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We study the random antiferromagnetic spin-1 chain by mapping to a random dimerized spin-1y2
chain with antiferromagnetic and ferromagnetic bonds and applying an asymptotically exact real spac
renormalization procedure. We find that the chain undergoes an impurity driven second order pha
transition from the Haldane phase to the random singlet phase as the bond distribution broadens.
the Haldane phase and near the critical point, there is a Griffiths region in which the excitation gap i
filled and the magnetic susceptibility diverges in a nonuniversal manner. The correlation length critica
exponent isn ø 2.3. [S0031-9007(97)02482-4]
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Recently there has been tremendous interest in the a
ferromagnetic (AF) spin-1 chain, inspired by Haldane
famous conjecture [1] that integer-spin chains beha
quite differently from half-odd-integer-spin chains. Fo
example, in the absence of disorder, the spin-1 chain h
short-range spin-spin correlations in the ground state a
an excitation gap [1], whereas the spin-1y2 chain is criti-
cal. The ground state of the spin-1 chain also has a no
string-topological order [2]. Some of these results ha
been experimentally confirmed [3].

Randomness is always present in real materials. Th
retical work has demonstrated that randomness dram
cally affects the physical properties of the AF spin-1y2
chain [4,5] and other random one-dimensional magne
systems [6–9]. This Letter reports a systematic theore
cal study of the effects of bond randomness on the A
spin-1 chain. We map the random antiferromagnetic sp
1 chain to a random dimerized spin-1y2 chain with an-
tiferromagnetic and ferromagnetic bonds and extend t
real space renormalization group procedure developed
Ma et al. [4] (see also Ref. [10]) and Fisher [5]. In the
absence of randomness, the connection between a sp
chain and a dimerized spin-1y2 chain was demonstrated
by Hida [11] who showed the equivalence of dimer ord
in terms of spin-1y2 variables and string order in terms o
spin-1 variables.

We find that in the presence of bond randomness, t
distinct phases in the AF Heisenberg spin-1 chain a
separated by a quantum critical point. The nature of the
two phases is described below. In the absence of rando
ness, the Haldane phase ground state has a large ove
with the valence bond solid (VBS) state [12] in which eac
spin-1 is composed of two symmetrized spin-1y2 objects
which form singlets with spin-1y2 objects on neighboring
sites. The VBS state resembles the ground state of a
merized spin-1y2 chain. Both ground states are non
degenerate, have excitation gaps, and have very sta
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nti-
’s
ve
r
as
nd

vel
ve

eo-
ati-

tic
ti-
F

in-

he
by

in-1

er
f

wo
re
se
m-
rlap
h

di-
-
ble

topological structure. Thus we expect the Haldane pha
and its topological structure to bestable against weak
bond randomness [8]. Alternatively, when randomnes
is strong and the distribution of bond strengths is broad
spin-1 objects coupled by strong bonds form inert sin
glet pairs and generate effective further-neighbor AF cou
plings. An asymptotically exact real space renormalizatio
group (RG) analysis [4,5,13] shows that in this case th
system flows toward a random singlet (RS) phase [5] wit
universalthermodynamic properties and power law behav
ior in averagedspin-spin correlations. In order to study the
transition from the Haldane phase to the random singl
(RS) phase, we extend this RG scheme so that it may
used in both phases. We find the transition between the
two phases issecond order. The extended RG scheme be-
comes asymptotically exact in the low-energy limit nea
the critical point and in the RS phase. Thus we are ab
to extractexactinformation about the critical point. For
example, as the randomness strength approaches the c
ical point from the Haldane phase, the average spin-sp
correlation length diverges in a power law manner with
exponentn ­

6
p

1321
ø 2.3. The string-topological order

parameter vanishes with a power law exponent2ny3 ø 1.5.
Consider the Hamiltonian

H ­
X

i

JiSi ? Si11 , (1)

where Si are spin-S operators andJi are random cou-
pling constants (assumed positive unless otherwise spe
fied). When randomness is strong and the width of th
distribution of J is very broad (on a logarithmic scale),
we can use the decimation renormalization group proc
dure developed by Ma, Dasgupta, and Hu (MDH) [4] for
the special case ofS ­ 1y2. We first pick the strongest
bond in the system, say,J2 between spins 2 and 3. Since
the bond distribution is broad, bondsJ1 andJ3 will typi-
cally be much weaker thanJ2. Thus to lowest order in
© 1997 The American Physical Society 1783
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J1 and J3, spins 2 and 3 form a singlet pair and be
come unimportant at low energies (on scales much sma
than J2). The major physical effect of the existence o
spins 2 and 3 is to generate an induced coupling b
tween neighboring spins 1 and 4.̃H124 ­ J̃14S1 ? S4,
where J̃14 ­

