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Understanding the Area Proposal for Extremal Black Hole Entropy
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Whereas the usual understanding is that the entropy of only a nonextremal black hole is given by
the area of the horizon, there are derivations of an area law for extremal black holes in some model
calculations. It is explained here how such results can arise in an approach where one sums over
topologies and imposes the extremality conditadter quantization. [S0031-9007(97)02483-6]

PACS numbers: 04.70.Dy, 02.40.—k

It has been known for quite some time now that ain the garb of an extremal case. How can this have
black hole can be assigned a temperature, which is happened? This is what we seek to understand.
quantum effect, and is proportional to Planck’s constant. Usually, when one quantizes a classical theory, one
Correspondingly, there is also an entropy [1,2], withtries to preserve the classical topology. In this spirit,
inverse dependence on Planck’s constant and proportionahe usually seeks to have a quantum theory of extremal
to the area of the horizon. This entropy can be understoodlack holes based exclusively on extremal topologies.
in a Euclidean functional integral approach [3] where theThis leads to an entropy that vanishes or goes like the
integral is evaluated in the semiclassical approximationmnass, as mentioned above. Clearly, since the string
i.e., replaced by the exponential of the negative of themodel gives a different answer, it does not work with the
minimum classical action, which is essentially a quarterextremal topology, even implicitly. To simulate it, we
of the area. shall try out a quantization where a sum over topologies

All this is about what are now called nonextremal blackis carried out. Thus, in our consideration of the functional
holes. One is now more often interested in a differenintegral, classical configurations corresponding to both
class of black holes—the extremal ones. These are chatepologies will be included. The extremality condition
acterized by coinciding horizons and have qualitativelywill be imposed not on the classical configurations but on
different features. Thus, the Euclidean topology of anthe averages that result from the functional integration.
extremal black hole is different from that of the relatedWe shall, following [3] and [7], use a grand canonical
nonextremal black holes. Again, the classical action okensemble. Here the temperature and chemical potential
an extremal black hole vanishes. This results in an enare supposed to be specified as inputs, and the average
tropy which vanishes [4] or behaves like the mass [5], butmassM and charge) of the black hole are outputs. So
certainly does not behave like the area. the actual definition of extremality that we have in mind

Recently there have been some studies of black holor a Reissner-Nordstrdm black hole @ = M. This
entropy in a string model which count states in what ismay be described asxtremalization after quantization,
believed to be a microscopic descriptionextremalblack  as opposed to the usual approachgofantization after
holes and come up with a quarter of the area. While thextremalization.
possibility of explicit counting is interesting, the result The action for the Euclidean version of a Reissner-
(see [6]) is intriguing in view of the earlier understanding Nordstrém black hole on a four dimensional maniféid
that the area formula applies only to nonextremal blackvith a boundary is

holes. Itis true that the borderline between nonextremal 1 . 1 5 0
and extremal cases is very thin and if one takes the/ == 7— | d x/gR + g[ d’x\/y (K= K")
extremal limit of nonextremal black holes instead of an M oM

extremal black hole directly, one obtains the area answer. 1 T F oy F™. (1)
But, as mentioned above, the Euclidean topologies are 167 Jm

different, so one should consider not the limit but theHerey is the induced metric on the boundaryM andK
extreme black hole by itself; and then the string theoriststhe extrinsic curvature. A class of spherically symmetric
result does not match the thermodynamical answer. Anetrics [7] is considered ofM :

simple way out of thig misr_natch would be to say that ds? = b2dr? + a’dy? + r2dQ2, )
one of these calculations is wrong, but the fact that . ] ) ]

the area turns up in both the string calculation for theWVith the variabley ranging between O (the horizon) and 1
extremal casand in the thermodynamical calculation for (the boundary),_ gnbl, «, r functions ofy only. There are
the nonextremal cassuggests that there is a deeper truth.oundary conditions as usual:

Clearly, for some reason, a nonextremal case is appearing 27 b(1) = B, r(1) = rg, b(0)=0. (3
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Here B is the inverse temperature amg the radius of i.e., by the exponential of the negative of the minimum
the boundary which will be taken to infinity. There is I. We consider the variation df as g, m vary in both

another boundary condition involving’(0): It reflects  topologies. It is clear from (7) that the nonextremal action
the extremalnonextremal nature of the black hole and isis lower than the extremal one for each set of values

therefore different for the two conditions: of g,m. Consequently, the partition function is to be
b'(0) _ approximated by ~/«, wherel, ,, is the classical action
= 1... in nonextremal case (4a)  for the nonextrematase minimizedwith respect tag, m.
a(0) X .
b The result, which should be a function @f ®, can be
ut
, read off [7]. It leads to an entropy equal to a quarter of
b0 _ 0... in extremal case (4b) the area for all values oB, ®. The average®), M, as
a(0) opposed to the parametersm, are calculated fronB, ®.
The vector potential is taken to be zero and the scalayve are interested inQ| = M, i.e., the extremal black
potential satisfies the boundary conditions hole. This is obtained for limiting values
A0=0  am=-£2 6) B |®I—1, with B(1 — | finite  (9)
1

