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Quantum open systems are described in the Markovian limit by master equations in Lindblad form.
| argue that common “quantum jump” techniques, which solve the master equation by unraveling
its evolution into stochastic trajectories in Hilbert space, correspond closely to a particular set of
decoherent histories. This is illustrated by a simple model of a photon counting experiment. [S0031-
9007(97)02717-8]
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Recently a great deal of work has been done in quansponds to the quantum trajectories of a continuously mea-
tum optics on “quantum jump” simulations of continu- sured system.
ously measured systems with dissipation [1-5]. In this Exactly such a correspondence has recently been shown
technique, a system described by a master equation fdretween decoherent histories and quantum state diffusion
the reduced density operatorin the Markovian approxi- (QSD), another unraveling of the master equation, by

mation [6], Diési et al. [13]. Though this result was pioneering, it
. R s oy [P was rather abstract, and lacked any direct connection to a
p=—ilHpl+ Y LapLf - 5 Lnlmp physical measurement situation. Similar results for yet
" another unraveling were given by Paz and Zurek [14]
- ipﬁ;ﬂﬁm, (1) and Di6si [15] in a model with exact decoherence, but
2 also far removed from physical measurement situations.

is “unraveled” into a jump process for pure stated.  Other treatments [16] have been framed in terms of
is the system Hamiltonian, and thfl,} are a set measurement alone.
of Lindblad operatorswhich model the effects of the  Consider a quantum system with a HamiltoniAg,
environment. completely isolated except for a single channel of decay,
Around the same time, the decoherent histories formuwhich is monitored by an external photon detector. We
lation of quantum mechanics was developed [7—12]. Imodel this detector as a single two-level system (the
this formalism, one describes a quantum system in term®utput mode”) with stateg0) and |1) strongly coupled
of an exhaustive set of possible histories, which musto an environment representing the remaining degrees of
satisfy adecoherencer consistencycriterion. Histories freedom of the device.
which satisfy this criterion have probabilities which obey The measuring device produces two important effects.
the usual classical probability sum rules. The first is dissipation. Excitations of the output mode
Both quantum trajectories and decoherent histories dewill be absorbed by the measuring device with a rBte
scribe a quantum system in terms of alternative possiblerhich we assume to be rapid compared to the dynamical
evolutions; they thus bear a certain resemblance to eadime scale of the system. The timéeI’; represents the
other. What is more, quantum jumps are commonly intertime resolution of the detector.
preted as giving the results of continuous measurements, The second effect is more subtle but just as important:
and histories which correspond to records of a “classicaltdecoherence. As the state of the output mode be-
measuring device should always decohere [10]. Thus;omes correlated with the internal degrees of freedom of
there should be a set of decoherent histories which corréghe measuring device, the phase coherence between the
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ground and excited states of the output mode is lost. InAssume that the system (excluding the output mode)
vestigations of this process have shown that the loss degins in a pure statk)). |) evolves according to the
coherence is generally far quicker than the actual rate dbchrédinger equation,

energy loss [17]. This decoherence raté'is> TI';.

We suppose that the system is linearly coupled to the dlg) _ i et i) (10)
output mode via the Hamiltonian, dt h
i =x@teb+asebh, @) interrupted at random times by sudden quantum jumps
and the total Hamiltonian is |y — aly). (11)
A=Heol+«k@'eb+asobh, (3)  These jumps correspond to the detection of photons [1,2].

wherea and b (at and b1) are the lowering (raising) Note that this evolution does not preserve the norm
operators for the system and output mode, respectivelpf the state. The physical state is taken to |pe =

The hierarchy of evolution rates I$ > I'y > «. l4r)/\/(¢ | ), the renormalized state.
The total system obeys the master equation, The probability that an initial statéy) evolves for
r r a timeT and undergoesV jumps during intervalsé ¢
p = — i[H,p] + Tibpht — LbThp — =L pbth centered at times, ..., ty is
p ilH,p] + I'bp S btbr —=p o S | .
e (L —IN) 2, “Uest UINTIN-1) 5y . . 5y p — Ueffhl
4 Thoupo. — Tap = Lp, @) (26tk”/G)" THe ae a---ae

ot ot
. . . . X iHgti st . At iHee(T—ty)
where p is the density matrix for the combined system ) <dle “ ae b

and output mode, and the Pauli operatgr acts on the (12)
output mode. £ is theLiouville superoperator. This is

. ; i.e., the norm of the unrenormalized state gives the
a linear equation, and so can be formally solved:

probability for that state to be realized.
p(t) =exd L(t, — t1)]p(t1). (5) Equation (8) is valid only as long as the Markovian
approximation remains good. In the case of our toy model,
this means that it is valid only on time scales longer than
1/Ty. Thus, rather than a jump occurring at a timgit is
p(1) = poo(t) ® |0){0] + poi () ® |0)(1] more correct to consider the jump as occurring during an
interval 6+ ~ 1/I'; centered on;. This is fine as long as
+ p10(@) @ DL+ pn() @ [H{AI. (6)  the jumps are separated by more thinon average, i.e.,
In terms of these components the master equation béhe system is not too highly excited.

