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Duality and Zero-Point Length of Spacetime
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The action for a relativistic free particle of massreceives a contributior-mds from a path of
infinitesimal lengthds. Using this action in a path integral, one can obtain the Feynman propagator
for a spinless particle of mass. Assuming that the path integral amplitude is invariant under the
“duality” transformationds — L} /ds, one can calculate the modified Feynman propagator. | show
that this propagator is the same as the one obtained by assuming that quantum effects of gravity lead to
modification of the spacetime intervél — y)2 to (x — y)> + L3. The implications of this result are
discussed. [S0031-9007(97)02531-3]

PACS numbers: 04.60.—m, 03.65.Db

From the fundamental constants,/, and ¢, one This propagator—which arises in the standard formula-
can form a quantity with dimensions of lengthp, =  tion of quantum field theory—does not take into account
(Gh/c3)'/2, which is expected to play a vital role in the the existence of any fundamental length in the spacetime.
“ultimate” theory of quantum gravity. Simple thought Let us ask how this propagation amplitude could be modi-
experiments indicate that it is not possible to devisdied if there exists a fundamental zero-point length to the
experimental procedures which will measure lengths wittspacetime. This is best done using the path integral ex-
an accuracy greater than aboOt(Lp) [1]. This result pression for the Feynman propagator
suggests that one could think of Planck length as some
kind of “zero-point length” of spacetime. In some simple Geonv(X,y) = Z exd —ms(x,y)], @3]
models of quantum gravityL?> does arise as a mean paths
square fluctuation to spacetime intervals, due to quantum . .
fluctuations of the metric [2]. In more sophisticated Whe_Fes().(,y) IS the_ length of any pgth connectlrxgand_

. . To give meaning to the path integral we shall first
approaches, such as models based on string theory O

. - L ; introduce a cubic lattice with a lattice spaciiagin the
Ashtekar variables, similar results arise in one guise o . . . )
-dimensional Euclidean space. The propagator in the
another (see, e.g., [3,4]).

The existence of a fundamental length implies that pro!att'C'Z(ed spacetime '2 given by
cesses involving energies higher than Planck energies will Geony (R, €) = Z C(N,R)ex— u(e)eN], (3)
N=0

be suppressed, and the ultraviolet behavior of the theory
will be improved. All sensible models for quantum grav-
ity provide a mechanism for good ultraviolet behavior,whereC(N,R) is the number of paths of lengitie con-
essentially through the existence of a fundamental lengthecting the origin to the lattice poilt = (n1,n2,...,np)
scale. One direct consequence of such an improved ba&hich is aD-dimensional vector with integer components.
havior will be that the Feynman propagator (in momentun(The physical scale correspondingRas x = €R.) The
space) will acquire a damping factor for energies largescaling factoru(e) acts as the mass parameter on the lat-
than Planck energy. tice. The propagator for the continuum has to be obtained
If the ultimate theory of quantum gravity has a funda-by multiplying (3) by a suitable measur® (e) and tak-
mental length scale built into it, then it seems worthwhileing the limit e — 0. Both the measureM (e) and the
to formulate quantum field theory, using this principle asmass parameter on the lattige(e) should be chosen so
the starting point. This could, for example, help in un-as to ensure the finiteness of the limit. This procedure is
derstanding some of the effects of quantizing gravity orstraightforward to carry out (see, e.g., [5]) and one obtains
the matter fields. | will show in this Letter that such athe Feynman propagator given in Eq. (1).
procedure leads to some interesting results for a spin-zero In the above procedure, the weight given for a path of
(scalar) field. length! is expg—ml) which is a monotonically decreasing
To keep things well defined and general, | will work in function of /. The existence of a fundamental lendth
a D-dimensional Euclidean space. Feynman propagatokould suggest that paths with length< Lp should be
G(x,y) for a spin-zero, free particle of mass in D  suppressed in the path integral. This can, of course, be

dimension is done in several different ways by arbitrarily modifying
_ the expression in Eqg. (3). In order to make a specific

Geom (x.¥) = d’p e P (1) choice | shall invoke the following “principle of duality.”

