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We present a new contribution of tiReparity-violating (R,) supersymmetry (SUSY) to neutrinoless
double beta decaf)v 8 8) via the pion exchange between decaying neutrons. The pion coupling to the
final state electrons is induced by ti SUSY interactions. We have found this pion-exchange
mechanism to dominate over the conventional two-nucleon one. The latter corresponds to direct
interaction between quarks from two decaying neutrons without any light hadronic mediatar like
meson. The constraints on the cert#nSUSY parameters are extracted from the current experimental
Ov B B-decay half-life limit. These constraints are significantly stronger than those previously known
or expected from the ongoing accelerator experiments. [S0031-9007(96)02005-4]

PACS numbers: 12.60.Jv, 11.30.Er, 11.30.Fs, 23.40.Bw

Neutrinoless double beta decéyr 83) has long been first pointed out by Pontecorvo [6]. Later, this idea
recognized as a sensitive probe of the new physics beyongas quantitatively realized in [7,8] for the case of the
the standard model (SM) (see [1,2]). Various mechanismbeavy Majorana neutrino exchange. It was shown that
of Ov B B decay were proposed and studied in the last twdhe pion-exchange contribution cannot be neglected in
decades. The conventional mechanism is based on thkis case. We will show that in the case of tig
exchange of a massive Majorana neutrino between the twWilSSM induced quark transition the pion-exchange con-
decaying neutrons. A new mechanism was found withirtribution absolutely dominates over the conventional two-
supersymmetric (SUSY) models witR-parity violation  nucleon mode.

(R,) in [3]. [R, = (—1)3BTL*2S where S, B, and L The R,-violating part of the superpotential breaking
are spin, baryon, and lepton numbers.] It was latetepton number conservation is
studied in more details in [4]. A complete analysis of this

— il / n
mechanism within the minimal supersymmetric standard Wg, = AipLiljEre + A LiQiDr. (1)
model (MSSM) was carried out in [5]. HereL, Q are lepton and quark doublets while D are
The nuclear0v 83 decay is triggered by thévBB8  lepton anddownquark singlet superfields. Indicés;, k
quark transition d + d — u + u + 2¢~, which is  denote generations angyx = —A;;. Inwhat follows we

induced by certain fundamental interactions. It was aoncentrate on the so called “direct” SUSY contribution
common practice to put the initial quarks separately to the OvBB [3-5] depending only on the’ term of
inside the two initial neutrons of @®v»BB-decaying the superpotential in Eq. (1). The combination of bath
nucleus. This is the so called two-nucleon mode of theand A terms may lead to the “indirect” SUSY contribution
OvpBp decay [see Fig. 1(a)]. If the abowl»BB-quark  accompanied by the neutrino exchange [9], which we do
transition proceeds at short distances, as in the cagg of not consider in the present Letter.
SUSY interactions, then the basic nucleon transition am- Starting from theA’ term in Eq. (1) the following
plitude n + n — p + p + 2¢” is strongly suppressed effective quark-electron vertex has been derived [5]:
for relative distances larger than the mean nucleon
radius. n p

In this Letter we propose a new pion-exchange SUSY -
mechanism which is based on the double-pion exchange
between the decaying neutrons [Fig. 1(b)]. At the quark
level this mechanism implies the same short-distance
R, MSSM interactions as in [5]. However, it essen-
tially differs from the previous consideration of the
SUSY contribution to theOvBB decay at the stage
of the hadronization. We assume that tig MSSM
quark interactions inducerm — 2e transition at the FIG. 1. (a) Two-nucleon mod&Rg. sz and (b) m-exchange
middle point of the diagram in Fig. 1(b). The impor- R,z contributions todv 3 -decay matrix elemerR,,z5 =
tance of the pion-exchange currentsiin8 decay was R3)ss + REM .
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G _ c i structure calculations. The effective Lagrangian tak-
Loe = 2m, e(l + ys)e| (ng + mp) UpJp + JsJs) ing into account both the nucleofp,n) and 7-meson
degrees of freedom in a nucleus can be written as