Assume that we start in a pure stdt®) = |¢) ® |0).
We can expang,

comes By averaging|i) (4| over all possible trajectories with
. R o . . the probability measure (12), one can show that this unrav-
poo = —i[Ho, poo] = ikad' pio + ikpoa + Tipur, eling reproduces the master equation (8) as required [3].
por = —ilHo, poi] — ixatpii + ikpooat — Gpor Now, let us turn to the decoherent histories picture. In
.t nonrelativistic quantum mechanics, a set of histories for
= Pio> a system can be specified by choosing a complete set
pu = —i[Ho, p11] — ixapor + ikproat — Tipy, (7)  of projections{%y;(z;)} at a sequence of times, ..., 1y,

. o which represent different exclusive alternatives:
whereG = I'1/2 + 2T, > I'| > «. (This combination

G occurs frequently in the equations which follow.)

Pi(r) = 1 Pi (1 VP (1) = P (1.
Since thepg;, p10, p11 COMponents are heavily damped, ;Ta/(t/) L Ta/(tf)Taf(t/) 5“/‘“/T“f(t/)'

we can adiabatically eliminate all components other than ' (13)
poo [18]:
R k2 2 A particular history (denoted) is given by choosing
poo = — i[Ho, poo] + —&poo&T — —&Tflpoo one P at each point in time. Thdecoherence functional
2 , G G on a pair of historieg andr’ is
G P ® Dl = THEY () BL (0)p(a0) B (1) - B},

to first order inx%/G, provided that the system is not so (14)
highly excited as to emit too rapidly, i.ec{ata) < T';.

We can unravel the master equation (8) into a sum ov
quantum jump trajectories. First, define a non-Hermitia
effective Hamiltonian,

here p(1y) is the initial density matrix of the system
(:f:VLO]. This satisfies thedecoherence criterionf the
off-diagonal terms vanishpD[h,h'] = 0,h # h’. The
diagonal terms then give the probabilities of the histories,
Her = Hy — i(k*/G)ata. (9)  p(h) = D[h,h].
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Suppose our initial pure state [#) = |4) ® |0), and  Here we see the appearance of the effective Hamiltonian
we consider histories composed only of the SchrodingeH.s, just as in the quantum jump unraveling.

projections, If the initial state isp = p;; ® [1)(1], after a timedt¢
Py =1 ® [0y, D=1 1), (15) the state becomes
. : . . 2
e s v o St e = Tyt e 1+ 241,
ot apart, and a history is composed Nf projections, + h.o.t,,
representing a total tim& = N&t. A single historyh .
is specified by a strinf;, as, ..., ay}, wherea; = 0,1.  (¢£9p) = —lEKan“ + hot.=(eL%p)ly,

In this case, by the quantum regression theorem [19] the
decoherence functional (14) becomes

D[h,h'] = TP, eL%(P,, %

X ( o ezét(j)a] |\P> <\P|,j)a{) o ),j)a,/\,)}
(16) Once again the effective Hamiltonian appears, together

The Liouville i luti ¢ 5 | with two additional effects. The first is the possibility
e Liouville time evolution superoperators (5) evo V€ that the photon in the excited mode will be absorbed

pure states into mixed states. This is counteracted by ”1%/ the measuring device. The second (much smaller)
effect of the repeated projectiors,.

From Eq. (7), we can determine the character of th effect is the possibility that the photon will be coherently

different histories. The crucial parameter is the size of th%ge;)t;sgre%e”céig?/ethe system. This last process is so weak as

spacingdt between projections. The interesting regime is By combining the above expressions with the appropri-

in the range ate projectionsP and P, (which pick out thepgo or p1;

1 < 8t < L_ (17)  component, respectively), we can write down the proba-

bilities of all possible histories.

