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Duality and Zero-Point Length of Spacetime
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(Received 27 August 1996)

The action for a relativistic free particle of massm receives a contribution2mds from a path of
infinitesimal lengthds. Using this action in a path integral, one can obtain the Feynman propag
for a spinless particle of massm. Assuming that the path integral amplitude is invariant under
“duality” transformationds ! L2

Pyds, one can calculate the modified Feynman propagator. I sh
that this propagator is the same as the one obtained by assuming that quantum effects of gravity
modification of the spacetime intervalsx 2 yd2 to sx 2 yd2 1 L2

P . The implications of this result are
discussed. [S0031-9007(97)02531-3]

PACS numbers: 04.60.–m, 03.65.Db
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From the fundamental constantsG, h̄, and c, one
can form a quantity with dimensions of length,LP ;
sGh̄yc3d1y2, which is expected to play a vital role in th
“ultimate” theory of quantum gravity. Simple though
experiments indicate that it is not possible to dev
experimental procedures which will measure lengths w
an accuracy greater than aboutO sLPd [1]. This result
suggests that one could think of Planck length as so
kind of “zero-point length” of spacetime. In some simp
models of quantum gravity,L2

P does arise as a mea
square fluctuation to spacetime intervals, due to quan
fluctuations of the metric [2]. In more sophisticate
approaches, such as models based on string theor
Ashtekar variables, similar results arise in one guise
another (see, e.g., [3,4]).

The existence of a fundamental length implies that p
cesses involving energies higher than Planck energies
be suppressed, and the ultraviolet behavior of the the
will be improved. All sensible models for quantum gra
ity provide a mechanism for good ultraviolet behavio
essentially through the existence of a fundamental len
scale. One direct consequence of such an improved
havior will be that the Feynman propagator (in moment
space) will acquire a damping factor for energies lar
than Planck energy.

If the ultimate theory of quantum gravity has a fund
mental length scale built into it, then it seems worthwh
to formulate quantum field theory, using this principle
the starting point. This could, for example, help in u
derstanding some of the effects of quantizing gravity
the matter fields. I will show in this Letter that such
procedure leads to some interesting results for a spin-
(scalar) field.

To keep things well defined and general, I will work
a D-dimensional Euclidean space. Feynman propag
Gsx, yd for a spin-zero, free particle of massm in D
dimension is

Gconvsx, yd 
Z dDp

s2pdD

e2ip?sx2yd

sp2 1 m2d
. (1)
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This propagator—which arises in the standard formu
tion of quantum field theory—does not take into accou
the existence of any fundamental length in the spacetim
Let us ask how this propagation amplitude could be mo
fied if there exists a fundamental zero-point length to t
spacetime. This is best done using the path integral
pression for the Feynman propagator

Gconv sx, yd 
X

paths

expf2mssx, ydg , (2)

wheressx, yd is the length of any path connectingx and
y. To give meaning to the path integral we shall fir
introduce a cubic lattice with a lattice spacinge in the
D-dimensional Euclidean space. The propagator in t
latticized spacetime is given by

GconvsR, ed 
X̀

N0

CsN , Rd expf2msedeNg , (3)

whereCsN, Rd is the number of paths of lengthNe con-
necting the origin to the lattice pointR  sn1, n2, . . . , nDd
which is aD-dimensional vector with integer component
(The physical scale corresponding toR is x  eR.) The
scaling factormsed acts as the mass parameter on the l
tice. The propagator for the continuum has to be obtain
by multiplying (3) by a suitable measureM sed and tak-
ing the limit e ! 0. Both the measureM sed and the
mass parameter on the latticemsed should be chosen so
as to ensure the finiteness of the limit. This procedure
straightforward to carry out (see, e.g., [5]) and one obta
the Feynman propagator given in Eq. (1).

In the above procedure, the weight given for a path
lengthl is exps2mld which is a monotonically decreasing
function of l. The existence of a fundamental lengthLP

would suggest that paths with lengthl ø LP should be
suppressed in the path integral. This can, of course,
done in several different ways by arbitrarily modifyin
the expression in Eq. (3). In order to make a speci
choice I shall invoke the following “principle of duality.”
I will postulate that the weight given for a path shoul
© 1997 The American Physical Society
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be invariant under the transformationl ! L2
Pyl. Since

the original path integral has the factor exps2mld, we
have to introduce the additional factor exps2mL2

Pyld. We
therefore modify Eq. (3) to

GsR, ed 
X̀

N0

CsN, Rd exp

∑
2msedeN 2

lsed
eN

∏
, (4)

wherelsed is a lattice parameter which will play the rol
of smL2

Pd in the continuum limit.
I will take this to be the basic postulate arising fro

the “correct” theory of quantum gravity. It may be note
that the principle of duality invoked here is similar to th
which arises in string theories (though not identical).
fact, we may think of Eq. (4) as the simplest realizati
of duality for a free particle; we have demanded th
the existence of a weight factor exps2mld necessarily
requires the existence of another factor exps2mL2

Pyld.
We shall now study the consequences of the modificati
we have introduced.

