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Impurity Driven Phase Transition in the Antiferromagnetic Spin-1 Chain
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We study the random antiferromagnetic spin-1 chain by mapping to a random dimerized/2pin-1
chain with antiferromagnetic and ferromagnetic bonds and applying an asymptotically exact real space
renormalization procedure. We find that the chain undergoes an impurity driven second order phase
transition from the Haldane phase to the random singlet phase as the bond distribution broadens. In
the Haldane phase and near the critical point, there is a Griffiths region in which the excitation gap is
filled and the magnetic susceptibility diverges in a nonuniversal manner. The correlation length critical
exponent isy = 2.3. [S0031-9007(97)02482-4]

PACS numbers: 75.10.Jm, 75.30.Hx, 75.50.Ee

Recently there has been tremendous interest in the antepological structure. Thus we expect the Haldane phase
ferromagnetic (AF) spin-1 chain, inspired by Haldane’'sand its topological structure to bgtable against weak
famous conjecture [1] that integer-spin chains behavéond randomness [8]. Alternatively, when randomness
quite differently from half-odd-integer-spin chains. Foris strong and the distribution of bond strengths is broad,
example, in the absence of disorder, the spin-1 chain hagpin-1 objects coupled by strong bonds form inert sin-
short-range spin-spin correlations in the ground state angdlet pairs and generate effective further-neighbor AF cou-
an excitation gap [1], whereas the spif2ichain is criti-  plings. An asymptotically exact real space renormalization
cal. The ground state of the spin-1 chain also has a novgjroup (RG) analysis [4,5,13] shows that in this case the
string-topological order [2]. Some of these results havesystem flows toward a random singlet (RS) phase [5] with
been experimentally confirmed [3]. universalthermodynamic properties and power law behav-

Randomness is always present in real materials. Theder in averagedspin-spin correlations. In order to study the
retical work has demonstrated that randomness dramatiransition from the Haldane phase to the random singlet
cally affects the physical properties of the AF spif2l (RS) phase, we extend this RG scheme so that it may be
chain [4,5] and other random one-dimensional magneticised in both phases. We find the transition between these
systems [6—9]. This Letter reports a systematic theoretitwo phases isecond order The extended RG scheme be-
cal study of the effects of bond randomness on the AFEomes asymptotically exact in the low-energy limit near
spin-1 chain. We map the random antiferromagnetic spinthe critical point and in the RS phase. Thus we are able
1 chain to a random dimerized spiri2l chain with an- to extractexactinformation about the critical point. For
tiferromagnetic and ferromagnetic bonds and extend thexample, as the randomness strength approaches the crit-
real space renormalization group procedure developed kigal point from the Haldane phase, the average spin-spin
Ma et al. [4] (see also Ref. [10]) and Fisher [5]. In the correlation length diverges in a power law manner with
absence of randomness, the connection between a spirekponent = oo < 23 The string-topological order
chain and a dimerized Splr}LZ chain was demonstrated parameter vanishes with apower|aw expomryB =~ 1.5.
by Hida [11] who showed the equivalence of dimer order Consider the Hamiltonian
in terms of spin-12 variables and string order in terms of
spin-1 variables. H = ZJ,»S,- “Sit1, 1)

