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We report elastic neutron diffraction and muon spin relaxati@®R) measurements of the quasi-
one-dimensional antiferromagnets,SuQ; and CaCuQ;, which have extraordinarily reducebly/J
ratios. We observe almost resolution-limited antiferromagnetic Bragg reflections,@uSy and
obtain a reduced ordered moment size~d3.06u5. We find that the ratio of ordered moment size
n(CaCu0;)/u(SnCuG;) = 1.5(1) roughly scales with their Néel temperatures, which suggests that
the ordered moment size of quasi-one-dimensional antiferromagnets decreases continuously in the limit
of vanishing interchain interactions. [S0031-9007(97)02480-0]

PACS numbers: 75.25.+z, 75.10.Jm, 76.75.+i

One-dimensional spin systems with antiferromagneticomagnets SCuQO; and CaCuG; are suitable candidates
interactions have received considerable attention becauge0—14]. The intrachain interactior2f ~ 2600 K) of
of their pronounced quantum mechanical effects. In théhese materials have been estimated from susceptibility
absence of interchain interactions, both integed half-  [10,11] and infrared light absorption [12]. Néel ordering of
odd integer spin-chain systems have spin-singlet grounthese compounds was first observe@®R measurements
states, rather than an antiferromagnetically ordered Né¢13], with a significantly reduced’y/J ratio of ~5 K/
state [1-3]. Yet, for half-odd integer spin chains, the spin1300 K = 4 X 10~* for SL,CuQ; and Ty/J ~ 11 K/
excitations are gapless at momentins 0 ands [4]; this 1300 K = 8 X 1073 for CaCuQ;. SinceTy/J is a mea-
indicates that the ground state of a half-odd integer spisure of the coupling rati®k [7,15], the reduced’y of
chain is closer to the Néel ordered state than the integehese two compounds demonstrates their good one dimen-
spin systems, which have a so-called Haldane gap [3]. sionality. A previous elastic neutron scattering measure-

Because of the gapless feature of half-odd integer spiment of CaCuQ; [16] has found an extremely reduced
chains, one interesting question is whether the groundize of ordered moments=[0.05(3) ug], although this re-
state is ordered or disordered when interchain interactionsult contains a systematic uncertainty due to extinction.
are introduced. Previously, it was proposed that there is ln the case of SICuQO;, powder neutron measurements
nonzero critical coupling ratioJ(/J = R.), below which  were unable to observe antiferromagnetic Bragg reflec-
the system retains a singlet ground state [5]. Recertions, placing an upper limit of any ordered moment of
renormalization group calculations, however, suggest that:0.1ug [10]. In this Letter we reporiuSR and neu-
the ground state may depend on microscopic details dfon scattering measurements of single crystallin€860;
the model which describes the spin-spin interactions [6,7]Jand CaCuQ; specimens, aiming to clarify the relation-
Numerical studies of the Heisenberg model suggesteship betweerly/J and the size of ordered moments.
a vanishing critical coupling ratioR. ~ 0); namely, The crystal structure of $CuO; and CaCuG; (Fig. 1)
for infinitesimally small interchain couplings, half-odd is similar to that of LaCuQ,, but lacks oxygen ions
integer spin chains should exhibit Néel order [7]. between the Cu ions in one direction &xis). As a

Experimentally, KCuk is the most investigated result, chains of corner shared Cu@etragons extend
quasi-one-dimensiona = 1/2 antiferromagnet. Unfor- in the b-axis direction, with a strong antiferromagnetic
tunately, this material has relatively large coupling ratiointeraction due to the 18@u-O-Cu coupling. The lattice
R =1J'/] ~2K/203 K = 1.0 X 1072, as shown from parameters of G&uQ; are smaller than those of SuGQ;
neutron inelastic scattering measurements [8]. Probablpy 7.0% ¢ axis) and 3.6% 4 andb axes) [10,17]. The
reflecting the large coupling rati®, the Ty/J ratio  reducedc-axis parameter of GEuUO; probably enhances
(~39 K/203 K = 0.2) and the ordered moment size the interchain coupling/(), as its highefly suggests.
[= 0.49(7)up [9]] were also found to be relatively large. A single crystal of SICuQ; (~¢3 mm X 2 cm) was