To evaluate this path integral on the lattice we begin
noticing that the generating function forCsN , Rd is given
by [5]

FN ;
X
R

CsN; Rdeik?R

 seik1 1 eik2 1 · · · 1 eikD

1 e2ik1 1 e2ik2 1 · · · 1 e2ikD dN . (5)

Therefore we can writeX
R

eik?RGsR, ed 
X̀

N0

e2meN2slyeNd
X
R

CsN , Rdeik?R


X̀

N0

e2Nsme2ln Fd2slyeNd. (6)

Thus, our problem reduces to evaluating the sum of
form

Ssa, bd ;
X̀
n0

exp

µ
2a2n 2

b2

n

∂


X̀
n1

exp

µ
2a2n 2

b2

n

∂
. (7)

This expression can be evaluated by some algebraic tr
[6], and the answer is

Ssa, bd 
Z `

0

kdk
2b2

J0skde2sa21k2y4b2d

f1 2 e2sa21k2y4b2dg2


1

s1 2 e2a2 d
2

Z `

0
dq

J1sqd
f1 2 e2sa21q2y4b2dg

,

(8)

where Jnsxd is the Bessel function of ordern. The
first form of the integral shows that the expression
well defined while the second form has the advantage
d
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separating out theb-independent part as the first term
(Note that the two summations in (7) will differ by
unity if b  0; the results in (8) will go over to the
second summation in (7) if the limitb ! 0 is taken.)
Using the second form in Eq. (8) and introducing th
continuum variablesx  eR, p  e21k, we can write
the propagator as the sum of two termsG  G0 1 Gc,
where

G0sRd 
Z dDk

s2pdD

(
e2ik?R

1 2 2e2me
PD

i1 coski

)
, (9)

GcsRd  2
Z `

0
dqJ1sqd

Z dDk
s2pdD e2ik?R

3

(
1

1 2 2e2efm1sq2y4ldg
PD

i1 coski

)
.

(10)

We now have to take thee ! 0 limit. The propagatorG0

becomes, in the limit of smalle,

G0sxd 
Z dDp

s2pdD

A1sede2ip?x

p2 1 B1sed
, (11)

where

A1sed  eD22eemsed , B1sed  e22heemsed 2 2Dj .

(12)

Similarly, Gc becomes, in the same limit,

Gcsxd 
Z `

0
dq J1sqdH sq, xd (13)

with

H sq, xd 
Z dDp

s2pdD

A2se, qde2ip?x

p2 1 B2se, qd
, (14)

where

A2se, qd  2eD22 eefmsed1q2y4lsedg, (15)

B2se, qd  e22heefmsed1q2y4lsedg 2 2Dj . (16)

The continuum propagator is defined as

Gsxd  lim
e!0

hM sedG sx; edj , (17)

where the smalle behavior ofM sed, lsed, andmsed have
to be fixed in such a manner that this limit is finite. On
can easily see that finiteness ofA1 andB1 requires

lim
e!0

hMsedeD22eemsedj  1 , (18)

lim
e!0

Ω
1
e2

feemsed 2 2Dg
æ

 m2, (19)
1855
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which is a standard result leading to (1) (see, e
[5]). The finiteness ofB2 requires the quantitybsed ;
feylsedg to scale ase2 for small e. Writing bsed .
l22
0 e2 1 O se3d in this limit (where we expectl0 ~ LP

in the continuum limit), we find that the final result can b
expressed asG  G0 1 Gc, with

G0sxd 
Z dDp

s2pdD

e2ip?x

p2 1 m2
, (20)

Gcsxd  2
Z `

0
dqJ1sqd

Z dDp
s2pdD

e2ip?x

3

(
1

p2 1 sDy2l2
0 dq2 1 m2

)
. (21)

Integrating the second term by parts and combining w
the first term, we can express the full momentum sp
propagator as