2
3 SsS 1 1dJ1J3yJ2 1 Os1yJ2

2 d. This for-
mula is correct even ifJ1 andyor J3 are ferromagnetic
(F) as long as their magnitude is much less thanJ2. The
generated bond is typicallymuch weakerthan all three
original bonds. Thus the MDH procedure eliminates th
strongest bond (and also its two neighbors) in the s
tem, generates a weaker bond between the spins ne
boring the decimated ones, and lowers the overall ene
scale. Fisher [5] has shown rigorously that as one p
ceeds with the MDH renormalization the bond distributio
broadens and the accuracy of the approximation impro
as the energy scale is lowered. It becomesasymptotically
exact in the long-distance, low-energy limit where th
bond distribution flows toward a stable-fixed-point dis
tribution which is energy-scale dependent. Fisher nam
the phase characterized by this universal bond distrib
tion the random singlet (RS) phase. Thus, in the pre
ence of sufficiently strong bond randomness, a spinS
Heisenberg AF chain will be in the RS phase for in
teger or half-odd-integerS and irrespective of the size
of S.

When there is a finite probability thatJ1 andyor J3 is
of similar strength asJ2, the lowest order perturbation is
not sufficient. In this case, one must choose the segm
of the chain in which all spins are coupled by stron
bonds, solve the spectrum of that segment, and keep o
the low-energy states. These states are then represe
by effective spins which are coupled to the rest of th
chain. In the case of a spin-1y2 chain, the ground state
for a segment is either a singlet (for even segments) o
doublet (for odd segments) and is separated from high
energy states by a gap. In the former case the segme
inert and merely mediates a weak effective AF couplin
between the two spins neighboring the segment, while
the latter case the segment is modeled by an effect
spin-1y2 at low energy, which is antiferromagneticall
coupled to the rest of the chain. The structure of the R
scheme remains the same as the MDH procedure, eve
greater care is necessary in the beginning. Thus the
phase correctly describes the long-distance, low-ene
physics of the spin-1y2 chain, even if there is onlyweak
randomness [5].

The situation is very different in the case of the spi
1 chain. For a finite segment of the spin-1 chain wi
no disorder, two effectivehalf spins are localized near
the two edges of the segment, and the coupling betwe
them is gsld , s21dlJal , where l is the length of the
segment anda , 1 [14]. Thus coupling between the
two half spins may be ferromagnetic or antiferromagne
and decaysexponentiallywith the length of the segment
The coupling of an edge spin to the rest of the cha
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however, remains antiferromagnetic. The singlet an
triplet states formed by the two edge spins are th
lowest-energy states of the segment and are separat
from higher-energy states by the Haldane gap of orde
J. This scenario remains correct when there is wea
bond randomness. Thus even though the spin cha
is composed of spin-1 objects, theeffectivedegrees of
freedom at low energies are actually half spins. The low
energy physics of a random spin-1 chain may be describe
by a Hamiltonian with the following structure: the chain
consists of half spinsonly; even bonds are taken from
an antiferromagnetic bond distribution, and odd bond
are taken from a distribution containing antiferromagnetic
and ferromagnetic bonds. Physically, the even bond
are couplings between edge half spins of neighborin
segments (which are always AF), and odd bonds are th
coupling between edge spin in the same segment. Th
description is particularly accurate for the special case o
a spin-1 chain with a bimodal bond distribution: most of
the bonds are of strengthJ, while a finite fraction have
a much smaller strengthJ 0. In this case the system can
be viewed as a collection of weakly coupled segment
of uniform chains. The couplings between edge hal
spins are random because the length of the segmen
are random. We believe this model correctly describe
the long-distance, low-energy physics of a random spin
1 chain. In particular, the original spin-1 Hamiltonian
may be recovered by setting all odd bonds strongly
ferromagnetic [11].