We find that in the presence of bond randomness, two i
distinct phases in the AF Heisenberg spin-1 chain arevhere S; are spinS operators and/; are random cou-
separated by a quantum critical point. The nature of thespling constants (assumed positive unless otherwise speci-
two phases is described below. In the absence of randonfied). When randomness is strong and the width of the
ness, the Haldane phase ground state has a large overldigtribution of J is very broad (on a logarithmic scale),
with the valence bond solid (VBS) state [12] in which eachwe can use the decimation renormalization group proce-
spin-1 is composed of two symmetrized spiflobjects dure developed by Ma, Dasgupta, and Hu (MDH) [4] for
which form singlets with spin-12 objects on neighboring the special case of = 1/2. We first pick the strongest
sites. The VBS state resembles the ground state of a dond in the system, say, between spins 2 and 3. Since
merized spin-12 chain. Both ground states are non-the bond distribution is broad, bonds and.J; will typi-
degenerate, have excitation gaps, and have very stabtally be much weaker thas,. Thus to lowest order in
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Jy and J;, spins 2 and 3 form a singlet pair and be-however, remains antiferromagnetic. The singlet and
come unimportant at low energies (on scales much smalldriplet states formed by the two edge spins are the
than J,;). The major physical effect of the existence of lowest-energy states of the segment and are separated
spins 2 and 3 is to generate an induced coupling befrom higher-energy states by the Haldane gap of order
tween neighboring spins 1 and 44,4 = J148; -S4, J. This scenario remains correct when there is weak
where J; = %S(S + 1)J1J3/J2 + O(1/J3). This for- bond randomness. Thus even though the spin chain
mula is correct even iff;, and/or J; are ferromagnetic is composed of spin-1 objects, theéfectivedegrees of
(F) as long as their magnitude is much less tiian The  freedom at low energies are actually half spins. The low-
generated bond is typicalljnuch weaketthan all three energy physics of a random spin-1 chain may be described
original bonds. Thus the MDH procedure eliminates thedy a Hamiltonian with the following structure: the chain
strongest bond (and also its two neighbors) in the sysconsists of half spin®nly, even bonds are taken from
tem, generates a weaker bond between the spins neigan antiferromagnetic bond distribution, and odd bonds
boring the decimated ones, and lowers the overall energgre taken from a distribution containing antiferromagnetic
scale. Fisher [5] has shown rigorously that as one proand ferromagnetic bonds. Physically, the even bonds
ceeds with the MDH renormalization the bond distributionare couplings between edge half spins of neighboring
broadens and the accuracy of the approximation improvesegments (which are always AF), and odd bonds are the
as the energy scale is lowered. It becorasgmptotically ~coupling between edge spin in the same segment. This
exactin the long-distance, low-energy limit where the description is particularly accurate for the special case of
bond distribution flows toward a stable-fixed-point dis-a spin-1 chain with a bimodal bond distribution: most of
tribution which is energy-scale dependent. Fisher namekhe bonds are of strength while a finite fraction have
the phase characterized by this universal bond distribua much smaller strengti’. In this case the system can
tion the random singlet (RS) phase. Thus, in the presbe viewed as a collection of weakly coupled segments
ence of sufficiently strong bond randomness, a spin- of uniform chains. The couplings between edge half
Heisenberg AF chain will be in the RS phase for in-spins are random because the length of the segments
teger or half-odd-integes and irrespective of the size are random. We believe this model correctly describes
of S. the long-distance, low-energy physics of a random spin-
When there is a finite probability that; and/or J3 is 1 chain. In particular, the original spin-1 Hamiltonian
of similar strength ag,, the lowest order perturbation is may be recovered by setting all odd bonds strongly
not sufficient. In this case, one must choose the segmefgrromagnetic [11].
of the chain in which all spins are coupled by strong We study this model using an extended MDH proce-
bonds, solve the spectrum of that segment, and keep ontjure, which properly accounts for strong ferromagnetic
the low-energy states. These states are then representeahds. At any stage of RG, the energy sc@lés set by
by effective spins which are coupled to the rest of thethe strongesantiferromagneticoond in the system. We
chain. In the case of a spin/2 chain, the ground state separate the odd bonds into two groups: gréugonsists
for a segment is either a singlet (for even segments) or af all AF bonds and those F bonds that are weaker than
doublet (for odd segments) and is separated from higheiQ, while groupB consists of F bonds that are stronger
energy states by a gap. In the former case the segmenttisan{). The extended MDH procedure works in the fol-
inert and merely mediates a weak effective AF couplingowing way. Find the strongest AF bond in the system,
between the two spins neighboring the segment, while isay,J;. If i is odd, then its neighbors are botleakerAF
the latter case the segment is modeled by an effectivbonds and the MDH procedure is followed. ilis even
spin-1/2 at low energy, which is antiferromagnetically and both neighbors belong to grodpwe again follow
coupled to the rest of the chain. The structure of the RGhe MDH procedure. If one of the bonds, sdy,;, be-
scheme remains the same as the MDH procedure, evenldngs to groupB, we solve the 3-spin cluster problem of
greater care is necessary in the beginning. Thus the RS, S;+;, andS;,, and keep the low-energy states, which
phase correctly describes the long-distance, low-energgre a doublet. The doublet may be modeled by a new
physics of the spin-A2 chain, even if there is onlweak spin-1/2, which couples to the rest of the chain. If both
randomness [5]. neighbors ofJ; belong to groupB, we solve the 4-spin
The situation is very different in the case of the spin-cluster including spin — 1, i, i + 1, andi + 2. The
1 chain. For a finite segment of the spin-1 chain withground state is a singlet with an excitation gap of orfjer
no disorder, two effectivéhalf spins are localized near so these spins drop out at low energy and mediate an ef-
the two edges of the segment, and the coupling betweefective AF coupling between spiris— 2 andi + 3. The
them is g(I) ~ (—1)'Ja!, where! is the length of the extended MDH procedure keeps the original structure of
segment andu < 1 [14]. Thus coupling between the the system; i.e., even bonds are AF and odd bonds are F
two half spins may be ferromagnetic or antiferromagneticor AF.
and decay®xponentiallywith the length of the segment.  The flow equations for the distributions of bonds in the
The coupling of an edge spin to the rest of the chaingxtended MDH procedure are
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dpP.(J,Q) Q Q JiJ>
= [Po(Q2, Q) + N2(Q)P.(Q, Q)] . dJP.(J,,Q) . szPe(Jz,Q)8<J - T)
+ {P.(Q, Q)1 — N*(Q)] = Po(Q, Q)}P.(J) — 6(Q — J)P.(Q,Q), ()
dPo(J,Q) Q Q >
—d—Q—Pe(Q,Q) 0 dJIPO(Jl»Q)fQ szPO(JZ,Q)b‘(J - T) — 8(Q —=J)Py(Q2, Q)
+2P.(Q, Q)N(Q)Py(—J,Q) + {Po(Q, Q) — P.(Q, Q)[1 = NA(Q)]}Po(]), ©)
S (@, 0) - P, )1 — NOQIING) + Po(-0,0). @