The variation of the action with this form of the metric for the ensemble parameters and is described by the
and these boundary conditions leads to the Einsteineffective action
Maxwell equations. The solution of a subset of these [B(1 — |D]P
equations, namely, the Gauss law and the Hamiltonian [ =maM?>=*"——"-
constraint, is given by [7] _ o
, om g?\/? igha It is worth emphasizing that for extremal black holes,
— = <1 - — + —> , Al = — , (6) the parameterg, ® necessarily enter in the combination

a r2 _ N ) ;
with the mass parameter and the chargey arbitrary, ék_esﬁtﬂe fol?;l) because the first law of thermodynamics

except thatlg| = m. The reason why these parameters

47 (10)

have not been expressed as functionsBofP is that _daM — ®dQ _ _
some of the equations have not been imposed. InsteaddS a T = B — [PDaM = ydM . (11)
of such imposition, the action may be simplified and thenrnis combination does occur here as it also does in the
extremized with respect ta, g [7]. _ . case with purely extremal topology [8].
The value of the action corresponding to the solution Tpys in the limit the partition function takes the form
depends on the boundary condition: , R
Z = VAT = o7 TM = mA/4 (12)

I=B(m—q®) — 7(m +m? — ¢*
This continues to correspond to an entropy of a quarter of
the area of the horizon, which is the value of the entropy
I = B(m — qP) forextremal bc (7)  we sought to explain.
The first line is taken from [7], where the nonextremal To reach this goal, we had to define extremaiitt by
boundary condition was used in connection with a semi€quating the classical parametgrs: before quantization,
classically quantized nonextremal black hole. The seconfiut in terms of the average8, M which are calculated
line corresponds to the extremal boundary condition useffom the ensemble characteristies® and which reduce
in connection with a semiclassically quantized extremato ¢, m for the configuration with the minimum action
black hole [8]. As the Euclidean topologies of nonex-in the semiclassical approximation. It is because of this
tremal and extremal black holes are different, quantizaaltered definition, and the use of the sum over topologies,
tion was done separately for the two cases in [7,8]. Théhat nonextremal configurations have entered and we have
topology was selected before quantization. obtained the area law for the entropy instead of the
As indicated above, a different approach is to be usegmaller values obtained in [4,5]. This suggests that the
here. The two topologies are to be summed over in thétring model result about the entropy implicitly involves
functional integral and the extremality condition imposeda quantization procedure where the classical Euclidean

for nonextremal bc

afterwards. topology is ignored and the condition of extremality
Thus the partition function is of the form imposed only after quantization.
The derivation can be translated in terms of micro-
> f d,u(M)[ du(g)e '@, (8)  scopic states. The relevant number of states can be split
topologies up into a number of states coming from the nonextremal

with 7 given by (7) as appropriate for nonextrephal sector and leading to the area formula and the small num-
extremalg. ber of states coming from the extremal sector. The sec-

The semiclassical approximation involves replacing theond contribution can be neglected in comparison to the
double integral by the maximum value of the integrandfirst, and hence the area result survives.
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It may be clarified here that we do not wish to arising from fluctuations around the dominant configu-
suggest that this ighe correct way of quantization. ration, which have been neglected as usual [3]. As the
As in other areas of physics, there are different, oftedeading area term in the entropy hasn the denominator,
inequivalent, ways of quantizatioall equally acceptable these corrections will be of ordé’, but relatively small,
The older results in quantum gravity literature correspondinless the area itself is comparabléeito
to quantization with fixed Euclidean topology, while the
recent string counting result agrees with, but does not
explicitly involve, a sum over topologies.

It may be instructive to compare this approach with that  «gjectronic address: amit@tnp.saha.emet.in
of a recent Letter [9] where the area law was found for  fEjectronic address: mitra@tnp.saha.eret.in
the entropy of an extremal black hole. But in that work, [1] J. Bekenstein, Phys. Rev. B, 2333 (1973);9, 3292
the nonextremaltopology was tacitly chosen without (1974).
justification. As pointed out in [8], the area law does not [2] S. Hawking, Commun. Math. Phyd3, 199 (1975).
appear if the approach of [7] is adapted to #hdremal  [3] G. Gibbons and S. Hawking, Phys. Rev. I, 2752
topology. The main point of the present work is to show _ (1977). _
how one can argue for the appearance of the nonextremaf! S: Hawking, G. Horowitz, and S. Ross, Phys. RevoD)
topology in the extremal case. Once the nonextremal 4302 (1995).

topology appears, the emergence of the area answer &) & Ghosh and P. Mitra, Phys. Lett. BST, 295 (1995);
pology appears, g Report No. hep-th9509090.

only natur_al. . . . [6] G. Horowitz, Report No. gr-qt9604051.
Lastly, it should be pointed out that the functional inte- 7] H.w. Braden, J. D. Brown, B. F. Whiting, and J. W. York,

gral is evaluated only in an approximation, but the varia- Phys. Rev. D42, 3376 (1990).
tion of the action becomes sharp, and the approximation[g] A. Ghosh and P. Mitra, Phys. Rev. Le®t7, 4848 (1996).
better, for large black holes. There will be corrections [9] O.B. Zaslavskii, Phys. Rev. Let?6, 2211 (1996).
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