On this time scale, th&, terms are sufficient to ensure  Note that the magnitude of the off-diagonay, ;o terms
decoherence, while the effects of the, terms are in both cases is of orda®(x/G). (This is also true for
resolved into individual pure state trajectories. This last igransitions from off-diagonal to diagonal terms.) This will
a subtle point. The probability of a photon being emittedbe important in estimating the decoherence of this set of
in any single time step is small. However, if a photonhistories.
is emitted, it has an appreciable possibility of being Consider the history given by an unbroken string\of
absorbed on a time scalél’;. The effect of decoherence 7 projections, corresponding to no photon being emitted
produces the term&c%/G)atapgy and (k2/G)pgata in  during a timeN &1.
Eqg. (8), which are included in the effective Hamiltonian The probability of such a history is given by the
(9). These terms are already important on a time scaldiagonal element of (16). We can expand the time
8t < 1/T'|. By contrast, the term(2«2/G)apyat is  evolution superoperator using (18) and see that after
produced by the effects of dissipation, which only becomeve get
important on a time scalé/I';. It is this term which R R
causes pure states to evolve into mixed states in Eq. (8). DX % (Iy) (wl®l0)O) By

(eLop)yy =1 — (T + 2K2/G)5f)efiﬁ“”étpneiﬁ:”al
+ hot, (19)

By choosing a timedr < 1/I';, we can maintain the z(e—i(ﬁro—i(,<2/c;)m)az|¢><lr,/|
purity of the system state over a full trajectory, as we e
shall see. X ! Hotil/G)aT 50y 10y (0] . (20)

If the external mode is initially unexcited, witp = _ o _
poo ® 10)¢0], then after evolving for a time: the state Repeating thisv times, and taking the trace, we get
becomes

—H.. l'AJf
2 p(h) = Tr{e” HaNol|y) (letory, (21)
L6t _ T AP N
e = i|Hy, ot a'dapopot . . -
( Ploo = poo Ho. po] G poo which agrees exactly with the probability of the quantum
K2 b jump trajectory when no jumps are detected.
TG Pood ast + h.ot Suppose now that at tim¥ 67 a photon is emitted, so

that instead of using a final projectidh we use?;. This
corresponds to keeping thg; component of exp 61)p
instead ofpg, and yields a probability

~ e—i(ﬁo—i(Kz/G)aTa)St

pooei(ﬂo+i(K2/G)afa)5t

IK

(eX% p)or = Epooffr + ho.t.= (et &P)Iro,
—ifl, ifl A
L5 2 p(h) = (281x*/G) Tr{ae ™ HarVorly) (et aora Ty,
(e=°'p)1 = Fapooa 8t + h.o.t. (18) (22)
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Once again, this agrees exactly with the probability of We have seen how, in this simple model of a continu-
the corresponding quantum jump trajectory. What hapeous measurement, the set of quantum jump trajectories
pens after the output mode has “registered” as being icorresponds to a set of decoherent histories. One of the
the excited state? Essentially, there are two possibilitieprincipal goals of the decoherent histories program was
Either the output mode can drop back to the unexcitedo create a formalism which would reproduce the results
state (representing absorption of the photon by the meaf the usual Copenhagen formalism in measurement situ-
suring device) or it can remain in the excited state. ations. It is pleasant to note that extensions to repeated

or continuous measurements follow naturally within de-

Poet 2 (1Y ('l @ [1)(1) Py = T18t|y") (/| @ [0)(0],  coherent histories.

(23) In this Letter, | considered only one measurement
A A scheme, direct photodetection. In fact, there are many
Prel () ('l @ 1)1 P, different schemes which give rise to different unravelings
~ (1 — —iHy8t),1 0\ (10| i H St of the same master equation—heterodyne and homodyne
(1= T\80e ) Wl ® |1>§;|4-) detection, to name two [4,21]. | have no doubt that

arguments similar to those | have advanced in this paper

We see that the output mode has a probability ofwill demonstrate similar correspondences to different sets
roughly I'; 8 per time 81 of dropping back to the ground ©Of decoherent histories. _ _
state, while the system state continues to evolve according This correspondence also has obvious practical bene-
to the effective Hamiltoniakl.;. its. Enumerating a full set of decoherent histories and

This is slightly different from quantum jumps. Quan- calculating their probabilities is an arduous and unreward-
tum jumps are resolved only on a time scald’;, not N9 task, m_gener_al. _There_ is a great deal_of accumu-
8t < 1/T. However, there is a near-unity probability 1ated experience in simulating quantum trajectories; in
of the external mode returning to the ground state withirsituations where one would like to generate individual
a time of orderl /T, so one can simply sum over all his- decoherent histories with correct probabilities, existing
tories in which the photon is absorbed within this time.numerical techniques could be used.

It is easy to see that these will, once again, match the The decoherent histories formalism was developed
guantum jump trajectories exactly. This type of coarsdargely in response to the problems of quantum cosmol-
graining is common in decoherent histories [10,11], and®9Y, While quantum trajectories arose from problems in
does not alter the form of the result. guantum optics and atomic physics. Both extend the

By combining the three cases described in this sectioyOn Neumann description of quantum mechanics to new
one can produce histories of multiple jumps. It is clearfe@lms of application. As the connections between the
that the probability of such a history will be exactly of the two formalisms are further explored, we can hope that a
form (12). great deal of interesting physics will emerge.
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