Here P.(J, ) is the normalized probability distribution wherel’ = In(Q;/Q) (Q; is the initial cutoff of AF bonds).

of even bonds with() > J > 0, Py(J, () is the proba- Two classes of stable fixed points correspond to two stable
bility distribution of odd bonds witf) > J > —(Q, and phases. They are the random singlet ph&se "', Q =
N(Q) is the fraction of odd bonds that are strongly fer-Qo, N =1, p « I'"?) and the Haldane phasg & Py, Q =
romagnetic/ < —Q. Py(J,Q) andN(Q) are related by 0,N =0,p « QP where 0<Py<1 is a nonuniversal

the normalization conditiorf?ﬂ dJPy(J,Q) + N(Q) = number). The solution at the critical point(8 = Q =

1. Since the bond distribution becomes very broad in thel' "', N = %,p « I'73). In the following we describe the
low-energy limit, we neglected factors of order 1 in the physical nature of these phases.

strength of generated bonds, which become irrelevant in In the random singlet phase, the odd bonds are F bonds
the asymptotic limit [5]. We also assume that ferromag-much stronger than the AF even bonds. The spi’d
netic bonds stronger than aremuchstronger tharf), so  are ferromagnetically combined into spin-1's, which are
that two spin-J2 objects connected by a strong ferromag-coupled into singlets over all length scales. The ground
netic bond form a spin-1 object. Again this assumption isstate and thermodynamic properties are the same as for
valid in the asymptotic limit § — 0) and simplifies the the spin-}¥2 random singlet state studied previously [4,5].

solution of clusters including strong F bonds. The disorder-averaged spin-spin correlation functitgn)
The density, p(Q), of unpaired spins at scal€)  decays as-~2, and the susceptibility takes the universal

satisfies form in the low temperature limity ~ [7In>T]~'. There

dp(Q) is no gap because the bond distribution has weightab.

2
= — {P(Q D)[1 + N Q)] + Po(Q, Q)} In the Haldane phase all odd bonds (F and AF) become

much weakethan the even bonds, only spif2ls remain

X p(Q). ®) in the system and they form singlets only over even

These spins are essentially free at temperatures highgbnds. The system may be viewed as a set of uncoupled
than(). All thermodynamic quantities can be determinedgimers. The spin-spin correlations decay exponentially

dQ

from p(Q) [5,15,16]. with a finite correlation length. There is also long-range
Using the combined distributions string-topological order [8]. This phase is analogous
_ _ to the random dimer phase in AF spiri2lchains [8] and
= — +
0+(/. Q) 1 - N(Q)[PO(J’Q) Po(=J, )], the ground state resembles the valence bond solid state.
P_(J.Q) = Py(J,Q) — Po(—J. Q). ®)  The flow equations describe the Griffiths region of the

the fixed point solutions to the flow equations are owerHaldane phase where there is no gap and the susceptibility
P q P diverges as a power law with a nonuniversal exponent

laws inJ with P, (x) = Pe”™ andQ. (x) = Qe” ", where ~(1=P0) ' The flow equations are only valid when the

. . ~T
P_ =0 and a Jacobi transformation has been made to thg. : :
. = . isorder is broad and do not describe the crossover from
variablex =In(Q2/J) [15,16]. The variable#, 0, N, and gapped to gapless behavior within the Haldane phase as

p obey P 1— N the randomness is increased.
= —N2p2 — QQP, To determine critical exponents we consider small
dr 2 perturbations near the unstable fixed point:
do
o~ 4= NP, P=%(1 + 5,1,
7)
aNn _ a2 _ ( 2
il (1-N )(2 NP>, 0= F(l + 8,1, (8)
dp _ _ 2 1-N 1
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and expand the flow equations to linear order in theorder, spin-spin correlations decay exponentially, and
é's. There are two irrelevant perturbations€ —1,A =  there is an excitation gap. For broader distributions the
—1-V13 i _ ZIVi3 is filled logical ord [ d th in-spi
For relevant flows, ifs, > 0, odd bonds are stronger correlations dec%y exponentially with correlation length
than even bonds, the density of spin-1's increases, an@kponenty = —=— =~ 2.3. Beyond the critical point
the system flows to the random singlet fixed point. Ifthere is no topological order, the disorder-averaged spin-
8, < 0 even bonds are stronger than odd bonds, th&pin correlations decay algebraically, and the ground state
density of spin-1's decreases, and the system flows to tH&sembles the random singlet state.
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