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Light Diffraction from Shear Ordered Colloidal Dispersions
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Light diffraction from shear ordered colloidal dispersions is discussed in terms of the scatte
power distributionI(l) along Bragg rods of hexagonal layers. For a charge stabilized dispersion
angle dependence of the light scattering intensity is used to determineI(l), from which conclusions on
the mutual registration of the layers, the stacking order, and the kinetics of crystallization can be dr
For the system under study a structural transition from random close-packed hexagonal layers to fa
twinned fcc is identified. [S0031-9007(97)02367-3]
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The equilibrium phase behavior of charge stabilize
colloidal dispersions has been investigated as a funct
of particle concentration and ionic strength [1–4]. A
low particle concentration and low ionic strength th
equilibrium structure is liquidlike or bcc. A region of
fcc follows at higher particle concentration and ion
strength. At very high particle concentration, finally
glasslike behavior has been observed [2], the ultima
equilibrium structure of which is not yet known. After the
application of shear, such dispersions often show a h
degree of order which, according to small angle neutr
scattering (SANS) experiments [5–7], is not in agreeme
with the above mentioned equilibrium structures [8,9
It has therefore been proposed to consider hexago
layers as the basic structure element for concentra
shear ordered colloidal dispersions [8–12]. The thre
dimensional structure obtainable from such layers depe
on (a) the packing of the layers and (b) the stacki
sequence of the layers [13].

By measuring the SANS Bragg spot intensity at vario
sample orientations we were recently able to determ
the scattering intensityIhksld along Bragg rods with
Miller indices (h, k) [9,12]. In the present letter we show
that the method of determining the intensity distributio
Ihksld along Bragg rods of shear ordered dispersio
can be extended to light scattering (LS). First, w
present explicit experimental determinations ofIhksld by
light scattering and show further how the structure
dispersions and the kinetics of recrystallization after t
application of shear can be investigated by this metho
We also mention that light scattering “powder” diffractio
from hard sphere colloidal systems has been interprete
terms of close-packed random stacking layers [14,15].

Our experiments were performed with polystyrene lat
dispersions, charge stabilized by sulfat surface grou
The particle diameter wass ­ 240 nm with a polydisper-
sity of about 6% as determined by transmission electr
microscopy. Ordering of the dispersions was achieved
first completely deionizing the sample with ion exchang
resins and then applying shear. For this the dispers
was filled in a rectangular quartz cell of dimension
0.5 mm thickness3 10 mm width 3 40 mm length,
0031-9007y97y78(9)y1811(4)$10.00
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equipped with an inlet and an outlet through whic
flowing was achieved by means of a peristaltic pump
The cell was mounted on a rotation stage which allowe
its reorientation about the vertical axis by an anglea. It
was placed in the center of a spherical screen, filled wi
water as index match fluid. A photodiode mounted on
separate rotation stage served to determine the scatte
intensity as the sample was rotated at various anglesa.
Figure 1 shows a typical Bragg spot pattern from a she
ordered layered dispersion on the spherical screen.

A brief summary of the Bragg spot description use
to analyze the LS data is presented next. The reciproc
space of a hexagonal layer with interparticle distancea is
a system of hexagonally arranged Bragg rods [13] wi
a rod spacing in reciprocal space ofap ­ 4pysa

p
3 d.

Figure 2(a) shows a view from the top of such a syste
of Bragg rods with Miller indices (h, k). For a series
of laterally uncorrelated layers the intensity would b
uniformly distributed along the rods. On the other hand

FIG. 1. Light scattering pattern from Bragg rods on a spher
cal screen as described in the text.
© 1997 The American Physical Society 1811
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FIG. 2. (a) View from the top of hexagonally arranged Brag
rods with indicessh, kd. (b) Rod system of (a) rotated by 90±

about thes1, 0d-s0, 0d-s1, 0d axis. sh 2 kd ­ 3n rods drawn
as solid lines with intensity nodes (filled circles) for a close
packed system.I(l) along sh 2 kd ­ 3n 6 1 rods is drawn as
light lines. The Ewald sphere for the orientationa ­ 0± is
included as a solid circle.

for close-packed layers, a modulation of the intensi
Ihksld along the rods occurs. With a spacing betwee
two closed-packed layersc ­ a

p
2y

p
3, one obtainscp ­

2pyc as the unit along the rods.
In general, for close-packed hexagonal layers, there

two types of Bragg rods [13]. For rods withsh 2 kd ­
3n, wheren is an integer, reciprocal lattice points occu
on the rods at integral values ofl. In Fig. 2(a) the
central (0,0) rod and the rods drawn as filled circle
1812
g

-

y
n

re

r

s

are of this type. On the other hand, for rods wit
sh 2 kd ­ 3n 6 1, shown in Fig. 2(a) as open circles
the intensity distribution depends on the stacking ord
A summary of the earlier x-ray literature on the intensi
distributionIhksld is given in Ref. [13]. Recently, Loose
and Ackerson [10] derived essentially identical resu
in a very compact and useful form. They introduced
stacking probabilityA of having two consecutive A!
B translations (or A! C translations) for ABCABC. . .
(or ACBACB . . .) layering. Forsh 2 kd ­ 3n 6 1 they
obtain the following distribution:

I01sld ­
3As1 2 Ad

4s1 2 2Ad s1 2 cos22pld 1 5A2 1 4A2cos2pl
.