1 v _
— gl JT,W):|. (2) follows:

4
Lhe=Loy + Lo + L

These interactions violate the electron numhdr, = 2. ‘ N e N

They are induced by heavy SUSY particles in a virtual G2 _ A

intermediate state. An example of the Feynman diagram = Tﬁr(’)nﬁr(’)n?(l + vs)e”

contributing to L, is given in Fig. 2. The color-singlet "p )

hadronic currents in Eq. (2) arép = u®ysd,, Js = _ GF 4 “V25(1 + ¢

ud,, J¥' =u*c""(1 + ys)d,, where a is a color 2m,, Mo an(m)e(l + ys)e

index. o _ + g, Piysnm . (5)
The lepton number violating parametensin Eq. (2) _ _

can be written in the following form Here Loy, L., and L,y describe the conventional two-

nucleon mode, pion-exchange mode, and pion-nucleon
ny = A2|:2as Mp 3 @y Mp. (€2, + €2 )}’ 3) interactions, respectively. They correspond to the first,
mg 4 " my ! second, and third terms of the second part of Eqg. (5).
m 3 m, { m; 2 gs = 134 £ 1 is known from experiment. The two-
ny = Az[zas L4 =, L (—q> C:| (4)  nucleon mode contributions,y to theOr 88 decay with
Mg 2 Mx different operator structurds”) were derived and studied
HereA = (V27 /3)A111Gr'mz* andC = 6(mz/mz)*> X in [4,5] within the R, MSSM.
€, — €Rd€Le — €ru€ra(me/mg)? — €Lu€Le. ay = g5/ In this Letter we concentrate on the effect of the
(47) and a, = gg/(ém) are SU3), and SU3). gauge plon-exchange termf .. The baS|c' parametet,, of
coupling constantsy; andm, are masses of the gluino the LagrangianL,, can be approximately related to
z and of the lightest neutraling. The latter is a linear the parameters of Ehe fun_damenta_I_Lag]rJranglé)qr; using
combination of the gaugino and higgsino ﬁe|dsthe+on—mas§—shell matching conditio |£_qe|7_7 ) =
X =a B+ B,W + 5)(,9? 4 ),ng_ Here W? and B <177- | Lrelm™). The squtllon of this equat|o+n ia, =
are neutral S(2); andU(1)y gauginos whileZ?, &} are 7(_77@ + 77}2 (cp + CS? — 5 mger, where (7" |JiJil X
higgsinos which are the superpartners of the two neutréf ) = —"xCi With i =PST. Thus we obtain the
Higgs boson fields?? and HY with a weak hypercharge approximate hadrom(; |mag_eEm' of the fundamental
Y = —1, +1, respectively. The mixing coefficients duark-lepton Lagrangiad,, given in Eq. (2).

@,,B,. 7,6, can be obtained from diagonaliza- The contribution of theJpsr currents toa, can
tion of the 4 x 4 neutralino mass matrix. Neu- P€ estimated within the vacuum insertion approximation

tralino couplings are defined as,, = —T3(1)B, + (VIA). Applying_partial conservation of axial current
tanoy[T3(y) — Q)lay, ery = Q) tandya, [10]. (PCAC)we obtain

Here Q andT; are the electric charge and weak isospin B 8 . B

of the fieldsy = u,d,e. In Egs. (3) and (4) we used (7 VpJplm ™) = =77 1Jpl0) Olp|7 )

the universal squark mass; ansatz at the weak scale .

my = mg =~ mg. This approximation is justified by the _ _Efz max = —mtcp, (6)
constraints from the flavor changing neutral currents and 377 (my, + mg)? LAt

is sufficient for our analysis. , , , _
Now we have to reformulate the quark-lepton interac—Where 8/3 is a combinatorial color factor angt, =

. ) . ; 0.668 m,.. Taking the conventional values of the current
tions in Eq. (2) in terms of the effective hadron-leptonquark massesn, = 4.2 MeV, m; = 7.4 MeV one gets

interactions, which is necessary for the further nuclearCP ~ 342. Within the VIA we havec, = ¢y = 0 since
OJsl(pr)) = O |7 (ps)) = 0. The scalar current

K matrix element vanishes due to the parity arguments,

: the tensor one vanishes due #~ = —J;/* and the

: ] impossibility of constructing antisymmetric object having

only one 4-vectop,,. Thus we expect thér contribution

& to be dominant.