We study this model using an extended MDH proce
dure, which properly accounts for strong ferromagnetic
bonds. At any stage of RG, the energy scaleV is set by
the strongestantiferromagneticbond in the system. We
separate the odd bonds into two groups: groupA consists
of all AF bonds and those F bonds that are weaker tha
V, while groupB consists of F bonds that are stronger
thanV. The extended MDH procedure works in the fol-
lowing way. Find the strongest AF bond in the system
say,Ji. If i is odd, then its neighbors are bothweakerAF
bonds and the MDH procedure is followed. Ifi is even
and both neighbors belong to groupA we again follow
the MDH procedure. If one of the bonds, say,Ji11, be-
longs to groupB, we solve the 3-spin cluster problem of
Si , Si11, andSi12 and keep the low-energy states, which
are a doublet. The doublet may be modeled by a new
spin-1y2, which couples to the rest of the chain. If both
neighbors ofJi belong to groupB, we solve the 4-spin
cluster including spini 2 1, i, i 1 1, and i 1 2. The
ground state is a singlet with an excitation gap of orderJi

so these spins drop out at low energy and mediate an e
fective AF coupling between spinsi 2 2 andi 1 3. The
extended MDH procedure keeps the original structure o
the system; i.e., even bonds are AF and odd bonds are
or AF.

The flow equations for the distributions of bonds in the
extended MDH procedure are
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dPesJ , Vd

dV
­

£
P0sV, Vd 1 N2sVdPesV, Vd

§ Z V

0
dJ1PesJ1, Vd

Z V

0
dJ2PesJ2, Vdd

µ
J 2

J1J2

V

∂
1

©
PesV, Vd

£
1 2 N2sVd

§
2 P0sV, Vd

™
PesJd 2 dsV 2 JdPesV, Vd , (2)

2
dP0sJ, Vd

dV
­ PesV, Vd

Z V

2V

dJ1P0sJ1, Vd
Z V

2V

dJ2P0sJ2, Vdd
µ

J 2
J1J2

V

∂
2 dsV 2 JdP0sV, Vd

1 2PesV, VdNsVdP0s2J, Vd 1
©
P0sV, Vd 2 PesV, Vd

£
1 2 N2sVd

§™
P0sJd , (3)

2
dNsVd

dV
­

©
P0sV, Vd 2 PesV, Vd

£
1 2 N2sVd

§™
NsVd 1 P0s2V, Vd . (4)
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Here PesJ, Vd is the normalized probability distribution
of even bonds withV . J . 0, P0sJ, Vd is the proba-
bility distribution of odd bonds withV . J . 2V, and
NsVd is the fraction of odd bonds that are strongly fe
romagneticJ , 2V. P0sJ, Vd andNsVd are related by
the normalization condition

RV

2V dJP0sJ, Vd 1 NsVd ­
1. Since the bond distribution becomes very broad in t
low-energy limit, we neglected factors of order 1 in th
strength of generated bonds, which become irrelevant
the asymptotic limit [5]. We also assume that ferroma
netic bonds stronger thanV aremuchstronger thanV, so
that two spin-1y2 objects connected by a strong ferroma
netic bond form a spin-1 object. Again this assumption
valid in the asymptotic limit (V ! 0) and simplifies the
solution of clusters including strong F bonds.

The density, rsVd, of unpaired spins at scaleV
satisfies

2
drsVd

dV
­ 2

©
PesV, Vd f1 1 N2sVdg 1 P0sV, Vd

™
3 rsVd . (5)

These spins are essentially free at temperatures hig
thanV. All thermodynamic quantities can be determine
from rsVd [5,15,16].

Using the combined distributions

Q1sJ, Vd ­
1

1 2 NsVd
fP0sJ, Vd 1 P0s2J, Vdg ,

P2sJ, Vd ­ P0sJ, Vd 2 P0s2J, Vd ,
(6)

the fixed point solutions to the flow equations are pow
laws inJ with Pesxd ­ Pe2Px andQ1sxd ­ Qe2Qx, where
P2 ­ 0 and a Jacobi transformation has been made to
variablex ­ lnsVyJd [15,16]. The variablesP, Q, N, and
r obey

dP
dG

­ 2N2P2 2
s1 2 Nd

2
QP ,

dQ
dG

­ 2s1 2 NdQP ,

dN
dG

­ s1 2 N2d
µ

Q
2

2 NP

∂
,

(7)