conv(X, ¥y Qm)P (p? + m?)" | will postulate that the weight given for a path should
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be invariant under the transformatidn— L3/I. Since
the original path integral has the factor é€xpnl), we
have to introduce the additional factor éxpnL3/1). We

separating out thé-independent part as the first term.
(Note that the two summations in (7) will differ by
unity if » = 0; the results in (8) will go over to the

therefore modify Eq. (3) to second summation in (7) if the limié — 0 is taken.)
Using the second form in Eq. (8) and introducing the
continuum variablex = €R, p = € 'k, we can write
the propagator as the sum of two terigs= G, + G,

where

GR.e) = S CN.R) exp[—ﬂ(e)ezv - @} @)
N=0

whereA(e) is a lattice parameter which will play the role

of (mL3) in the continuum limit. dPk e kR
I will take this to be the basic postulate arising from Go(R) = (2m)P ‘1 — De—ne Z cosk; ] )
the “correct” theory of quantum gravity. It may be noted -!
that the principle of duality invoked here is similar to that I dP —ik-R
which arises in string theories (though not identical). Ge(R) = /;) quI(Q)] (277)0 ¢
fact, we may think of Eq. (4) as the simplest realization 1
of duality for a free particle; we have demanded that ‘ By ]
the existence of a weight factor expml) necessarily I = 2emcnrla 2.i-1 COSk; (10)

requires the existence of another factor (exmL%/l).

We shall now study the consequences of the modificationa,e now have to take the — 0 limit. The propagatoGy

we have introduced. . O
To evaluate this path integral on the lattice we begin bybecomes, in the limit of sma,
de AI(E)e_ip.x

noticing that the generating function fai{(NV, R) is given

by [5] G = | Gmp 2+ Bi(e)’ (11)
FN = Z C(N;R)e®R where
R
= (ef + et + ... 4 ko Ai(€) = €P 72 | Bi(€) = € e — 2D},
+e k4 e 44 TN (5) (12)
Therefore we can write Similarly, G. becomes, in the same limit,
Z ok Rg(R €) = NZO o~ HeN—(A/eN) Z C(N, R)ezk R G(x) — fo dq 11() 3 (q. %) (13)
Z N(ue—InF) ()\/EN). (6) with
N=0 D —ip-x
sgn - [ S el g
Thus, our problem reduces to evaluating the sum of the TP 286,49
form where
*® 2
S(a,b) = Z [( a’n — %) As(e,q) = —eP2 ef[“(f)wz/“(e)], (15)
= b2 Bs(e,q) = :572{e5[“(5)+‘12/4’\(6):| — 2D} . (16)
Z - — (7)
" The continuum propagator is defined as
This expression can be evaluated by some algebraic tricks
[6], and the answer is G(x) = |imo{jv1(e)g(x; )}, (17)

(o B) = o @ Jo(k)ef(az+k2/4b2)
(a,b) = o 2b% [1 — e~ @HiF/ab)2

1 o)
T (- e @) _fo a7
®)

where J,(x) is the Bessel function of order. The
first form of the integral shows that the expression is
well defined while the second form has the advantage of

where the smalé behavior ofM (€), A(e), andu(e) have
to be fixed in such a manner that this limit is finite. One

Ji(q) : L ;
can easily see that finitenessAf andB; requires

e—(a2+q2/4h2)] ’

|imo{m4(e)eD*2efM<f>} =1, (18)

Ilm{—[e”‘(f) - 21)]} = (19)

e—0
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which is a standard result leading to (1) (see, e.g.lently represented as
[5]). The finiteness ofB, requires the quantity(e) =

[e/A(e)] to scale ase” for small e. Writing B(e) = B dPp e PX
Io2€? + O(€%) in this limit (where we expecty o« Lp Geony(x) = Qm)P p? + m?
in the continuum limit), we find that the final result can be 4P %
expressed a§ = Gy + G, with = p e—iP'Xf dse s’ +p?)
(2m)P 0
de e ipx oo d 2
G = , 20 - a5 X2
O(X) (277_)[) p2 + m2 ( ) = ‘/;) (477's)D/2 eX[( 4s m S>. (26)
G.(x) = — ]3@ dqJ:(q) ] d’p o iPx The Ias't expresgion, in fact, constitutes the Schwinger
¢ (2m)P proper time version of the propagator. Suppose we now
! postulate that the net effect of quantum fluctuations is
[ 5 ] (21) to add a zero-point length to the spacetime interval, i.e.,
p? + (D/2ly)g* + m? to change the interval fronx — y)? to (x — y)? + I3

