-

B
y,

v.
e,

s.
d

.

tt.

.

rt,

v.
r,
FIG. 3. q-Mandel’s parameter Qb as a function of
´yjDjg2yg1 ­ 1023, D ­ 21, N ­ 5000, and for
gpyg1 ­ 0.5 (solid curve), 0.1 (dashed curve), and 0.0
(dotted curve). Inset shows an expanded view of the sa
curves in the regime of sub-Poissonian statistics of excit
atoms.

In Fig. 3 plot Qb as functions of resonance Rab
frequency ´ for the case ofN ­ 5 3 103, g2yg1 ­
1023, and for different values ofgpyg1. At the switching
threshold there is a large (proportional to the number
atomsN) increase in fluctuations, characteristic of a pha
transition. It is apparent from Fig. 3 that the Mand
parameterQb for atoms on the bare excited state can
small for the case when the dephasing decay rate cau
by atomic collisions or phonons is small compared
the radiative decay rate outside the gap (Qb > 0.19 for
gpyg1 ­ 0.01). It suggests that the above considere
system may be relevant for a new mechanism of su
Poissonian pumping for lasers [20,21] and dressed-s
lasers [22]. Lasers exhibiting sub-Poissonian phot
statistics may have applications in noiseless optical d
transfer and detection of gravitational waves.

The analysis we have presented in this paper provide
qualitative picture of collective switching, sub-Poissonia
statistics, and optical amplification in the regime of stron
external laser fields. By using a strong laser field,
is possible to drive the Mollow spectral componen
away from the photon DOS singularity so that over th
width of the individual sidebands, the DOS is smoot
For weaker fields, the singularity in the DOS can lea
to important non-Markovian effects. A more detaile
calculation for a specific van Hove singularity may lea
to the lower threshold and much faster switching.
particular, the collective time scale factor near a thre
dimensional photonic band edge has been shown to
proportional toN2 [6]. That is, the switching speed may
be proportional toN2 when photon localization and othe
non-Markovian effects are included. These problems w
be discussed in detail elsewhere.
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