dr

dG
­ 2

"
s1 1 N2dP 1

1 2 N
2

Q

#
r ,
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whereG ­ lnsViyVd (Vi is the initial cutoff of AF bonds).
Two classes of stable fixed points correspond to two stab
phases. They are the random singlet phase (P ­ G21, Q ­
Q0, N ­ 1, r ~ G22) and the Haldane phase (P ­ P0, Q ­
0, N ­ 0, r ~ VP0 , where 0 , P0 , 1 is a nonuniversal
number). The solution at the critical point issP ­ Q ­
2G21, N ­

1
2 , r ~ G23d. In the following we describe the

physical nature of these phases.
In the random singlet phase, the odd bonds are F bon

much stronger than the AF even bonds. The spin-1y2’s
are ferromagnetically combined into spin-1’s, which ar
coupled into singlets over all length scales. The groun
state and thermodynamic properties are the same as
the spin-1y2 random singlet state studied previously [4,5
The disorder-averaged spin-spin correlation functionCsrd
decays asr22, and the susceptibility takes the universa
form in the low temperature limit:x , fT ln2T g21. There
is no gap because the bond distribution has weight atJ ­ 0.

In the Haldane phase all odd bonds (F and AF) becom
much weakerthan the even bonds, only spin-1y2’s remain
in the system and they form singlets only over eve
bonds. The system may be viewed as a set of uncoup
dimers. The spin-spin correlations decay exponential
with a finite correlation length. There is also long-rang
string-topological order [8]. This phase is analogou
to the random dimer phase in AF spin-1y2 chains [8] and
the ground state resembles the valence bond solid sta
The flow equations describe the Griffiths region of th
Haldane phase where there is no gap and the susceptib
diverges as a power law with a nonuniversal expone
x , T2s12P0d. The flow equations are only valid when the
disorder is broad and do not describe the crossover fro
gapped to gapless behavior within the Haldane phase
the randomness is increased.

To determine critical exponents we consider sma
perturbations near the unstable fixed point:

P ­
2
G

s1 1 dpGld ,

Q ­
2
G

s1 1 dqGld , (8)

N ­
1
2

s1 1 dnGld ,
1785
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and expand the flow equations to linear order in th
d’s. There are two irrelevant perturbations (l ­ 21, l ­
212

p
13

2 ) and one relevant perturbation (l1 ­
211

p
13

2 ).
For relevant flows, ifdn . 0, odd bonds are stronger
than even bonds, the density of spin-1’s increases, a
the system flows to the random singlet fixed point.
dn , 0 even bonds are stronger than odd bonds, t
density of spin-1’s decreases, and the system flows to
random Haldane fixed point. The crossover from critic
to Haldane behavior occurs at the energy scale whe
dGl1 ø 1. The energy scale at which this occurs isG0 ­

d
2 1

l1 . The density of spins at this scale isr0 ­ G
23
0

so the correlation length isj ø r
21
0 ­ d2n, wheren ­

3
l1

ø 2.3. The string-topological order parameter [2],

T ­ lim
j2i!`

ø
C0

Ç
Sz

i exp

∑
ip

X
i,k,j

Sz
k

∏
Sz

j

Ç
C0

¿
, (9)

measures the square of the density of active spins. Act
spins are spins that have not yet formed singlets plus tho
spins that have formed singlets but are not enveloped
other singlets. Following the method outlined by Fishe
[5] for calculating the flow of distributions with auxiliary
variables, we find that the average number of active sp
per bond scales likeGf, wheref ­ 2. In the Haldane
phase near the critical point the topological order scales
T ~ s2dnd2ny3s32fd ­ s2dnd2ny3 [16,17]. At the critical
point the topological order decays with the distance
r22y3 [16].

Like the RS fixed point for the spin-1y2 chain [5],
the bond distributions become infinitely broad on
logarithmic scale. Thus our approach is asymptotical
exact at the critical point; the critical exponents are als
exact.