Ĝspd  2n2
Z `

0
dq

qJ0sqd
fq2 1 n2sp2 1 m2dg2

, (22)

wheren2 ; s2l2
0yDd. Using the identityZ `

0
dx

xJ0sxd
sx2 1 b2d2

 2
1

2b
K 0

0sbd 
K1sbd

2b
, (23)

whereKnszd is the modified Bessel function of ordern,
we can write

Ĝspd 
np

p2 1 m2
K1sn

q
p2 1 m2d . (24)

This is our final result withn ~ LP in the continuum
limit. This equation represents the Feynman propaga
for a “free” spin-zero particle when our prescription—
that the weight for a path of lengthl should be invariant
under the transformationl ! L2

Pyl —has been invoked
This postulate (which, in the present context, may
called “lattice duality”), and the form of the standar
free particle propagator, uniquely leads to our final res
From the asymptotic forms ofK1szd it is easy to see tha
the propagator in (24) has the limiting expressions

Ĝspd !

(
1

p21m2 sfor n
p

p2 1 m2 ø 1d
exps2n

p
p2 1 m2d sfor n

p
p2 1 m2 ¿ 1d

.

(25)

When n ~ LP ! 0, the propagator reduces to the sta
dard form, while for energies larger than Planck energ
it is exponentially damped.

I shall now show that the result in (24) has an extrem
simple interpretation and an alternative derivation. T
standard Feynman propagator in Eq. (1) can be equ
1856
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lently represented as

Gconv sxd 
Z dDp

s2pdD

e2ip?x

p2 1 m2


Z dDp

s2pdD
e2ip?x

Z `

0
dse2ssm21p2d


Z `

0

ds
s4psdDy2

exp

µ
2

x2

4s
2 m2s

∂
. (26)

The last expression, in fact, constitutes the Schwing
proper time version of the propagator. Suppose we no
postulate that the net effect of quantum fluctuations
to add a zero-point length to the spacetime interval, i.e
to change the interval fromsx 2 yd2 to sx 2 yd2 1 l2

0
where l0 ~ LP . (In [1,2], it was suggested thatl0 
LPy2p .) Making this replacement and doing the invers
Fourier transform, we immediately see that the modifie
momentum space propagator becomes

Ĝmodspd 
l0p

p2 1 m2
K1sl0

q
p2 1 m2d , (27)

which is identical in form to Eq. (24). In other words,the
modification of the path integral based on the principl
of duality leads to results which are identical to adding a
zero-point length in the spacetime interval.

I wish to argue that the connection shown above
nontrivial; I know of no simple way of guessing this
result. The standard Feynman propagator of quantu
field theory can be obtained either through a lattic
regularization of a path integral or from Schwinger’s
proper time representation. By adding a zero-point leng
in the Schwinger representation we obtain a modifie
propagator. Alternatively, using the principle of duality
we could modify the expression for the path integra
amplitude on the lattice and obtain—in the continuum
limit—a modified propagator. Both these construction
are designed to suppress energies larger than Pla
energies.However, there is absolutely no reason for thes
two expressions to be identical.The fact that they are
identical suggests that the principle of duality is connecte
in some deep manner with the spacetime intervals havi
a zero-point length. Alternatively, one may conjectur
that any approach which introduces a minimum leng
scale in spacetime (such as in string models) will lead
some kind of principle of duality. This conjecture seem
to be true in conventional string theories, though it mu
be noted that the term “duality” is used in a somewha
different manner in string theories. [The concept o
duality in string theory is reviewed in several articles; se
e.g., Refs. [7–12], and the references cited therein. T
closest to our approach seems to be theT duality.]

I stress that the path integral amplitude is modified o
the latticebeforetaking the continuum limit. This allows
us to introduce a factor exps2lyNed along with the
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original exps2meNd. Loosely speaking, we are changin
the infinitesimal action for the relativistic particle from
ds to sds 1 L2ydsd. It is not easy to interpret this term
directly in the continuum limit or even find a modifie
continuumaction for the relativistic particle which will
lead to the same final propagator.

More generally, it is possible to define the path integ
measure in such a way that the modified Green’s funct
can be expressed in the form

Gmodsxd 
Z `

0
dsKsx, sd exps2l2

0y4sd , (28)

whereKsx, sd is the conventional Schwinger kernel of
freequantum field [6]. In the case of spin-(1y2) particles,
this seems to be equivalent to starting with an act
which is an integral ofgadxa and defining the path
integral with suitable path ordering. This question a
related issues are under investigation.
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