To investigate the regime of the critical coupling ra- grown employing the traveling-solvent-floating-zone
tio, model materials with smaller interchain couplings(TSFZ) method, as described in Ref. [11]. In order
are needed; the quasi-one-dimensiofiat= 1/2 antifer- to search for antiferromagnetic Bragg reflections, we
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FIG. 1. The crystal structure ofSr, C3,CuQ;. The Cu-O M =3
chain runs in theb-axis direction. The circle is the off- 2 500 0004§
chain Ou™ bond muon site. The lattice parameters are from o B RS
Refs. [10,17]. e =
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performed elastic neutron scattering measurements at the Temperature (K)

High Flux Beam Reactor (HFBR) at Brookhaven Nationalgi 2. (a) Antiferromagnetic Bragg reflection of ,6uO;.
Laboratory, using the H4M and H7 triple-axis spectrome-(b) Temperature dependence of the peak coufts(filled
ters. For the measurements, two pyrolytic graphite (PGgircles), and the widthr (open circles). The solid line is a
filters were employed to eliminate contamination ofPhenomenological power-law fitf = (Iy — T)**] with Ty =
higher order reflections from the monochromator. 5.41(1) Kand 8 = 0.20(1).

In Fig. 2(a), we show diffracted neutron counts around
the point(0, 1/2,1/2), where an antiferromagnetic Bragg Muons in S;CuQ; and CaCuG; are expected to occupy
reflection was observed belowy = 5.41(1) K. We the same crystallographic position and experience dipolar
confirmed with tighter collimation (10’-40’-S-10°-80’) fields from the ordered moments beldy. The relative
that the width of this Bragg reflection is as narrow assize of ordered moments can be deduced from the muon
that of a nuclear reflection (011). This is direct evidencespin precession frequencies.
of antiferromagnetic long range order in,6uG;. We The uSR measurements were performed at the M15
observed other antiferromagnetic Bragg reflections asurface-muon channel at TRIUMF (Vancouver, Canada),
(h,k/2,1/2), where h is an integer andk and / are using a conventionauSR spectrometer [18] combined
odd integers. We fit the0, 1/2,1/2) reflection with a  Wwith a dilution refrigerator and a “low-background” ap-
Gaussian form, and plot the peak intensify) @nd width ~ paratus [19] with dHe gas-flow cryostat. We evaluated
(o) in Fig. 2(b) as a function of temperature. the time evolution of muon spins, using the conventional

In order to determine the ordered spin direction andZF/LF-uSR technique [18,20].
the moment size, we measured the integrated intensities In Fig. 3(a), we show the spectrum for,Su0;. Be-
of magnetic Bragg reflections in both tit&/ and hkk  low Ty, we observe spontaneous muon spin precession
zones. The intensity distribution was best explained usingn zero external magnetic field; this is a signature of a
the assumption that ordered moments are aligned along tiveell-defined static local field from ordered moments. We
b-axis direction, parallel to the chain. By normalizing the analyzed the spectra assuming two muon sites,
magnetic Bragg intensities yvith those of several relatively P(£) = A1P1(1) + AP (1), 1)
weak nuclear Bragg reflections, such as (200) and (400), . . . i
we find the ordered moment size tob@6(3) 4. Because whereA |, is the fractional site populatlt_)n of the muons
of extinction of nuclear reflections, the ordered momenfA1 + A2 = 1). We assumed the following conventional
size obtained here should be considered as an upper limfrm for the signal from each site:

Since extinction of nuclear reflections depends on the Pui(t) = Agsci €Xp(—A;t) coy, Hyit + ;)
quality of individual crystals, the size of ordered mo- .
ments obtained by the above method contains a relatively + Anxi exp(—t/Ti), (=12, (2
large systematic error. With muon spin relaxatigégbR),  where the first (second) term presents the muon spin pre-
on the other hand, we can compare the relative size afession T; relaxation), due to the local field component
moments between isostructural materials quite accuratelperpendicular (parallel) to the initial muon spin direction.
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Zero—field uSR TABLE I. Ordered moment size of 1D and 2D antiferro-
1.4 T T T T T T T T T magnets.
12 [ (@ SrCu0s 1 [ (b) Ca,Culy ]
10 f 6.0K 1 key 120K Local fields uSR Neutron
08 oo A G Compound Q) Moment size  Moment size
E:“i 08 r e AR e ¥ SKLCUO;2 23.2, 97.7 0.06(1up 0.06(3) up
0.4 F¥17 54k row CaCu0;b 35 0.09(1)us 0.05(3) ug
0.z 170 YBa,CwO; ¢ 310, 1330 0.6up
0.0 P,(0)lla L P.(0)La—axis 7 La,CuQ, ¢ 430 0.5ugp
O s 4 560 1 235 45 5 This work.
Time [us] Time [us] 4 SR: this work, and neutron: Ref. [16].
120 : : . cuSR: from Ref. [22], and neutron: Ref. [23].
© 100 S (c) ] duSR: from Ref. [24], and neutron: Ref. [25].
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compounds reflects the relative size of their moments.
We estimated the ordered moment sizes from the dipo-