Westerberget al. [7] studied the random spin-1y2 chain
with antiferromagnetic and ferromagnetic bonds in whic
both even and odd bonds may be ferromagnetic, a
as a result spins of arbitrarily large size appear at lo
energy. In our model of the spin-1 chain, only odd bond
may be ferromagnetic. Boechatet al. [13] anticipated the
existence of a spin-1 random singlet phase for stro
randomness. As in our previous work [9], they find
spontaneouslydimerized chains are unstable againstweak
randomness. They did not address the phase transit
that we discuss here. The correlation length expone
n ø 2.3 is extremely close to that of the delocalization
transition in integer quantum Hall (IQH) systems. Le
[18] showed that the IQH transition may be mapped on
the dimerization transition in the pure SU(0) spin chain
It is unclear whether this is a coincidence or if there exis
a fundamental physical reason that these two apparen
different transitions have the same critical exponent.

To summarize, in this Letter we determined the critica
properties of the randomness driven phase transition
the spin-1 chain. For weak randomness, the spin-1 ch
is in the Haldane phase and the ground state resembles
valence bond solid state. The ground state has topologi
1786
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order, spin-spin correlations decay exponentially, a
there is an excitation gap. For broader distributions t
gap is filled, topological order persists, and the spin-sp
correlations decay exponentially with correlation leng
exponentn ­

6
p

1321
ø 2.3. Beyond the critical point

there is no topological order, the disorder-averaged sp
spin correlations decay algebraically, and the ground st
resembles the random singlet state.

R. A. H. and K. Y. were supported by NSF DMR
9416906, DMR-9531115, and DMR-9400362. The a
thors are grateful to Patrik Henelious for sharing h
unpublished data. We also thank S. M. Girvin, R. N
Bhatt, and D. S. Fisher for valuable discussions.

[1] F. D. M. Haldane, Phys. Lett.93A, 464 (1983); Phys. Rev.
Lett. 50, 1153 (1983).

[2] K. Rommelse and M. den Nijs, Phys. Rev. Lett.59, 2578
(1987); S. M. Girvin and D. P. Arovas, Phys. Scr.T27,
156 (1988).

[3] J. P. Renard, M. Verdaguer, L. P. Regnault, W. A. C
Erklens, J. Rossat-Mignod, and W. G. Stirling, Europhy
Lett. 3, 945 (1987); J. P. Renard, L. P. Regnault, an
M. Verdaguer, J. Phys. C8, 1425 (1988).

[4] S. K. Ma, C. Dasgupta, and C-K. Hu, Phys. Rev. Lett.43,
1434 (1979); C. Dasgupta and S. K. Ma, Phys. Rev. B22,
1305 (1980).

[5] D. S. Fisher, Phys. Rev. B50, 3799 (1994).
[6] D. S. Fisher, Phys. Rev. B51, 6411 (1995).
[7] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee

Phys. Rev. Lett.75, 4302 (1995); A. Furusakiet al.,Phys.
Rev. Lett.73, 2622 (1994).

[8] R. A. Hyman, Kun Yang, R. N. Bhatt, and S. M. Girvin
Phys. Rev. Lett.76, 839 (1996).

[9] Kun Yang, R. A. Hyman, R. N. Bhatt, and S. M. Girvin
J. Appl. Phys.79, 5096 (1996).

[10] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett.48, 344 (1982);
R. N. Bhatt, Phys. Scr.T14, 7 (1986).

[11] K. Hida, Phys. Rev. B45, 2207 (1992).
[12] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys

Rev. Lett.59, 799 (1987).
[13] B. Boechat, A. Saguia, and M. A. Continentino, Soli

State Commun.98, 411 (1996); M. A. Continentino, J. C.
Fernandes, R. B. Guimarães, B. Boechat, H. A. Borg
J. V. Valarelli, A. Hannapel, and A. Lacerda, Philos. Mag
B73, 601 (1996).

[14] M. Hagiwara, K. Katsumata, Ian Affleck, B. I. Halperin
and J. P. Renard, Phys. Rev. Lett.65, 3181 (1990).

[15] R. A. Hyman, Ph.D. dissertation, Indiana Universit
(1996).

[16] R. A. Hyman (unpublished).
[17] In Ref. [8], we calculated the topological order of

random dimer chain neglecting the contribution from
spins in exposed singlets. With these spins included
topological order scales likeT ~ s2dda with a ­ 3 2p

5 in agreement with a similar calculation for the random
transverse field Ising chain [6].

[18] Dung-Hai Lee, Phys. Rev. B50, 10 788 (1994).


