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Understanding the Area Proposal for Extremal Black Hole Entropy
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(Received 30 October 1996)

Whereas the usual understanding is that the entropy of only a nonextremal black hole is giv
the area of the horizon, there are derivations of an area law for extremal black holes in some
calculations. It is explained here how such results can arise in an approach where one sum
topologies and imposes the extremality conditionafter quantization. [S0031-9007(97)02483-6]

PACS numbers: 04.70.Dy, 02.40.–k
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It has been known for quite some time now that
black hole can be assigned a temperature, which i
quantum effect, and is proportional to Planck’s consta
Correspondingly, there is also an entropy [1,2], w
inverse dependence on Planck’s constant and proporti
to the area of the horizon. This entropy can be underst
in a Euclidean functional integral approach [3] where t
integral is evaluated in the semiclassical approximati
i.e., replaced by the exponential of the negative of
minimum classical action, which is essentially a quar
of the area.

All this is about what are now called nonextremal bla
holes. One is now more often interested in a differe
class of black holes—the extremal ones. These are c
acterized by coinciding horizons and have qualitative
different features. Thus, the Euclidean topology of
extremal black hole is different from that of the relate
nonextremal black holes. Again, the classical action
an extremal black hole vanishes. This results in an
tropy which vanishes [4] or behaves like the mass [5], b
certainly does not behave like the area.

Recently there have been some studies of black h
entropy in a string model which count states in what
believed to be a microscopic description ofextremalblack
holes and come up with a quarter of the area. While
possibility of explicit counting is interesting, the resu
(see [6]) is intriguing in view of the earlier understandin
that the area formula applies only to nonextremal bla
holes. It is true that the borderline between nonextrem
and extremal cases is very thin and if one takes
extremal limit of nonextremal black holes instead of
extremal black hole directly, one obtains the area answ
But, as mentioned above, the Euclidean topologies
different, so one should consider not the limit but t
extreme black hole by itself; and then the string theoris
result does not match the thermodynamical answer.
simple way out of this mismatch would be to say th
one of these calculations is wrong, but the fact th
the area turns up in both the string calculation for t
extremal caseand in the thermodynamical calculation fo
thenonextremal casesuggests that there is a deeper tru
Clearly, for some reason, a nonextremal case is appea
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in the garb of an extremal case. How can this ha
happened? This is what we seek to understand.

Usually, when one quantizes a classical theory, o
tries to preserve the classical topology. In this spir
one usually seeks to have a quantum theory of extrem
black holes based exclusively on extremal topologie
This leads to an entropy that vanishes or goes like t
mass, as mentioned above. Clearly, since the str
model gives a different answer, it does not work with th
extremal topology, even implicitly. To simulate it, we
shall try out a quantization where a sum over topologi
is carried out. Thus, in our consideration of the function
integral, classical configurations corresponding to bo
topologies will be included. The extremality condition
will be imposed not on the classical configurations but o
the averages that result from the functional integratio
We shall, following [3] and [7], use a grand canonica
ensemble. Here the temperature and chemical poten
are supposed to be specified as inputs, and the aver
massM and chargeQ of the black hole are outputs. So
the actual definition of extremality that we have in min
for a Reissner-Nordström black hole isQ  M. This
may be described asextremalization after quantization,
as opposed to the usual approach ofquantization after
extremalization.

The action for the Euclidean version of a Reissne
Nordström black hole on a four dimensional manifoldM
with a boundary is

I  2
1

16p

Z
M

d4x
p

g R 1
1

8p

Z
≠M

d3x
p

g sK 2 K0d

1
1

16p

Z
M

d4x
p

g FmnFmn . (1)

Hereg is the induced metric on the boundary≠M andK
the extrinsic curvature. A class of spherically symmetr
metrics [7] is considered onM :

ds2  b2dt2 1 a2dy2 1 r2dV2, (2)

with the variabley ranging between 0 (the horizon) and
(the boundary), andb, a, r functions ofy only. There are
boundary conditions as usual:

2pbs1d  b, rs1d  rB, bs0d  0 . (3)
© 1997 The American Physical Society
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Here b is the inverse temperature andrB the radius of
the boundary which will be taken to infinity. There
another boundary condition involvingb0s0d: It reflects
the extremalynonextremal nature of the black hole and
therefore different for the two conditions:

b0s0d
as0d

 1 . . . in nonextremal case, (4a)

but
b0s0d
as0d

 0 . . . in extremal case. (4b)

The vector potential is taken to be zero and the sca
potential satisfies the boundary conditions

Ats0d  0, Ats1d 
bF

2pi
. (5)

The variation of the action with this form of the metri
and these boundary conditions leads to the Einste
Maxwell equations. The solution of a subset of the
equations, namely, the Gauss law and the Hamilton
constraint, is given by [7]

r 0

a


µ
1 2

2m
r

1
q2

r2

∂1y2

, A0
t  2

iqba

r2 , (6)

with the mass parameterm and the chargeq arbitrary,
except thatjqj # m. The reason why these paramete
have not been expressed as functions ofb, F is that
some of the equations have not been imposed. Ins
of such imposition, the action may be simplified and th
extremized with respect tom, q [7].