_ o ~where [y « Lp. (In [1,2], it was suggested thaf =
Integrating the second term by parts and combining witly,, /277.) Making this replacement and doing the inverse
the first term, we can express the full momentum spacgourier transform, we immediately see that the modified

propagator as momentum space propagator becomes
A - Jo(q) A I
— 22 f d q 22 - 2 4 om?
G(P) v 0 q [q2 + 1/2(]72 + mz)]z > ( ) Gmod(p) \/mKl(l() 14 +m )’ (27)
wherer? = (2i3/D). Using the identity which is identical in form to Eqg. (24). In other wordbe

modification of the path integral based on the principle
fx I xJox) 1 K!(b) Ky (b) (23) of duality leads to results which are identical to adding a
0 (x2 + b2)? 2b 0 2b zero-point length in the spacetime interval
| wish to argue that the connection shown above is
where K, (z) is the modified Bessel function of orde;  nontrivial; | know of no simple way of guessing this
we can write result. The standard Feynman propagator of quantum
field theory can be obtained either through a lattice
A _ v N N regularization of a path integral or from Schwinger's
G(p) Jp?r + m? Kiloy[p® + m?). (24) proper time representation. By adding a zero-point length
in the Schwinger representation we obtain a modified
This is our final result withv = L in the continuum  Propagator. Alternatively, using the principle of duality,
limit. This equation represents the Feynman propagatof€ could modify the expression for the path integral
for a “free” spin-zero particle when our prescription— amplitude on the lattice and obtain—in the continuum
that the weight for a path of lengthshould be invariant limit—a modified propagator. Both these constructions
under the transformatioh— L3/I—has been invoked. &€ designed to suppress energies larger than Planck
This postulate (which, in the present context, may beEnergies.However, there is absolutely no reason for these
called “lattice duality”), and the form of the standard tWO €xpressions to be identicalThe fact that they are
free particle propagator, uniquely leads to our final resultidentical suggests that the principle of duality is connected
From the asymptotic forms df;(z) it is easy to see that " SOme deep manner with the spacetime intervals having

the propagator in (24) has the limiting expressions a zero-point length. Alter_natively, one may conjecture
that any approach which introduces a minimum length

G(p) — —pzi,,ﬂ (for v/p2 +m?2 < 1) scale il?‘ sdpa:c:eti_me_ (Isuc? ;s ilp Stri‘Pt?‘ mode_ls)twill lead to
exg—p/pTFmE) (for v/pTTmE > 1) some kind of principle of duality. iS conjecture seems

to be true in conventional string theories, though it must
(25) be noted that the term “duality” is used in a somewhat
different manner in string theories. [The concept of
When v « Lp — 0, the propagator reduces to the stan-duality in string theory is reviewed in several articles; see,
dard form, while for energies larger than Planck energie®.g., Refs. [7—12], and the references cited therein. The
it is exponentially damped. closest to our approach seems to beZhguality.]
I shall now show that the result in (24) has an extremely | stress that the path integral amplitude is modified on
simple interpretation and an alternative derivation. Thethe latticebeforetaking the continuum limit. This allows
standard Feynman propagator in Eq. (1) can be equivass to introduce a factor expA/Ne) along with the
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original exgd—uweN). Loosely speaking, we are changing L. Sriramkumar, and K. Srinivasan for several useful
the infinitesimal action for the relativistic particle from discussions.
ds to (ds + L*/ds). It is not easy to interpret this term
directly in the continuum limit or even find a modified
continuumaction for the relativistic particle which will *Electronic address: paddy@iucaa.emet.in

lead to the same final propagator. [1] T. Padmanabhan, Class. Quantum Gra¥ity. 107 (1987).
More generally, it is possible to define the path integral [2] T. Padmanabhan, Ann. Phys. (N.YL§5, 38 (1985).
measure in such a way that the modified Green'’s function[3] C. Rovelli and L. Smolin, Nucl. Phy$3442, 593 (1995).
can be expressed in the form [4] A. Ashtekar, C. Rovelli, and L. Smolin, Phys. Rev. Lett.
69, 237 (1992).
e 5 [5] T. Padmanabhan, Found. Phpg, 1543 (1994).
Gmod(x) = ]0 dsK(x,s)exp(—l5/4s),  (28)  [g] T. Padmanabhan (to be published).
[7] A. Sen, Int. J. Mod. Phys. @, 3707 (1994).
where K (x, 5) is the conventional Schwinger kernel of a [8] T-A. Giveon, M. Porrati, and E. Rabinovic, Phys. Rep.

\ : , 244, 77 (1994).
fre_equantum field [6]. I.n the case of Spln/(Zl). particles, . [9] E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, CERN Re-
this seems to be equivalent to starting with an action

. . . 2. t No. TH-748¢94 (hep-th9410237) (to b blished).
which is an integral ofy,dx* and defining the path port N §94 (hep-ti ) (to be published)

. ) . . . . [10] J.H. Schwarz, “The Second Superstring Revolution,”
integral with suitable path ordering. This question and Caltech, 1996 (to be published).

related issues are under investigation. [11] J. Polchinskie, Report No. hep/#607050 (to be pub-
| have been discussing these ideas with many people lished).
over the years. In particular, | thank K. Subramanian|[12] M. Dine, Report No. hep-#8609051 (to be published).

1857