———— u TheJp dominance also follows from the nonrelativistic

quark model (QM) [11]. Within this model one can

- e calculate(sr " |JpJp|7 ) using the closure approximation

Ry for the intermediate meson states [7]. After quite tedious

FIG. 2. An example of the supersymmetric contribution tocalculations we end up again wii}, > csr. In this

Ov BB decay. case the numerical valuer = 1100 is larger than that
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in Eqg. (6), since in addition to the vacuum state thereare

are other intermediate states taken into account. In what B _

follows we use both the VIA and the QM values &f. Fi(x) = (x = 2)e™,  Fx) =(x + De*. (13)
The large coefficientp enhances the pion-exchange

contribution to theédv 8 8 decay. This enhancement factor

is a generic property of th#, SUSY models generating

The most stringent experimental lower limit on the

OvBB-decay half-life has been obtained f§iGe [13],
at low energies the/pJp interactions [see Eq. (2)]. that fav_ors espeuglly this nuclegs for nuclear structure
galculations. In this Letter we direct our attention only

There is another factor enhancing the pion-exchang his i We h loved th lized
contribution compared to the two-nucleon mode. Asl© IS isotope. We have employed the renormalize

explained later on, it stems from the fact that the pionquasiparticle random phase approximation with proton-

exchange is longer ranged and thus covers a larger interv@futron pairing (full-RQRPA) [12] to calculate both the

of the internucleon distances enhancing the nuclear matri o—nu<_:|eon and pion-exchange nucle%r matrix elements
elements over the two-nucleon mode. governing theR, SUSY Ov B B-decay of °Ge. The full-

Starting from the Lagrangianl,, in Eq. (5) it is RQRPA includes the Pauli effect of fermion pairs and

straightforward to calculate the contribution to thegg- ~ does not collapse for a physical value of the nuclear

matrix elementR,,zz which corresponds to the funda- force strength. To include the_ Pauli princip_le more
mental vertexC,. in Eq. (2). It consists of the two terms correctly we do not use the quasiboson approximation to

Rovps = R(Z)IIY,B,B + 'R(mag describing the conventional derive the quasiparticle random phase approximation

N . . (QRPA). If one includes the exact Fermion commutation
twq—nucli(l)vn modeRj, 5 and the pion-exchange contri- ra|ations for nucleon pairs (two quasiparticles) as a QRPA
butionRRg, ps. The relevant Feynman diagrams are givengypectation value, one obtains the renormalized QRPA
in Fig. 1. The corresponding half-life formula reads (RQRPA), which is stable against the collapse2of3 8

4 Gamow-Teller transition. Therefore the RQRPA offers
ny . e .
—) a significantly more reliable treatment of the nuclear
many-body problem for the description of the 88
X | M2V + pr M2V decay. _Thus it also allows one to establish more reliable
N3"%5 My constraints on thg®, SUSY parameters from the best
+ (ng + np)M™ 2. (7)  available experimental lower bound on theg 8-decay

) half-life. We have found the following numerical values
Here Gy, is the standard phase space factor tabulategf the nuclear matrix elements fdfGe: M2V = —¢1:
s M; :

for various nuclei in [2] andms = 850 MeV. The M%N — 0.85; M7 = —1800(QM), —600(VIA). The

analytic fo”z')v of the two-nucleon mode nuclear matrix pion-exchange matrix element is given for QM and VIA
e!ementsﬂ\/qu are given in [5.]' Here we present the new values of the coefficientp. It is apparent that in both
pion-exchange nuclear matrix element defined as QM and VIA cases the dominant contribution to Eq. (7)
m comes from the pion-exchange mechanism corresponding
M™N = L a™(Mgr, + Mr,). 8) to M7™ . The VIA value M™ = —600 we will use
e for conservative estimations. It is worthwhile to note that