The value of the action corresponding to the soluti
depends on the boundary condition:

I  bsm 2 qFd 2 psm 1

q
m2 2 q2d2

for nonextremal bc,

I  bsm 2 qFd for extremal bc. (7)

The first line is taken from [7], where the nonextrem
boundary condition was used in connection with a sem
classically quantized nonextremal black hole. The sec
line corresponds to the extremal boundary condition u
in connection with a semiclassically quantized extrem
black hole [8]. As the Euclidean topologies of none
tremal and extremal black holes are different, quanti
tion was done separately for the two cases in [7,8]. T
topology was selected before quantization.

As indicated above, a different approach is to be us
here. The two topologies are to be summed over in
functional integral and the extremality condition impos
afterwards.

Thus the partition function is of the formX
topologies

Z
dmsmd

Z
dmsqde2Isq,md, (8)

with I given by (7) as appropriate for nonextremay
extremalq.

The semiclassical approximation involves replacing t
double integral by the maximum value of the integran
s
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i.e., by the exponential of the negative of the minimu
I . We consider the variation ofI as q, m vary in both
topologies. It is clear from (7) that the nonextremal act
is lower than the extremal one for each set of val
of q, m. Consequently, the partition function is to b
approximated bye2Iq,m , whereIq,m is the classical action
for the nonextremalcase,minimizedwith respect toq, m.
The result, which should be a function ofb, F, can be
read off [7]. It leads to an entropy equal to a quarter
the area for all values ofb, F. The averagesQ, M, as
opposed to the parametersq, m, are calculated fromb, F.
We are interested injQj  M, i.e., the extremal black
hole. This is obtained for limiting values

b ! `, jFj ! 1, with bs1 2 jFjd finite (9)

for the ensemble parameters and is described by
effective action

I  pM2 
fbs1 2 jFjdg2

4p
. (10)

It is worth emphasizing that for extremal black hole
the parametersb, F necessarily enter in the combinatio
g ; bs1 2 jFjd because the first law of thermodynami
takes the form

dS 
dM 2 FdQ

T
 bs1 2 jFjddM  gdM . (11)

This combination does occur here as it also does in
case with purely extremal topology [8].

Thus in the limit the partition function takes the form

Z  e2g2y4p  e2pM2

 e2Ay4. (12)

This continues to correspond to an entropy of a quarte
the area of the horizon, which is the value of the entro
we sought to explain.

To reach this goal, we had to define extremalitynot by
equating the classical parametersq, m before quantization
but in terms of the averagesQ, M which are calculated
from the ensemble characteristicsb, F and which reduce
to q, m for the configuration with the minimum actio
in the semiclassical approximation. It is because of
altered definition, and the use of the sum over topolog
that nonextremal configurations have entered and we h
obtained the area law for the entropy instead of
smaller values obtained in [4,5]. This suggests that
string model result about the entropy implicitly involv
a quantization procedure where the classical Euclid
topology is ignored and the condition of extremal
imposed only after quantization.

The derivation can be translated in terms of mic
scopic states. The relevant number of states can be
up into a number of states coming from the nonextre
sector and leading to the area formula and the small n
ber of states coming from the extremal sector. The s
ond contribution can be neglected in comparison to
first, and hence the area result survives.
1859
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It may be clarified here that we do not wish t
suggest that this isthe correct way of quantization.
As in other areas of physics, there are different, oft
inequivalent, ways of quantization,all equally acceptable.
The older results in quantum gravity literature correspo
to quantization with fixed Euclidean topology, while th
recent string counting result agrees with, but does
explicitly involve, a sum over topologies.

It may be instructive to compare this approach with th
of a recent Letter [9] where the area law was found
the entropy of an extremal black hole. But in that wor
the nonextremal topology was tacitly chosen withou
justification. As pointed out in [8], the area law does n
appear if the approach of [7] is adapted to theextremal
topology. The main point of the present work is to sho
how one can argue for the appearance of the nonextre
topology in the extremal case. Once the nonextrem
topology appears, the emergence of the area answe
only natural.

Lastly, it should be pointed out that the functional int
gral is evaluated only in an approximation, but the var
tion of the action becomes sharp, and the approxima
better, for large black holes. There will be correctio
1860
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arising from fluctuations around the dominant configu
ration, which have been neglected as usual [3]. As th
leading area term in the entropy hash̄ in the denominator,
these corrections will be of order̄h0, but relatively small,
unless the area itself is comparable toh̄.
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