Local field H

sl | o Ca,Cuo; ] , . . :
Ve o0, lar fields, as summarized in Table I. The moment sizes

o0 e, S e 1 obtained byuSR and neutron techniques agreed within

0 : : : R the errors, suggesting that uncertainties due to extinction

0 2 4 6 8 10 12

Temperoture [K] or muon site ambiguity are, in fact, rather small.

In Fig. 4, we plot the ordered moment size of several
FIG. 3. Zero-field uSR spectra of (a) SrSRCy® and quasi-1D antiferromagnets [8,9,26,27] as a function of
(b) CaCuG;. The solid lines on the data belo#y are fitsto 7 /7 As expected, the ordered moments shrink as the
the function described in the text. (c) The local fields at theT /J ratio decreases. Moreover, the ordered moment size
muon sites &, ,) are shown. N/ - '

continuously decreases in the regime of extremely reduced
ratio Ty/J = 4 X 1073 ~ 1072, This suggests that the
. , ordered moment vanishes smoothly in the= J/'/J — 0
In Fig. 3(c), we show the local fields,;,) as a func limit, rather than maintaining a limiting size (dashed line

tion of temperature. In $€uGC;, the ratio of the two . "_. ;
local fields was independent of temperature; this sug'—n Fig. 4) as _has peer_] proposed th_eoretlcally [28].
The solid lines in Fig. 4 are predictions of ordered mo-

gests that both of the muon sites are stable and that : . . ;
muons do not hop on the time scale of the muon life-MeNt Size from (1) linear spin-wave theory [29], (2) spin-

. . wave theory with kinematical interactions [29,30], and
time. In Fig. 3(b), we showtSR spectra of G&LuG;. . .
Bocause of he thape. of bur G0y specimen. we (&) hian mean-field (CMF) theory [7.31.32]. These theo-
performed theuSR measurements with a crystal, orien-"'°S pr?d|ct the relationship between_ the coupl_mg ratio
tation [P,(0) L a axis] which was different from that (R = J'/J) a_nd_ the ordered moment size; we estimated
of the SECUO; case P,(0) [l a axis L chain]. Con- from T /J within the framework of each theory};/J =

: e - :
sequently, we observed only one signal in the ordere&‘lS(S + 1)yJ'/J [18] for the spin-wave theories and
phase. We confirmed, from independent measurements

of polycrystalline CaCuG; pellets, that the higher fre-
quency signal also exists and that the signal observed

=
(@]

1d antiferromagnet

in the single crystalline sample corresponds to the lower 08 | S=1/2

frequency signal. The muon local fields are plotted in ‘

Fig. 3(c). The ratio of the local fields of the two systems, 0.6 [ 2 o o8]
which is equal to the relative size of ordered moments, ¢  [----=-------"7TTT7C
was u(CaCuG;)/u(SrCuG;) = 35(3) G/23.2(1) G = 0.4 —wave WY (g0
1.5(1) in the T — 0 limit. Yanematical 17

ordered moment size [ug)

In high-T. related oxides, muons generally form an 0.2 Co.Cu0 C\,\d«\“\
O-u* bond with a bond length of 1.0 A [21]. Assum- SriCu0s "y T CuralnGeO,
ing such Ou™ bond formation, we performed an elec- 0.010_3 —— "'1-0'_2 ———

trostatic potential calculation, and determined the stable T,/J
muon paositions ifSr, Cg,CuQ;. Figure 1 shows the off- N
chain O™ bond site, which is responsible for the lower- FIG. 4. Ordered moment size as a function Tof/J. The
field signal. We calculated the magnetic dipolar field forPoints for SkCuG; and CaCuGs are from this work (see

o : . ._ Table I). KCuR is from Refs. [8,9] and Cu.,Zn,GeG, (x =
this site, and found that the local field from a given size (34) is from Refs. [26,27]. The lines are theoretical relations,

of ordered moment agrees within 10% in,SuO; and  which have zero moment (solid lines from Ref. [29,31]) or
CaCuG;. Therefore, the local field ratio in these two finite moment (dashed line from Ref. [28]) in tiRe— 0 limit.
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