The partial Gamow-Teller and tensor matrix elements ardhe above nuclear matrix elements are quite stable with
respect to variation of the nuclear model parameters. The

Ov _
[T1/2BB(0+ _>0+):| 1 GOI(
14

R uncertainty of the calculated values 6% and M ™
={of Trto | — + J
Mar.x <0f ;71 T UZ/(,»U )Fl(x”) 0 > ) goes not exceed 20%. !
R Now we are ready to extract the constraints on ghe
N <0+ Z T%ﬁg.(_)Fz(x ) (),+> (10) MSSM parameters from the nonobservatiordefs 8 de-
ST f I B ¥ T 1 4 .
i%j Tij cay. The current experimental (I)owgr bound on thée
. . 14 —ex
where OvBB-decay half-life [13] is Tl/f_ p(()'+ —07") =
A . 9.1 X 10** years 90% c.l. Combining this bound with
Si;j =230 710, Fij — 0 Gj, 0 =0;" 0}, Eg. (7) and the above given numerical valuesdf™"
B Gy — )/l — = (11) we get a constraint on the sum of the effective MSSM
Tij Ti T TpATE T LT fi = il parametersy; + n7 = 2.1 X 107°. If one does not in-

andx, = m,r;. Here7 is the coordinate of theith” clude the pion-exchange contribution then one gets a con-
. - . i - -8 ini
nucleon. The pion-nucleon structure coefficient in Eq. (8)Straintng + 0.014n; = 7.8 X 107" from the remaining

is given by 2N mode. It is essentially less stringent than the above
5 . s given N mode constraint by more than 1 order of mag-
a1 [my My gs nitude forn; and by 3 orders fof;.
* 7 9 m_,, ma ) \ fa cp» (12) The gluino and neutralino contributions tg cannot

cancel each other within the present experimental limits
wheref, = 1.261. The pion-exchange SUSY potentials on their masses and couplings (see [5]). Therefore we

185
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can extract from the above limit om; the constraints it corresponding to a very low values of tif coupling

on these individual contributions. The gluino contributionconstant 107 = A};; = 0.76(2.4) X 1074(1'362':@)2

constraint is and m; + m; = 205 GeV remains not excluded by the
- 2 e 1/2 OvBpB-decay constraints. Here we used the conserva-
Ny = 2.0(1.18) X 10‘4< g ) ( - )

tive VIA value of the pion matrix elementp, and put
100 GeV/ \ 100 GeV m, = mg = 100GeV (1 TeV).
(14) Summarizing, we point out that the SUSY contribu-
for the VIA(QM) value of the pion matrix element pa- tion to the0» 3B decay comes dominantly via and pion-
rameter cp. The neutralino contribution constraint is €Xchange mechanism considered in the present letter.
more complex because it involves more parameters; ned-1€ conventional two-nucleon mechanism [3-5], cor-
tralino mixing coefficients, selectron, and squark massed€SPonding tonn — ppee transition without light par-
However, it can be cast into the form of Eq. (14) un-ticles (pion or neutrino) in the intermediate state, brings

der the phenomenologically viable simplifying assump-o_nly a subdominant SU_SY cont_ribution. In practice the
tions. Assume that the neutralino B-ino dominant Pion-exchange mechanism considerably enhances the sen-

a, > By.8,.7, and thatm; = m;. Then we get sitivity of the OvBB decay to the supersymmetry. _Th_is
5 12 allowed us to obtain presently the most stringent limita-
m; ) ( my ) tions of the certain first generatigty, MSSM parameters.
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