(1)

With A ­ 0.5 in Eq. (1), the distribution of close-
packed random stacking layers is obtained. F
A ­ 1, the distribution for twinned fccsABCABC . . . ,
ACBACB . . .d and, for A ­ 0, the one of hcp
sABABAB . . . , ACACAC . . . , BCBCBC. . .d results.
Distributions for intermediate stacking sequences can
modeled readily with intermediate values ofA.

In order to show howIhksld can be obtained from the
LS scattering intensity we consider a different presentat
of the reciprocal space which results from Fig. 2(a) b
a 90± rotation about thes1, 0d 2 s0, 0d 2 s1, 0d axis. The
resulting view along the Bragg rods is schematically show
in Fig. 2(b). Here, thesh 2 kd ­ 3n rods are drawn as
solid lines with intensity nodes (filled circles) accordin
to perfectly close-packed hexagonal layers atl ­ 0, 61,
62, . . . [9,10,13]. By contrast, thesh 2 kd ­ 3n 6 1
rods are indicated by the light lines in Fig. 2(b). N
intensity distribution is indicated for these rods becaus
according to Eq. (1), this strongly depends on the stack
order. The Ewald sphere with radiuski ­ 2pnpyl0 is
included in Fig. 2(b) for the sample orientationa ­ 0±.
The Ewald sphere is draw to scale forl0 ­ 543.5 nm and
a ­ 1005 nm, the values applying to our experiment, i.e
kiyap ­ a

p
3y2l ­ 2.14 and cpyap ­ 3y2

p
2 ­ 1.061.

Several of the rods with low Miller indices are intersecte
by the Ewald sphere. As the sample is rotated to differe
anglesa, the Ewald sphere rotates about the origin
reciprocal space (indicated by 0) and, thereby, interse
the rods indexed bysh, kd at the followingl values:
l1,2 ­
ki cosa 6

p
ski ? cosad2 2 fsh2 1 k2 1 hkdsapd2 1 2apsh 1 ky2dki sinag

cp
. (2)
ith

ity
A wave vector kf , extending from the center of the
Ewald sphere to any of the intersections with a rodsh, kd,
fulfills the Bragg conditions. Thus, on a spherical scree
diffraction spots from rodssh, kd with intensitiesIhksld
are observed in the directionskf . Figure 1 shows a
typical Bragg spot pattern from a shear ordered layer
dispersion. By varying the orientationa of the sample and
measuring the intensityIsad of a rodsh, kd, one obtains the
n

ed

correspondingIhksld by calculatingl from h,k and a via
Eq. (2). Corrections due to the particle form factorP(Q)
and the change of the size of the scattering volume w
sample orientation can be taken care of.

In the following, we present results for thesh 2 kd ­
3n rod (1, 1) and thesh 2 kd ­ 3n 6 1 rod (0, 1).
First, in Fig. 3 the experimentally determined intens
distributionI11sld along a (1, 1) rod is shown forl values
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FIG. 3. Intensity distributionI11sld along a (1, 1) rod 3 h after
the shear was stopped. The solid curve is a fit by Gauss
plus a background.

between 20.5 and 10.5. The intensity maximum is
located atl ­ 0 as expected. The distribution shown
was determined 3 h after the shear was turned off.
differed little from profiles obtained at shorter times, wit
0.5 h being the lower limit with the present setup. Th
solidly drawn line was obtained by fitting a Gaussian plu
a background to the data. The intensity distribution sho
that the hexagonal layers are locked essentially in clo
packed positions.

Some interesting information concerning the stackin
order was obtained from the intensity distributionI10sld
along the (1, 0) rod. This is shown in Figs. 4(a), 4(b
and 4(c) for times 0.5, 15, and 40 h after the shear h
been turned off. The dots again represent experimen
data. In Fig. 4(a), 0.5 h after terminating the shear, t
intensity distribution is close to that of random close
packed hexagonal layers. At later times, Figs. 4(b) a
4(c), obviously the stacking order changes such that
profile I10sld becomes double peaked and develops in t
direction of faulted, twinned fcc. By fitting Eq. (1) to
the I10sld obtained at different times (shown as solid line
in Fig. 4), the stacking probabilityA was determined.
The time dependence ofA is shown in Fig. 5. A clear
tendency from random stacking layerssA ­ 0.5d to fcc
sA ­ 1d is apparent. Finally, as no theory seems
be available for the stacking redistribution kinetics, w
fitted the data to a stretched exponentialAstd ­ 1 2

0.5 exps2tytdb. A good fit was obtained witht ­ 120 h
andb ­ 0.33, as shown in Fig. 5.

In conclusion, we have shown that for shear order
colloidal dispersions the orientation dependence of t
light scattering intensity distribution in combination with
Eq. (2) allows the determination of the intensity distr
bution Ihksld along Bragg rodssh, kd. Immediately af-
ter the shear was turned off the structure of the syste
was found to be close to random close-packed hexa
nal layers. With increasing time, reorganization from ra
dom stacking to fault twinned fcc, i.e., ABCABC. . . and
ACBACB . . . stacking, was observed. Registration of th
layers in close-packed position occurs on a much fas
time scale than the stacking redistribution. The meth
ian
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FIG. 4. Intensity distributionI10sld along a (1, 0) rod (a) 0.5,
(b) 15, and (c) 40 h after shear was stopped. Solid curves
fits of Eq. (1) with stacking probabilitiesA, as indicated.

presented appears to be unique for studying the struct
of shear ordered dispersions, their crystallization kinetic
and the structure of dispersions under shear.

FIG. 5. Variation of stacking probabilityA with time t. Solid
curve: Astd ­ 1 2 0.5 exps2tytdb with t ­ 120 h and b ­
0.33.
1813
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