VOLUME 78, NUMBER 9 PHYSICAL REVIEW LETTERS 3 MRcH 1997

Thermal Waves, Criticality, and Self-Organization in Excitable Media
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Thermal waves are noise-sustained excitation patterns in excitable media coupled to a thermal
environment. The coherence and spatiotemporal organization of thermal waves is quantitatively
analyzed by utilizing the novel method of coherent space-time clusters. As our main result we find
for strongly correlated thermal fluctuations a power-law scaling of the cluster-size distribution with a
universal exponent—the fingerprint of self-organized criticality. [S0031-9007(97)02454-X]

PACS numbers: 64.60.Lx, 03.40.Kf, 05.40.+], 47.54.+r

Pattern formation in excitable media is an importantout by firing elementg,; at time¢,—; = (n — 1)Ar (At
paradigm with many applications in biology and medicineis the smallest time scale in our model), are received by
such as contraction waves on the cardiac muscle, slimie elements;; at time1,, yielding the additional input
mold aggregation patterns, and cortical depression wavesulse in Eq. (1) with the weight;;(¢) given by
to name only a few (for an overview, see [1]). While 2
most theoretical and experimental work is focused on fi(t) = k Z ex;(—ALz("l)). )
the propagation of spiral waves, the role of thermal K(—A) a
fluctuations for pattern selection and propagation has been N _ o _ _
studied only recently [2] by using a stochastic cellular This additional input is time dependent via the time-
model. A number of interesting phenomena such a§lependent selection of firing elementg, indicated in
thermal nucleation of patterns and noise controlled largeEd- (2) by the time dependence of the summation index.
scale patterns have been found in those previous studies! e parameterA describes the inverse range of the

In the first part of this Letter, we report on thermal interaction and the parametéf the coupling strength.
patterns, i.e., patterns which exist only in the presencdhe medium is updated synchronously in time steps of the
of ﬂuctuations_ The common feature Of patterns insma”est time Sca|ét, being the time interval of f|r|ng
fluctuating media is the stochasticity of their shapes. IrAll other time scales are measured in unitsfof.  The
the second part, we introduce a method, which enables @oper normalization of this model is given hy* —
to quantitatively describgatterns with stochastic features @°/b% v — yAt,K — K /b [2]. The time step as well
in terms of their statistical properties. In the third part, weas the threshold is therefore normalized to unity. The
apply this method to thermal waves, revealing interestinglissipation constany defines the typical time scale of
properties such as criticality and in tfeliabatic limit the temporal evolution of a single element. For large
self-organized criticality [3]. dissipation § > 1), the element forgets its prehistory

The model—The model, which we adopt in this Letter, within one time step of temporal evolution, while for
consists of a square array of excitable threshold elemengnall dissipationy <1, the system—as a whole—can
with lattice constantz. Each element;; can assume build up a long memory. Throughout this Letter we
three states: the quiescent state, the excited state, and'@ve used an inverse interaction rangeiot 0.1, and
following refractory state. The state of each elemegnt @ refractory period o Az.
is controlled by an inputy;(z). If the input x;;(z) is Subthreshold and superthreshold patterrdt has
below a threshold, the element is quiescent. if;(r) been'demon_strated [2] that this model showg for Iar_ge
is crossing threshold from below, the element switche§oupling K (in the absence of noise) the typical exci-
into the excited state, i.e., it fires. The inputs(s) are tation patterns of excitable media, ie., rotr_;\tlng spiral
coupled to a homogeneous thermal environment, i.e., it¥aves or target waves, usually described in terms of

time dependence is described by the Langevin equation reaction diffusion equations with two species [1]. In
the presence of noise, the typical excitation patterns can

Xij = —yxij +qyoré;(n) + > fi;(08(t — 1), (1)  still be observed, but they exhibit rough wave fronts
n and—depending on the noise level—more serious im-
with (x,~2j> = ¢g* and zero-mean, uncorrelated noise inperfections such as break up of wave fronts and collisions
space and timé¢;;(1)éx (1)) = 28ij)und(t — t'). The  with noise-nucleated waves. The overall picture in the
excitable elements communicate via pulse couplinglarge coupling regime is the coexistence of multiple
When an elemeng,; fires, it emits a spike which is finite-sized cells with coherent patterns.
received by an elemeiat; with an intensity depending on ~ For weak couplingk’, however, the discrete nature of
the distance;; ) betweerey; ande;;. The spikes, sent the model becomes important and different phenomena
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can be observed. This is the regime we are mostha curved wave front which resembles the core of a spiral
concerned with in this Letter. To maintain a firing pattern,wave. In the subsequent snapshots, one can observe the

the couplingK has to exceed a critical valug, which

propagation of the front and its eventual disappearance

is estimated for smalh and negligible curvature effects [Fig. 1(d)].

as follows: An infinite front of firing elements reduces

Space-time cluster analysis-To quantitatively analyze

the firing threshold of an element next to the front bythe spatiotemporal properties of thermal waves, we intro-
an amount ofSy which is the sum of the contributions duce here a novel method based on the analysis of coherent

from all firing elements along the front.

The element,space-time clusters. In a first step, we stack the temporal

however, is precharged by the sum of the contributionsequence oV, snapshots of the medium taken at times
Spre Of firing elements of the front at earlier times (and 7, = nAr to obtain a large space-time cube which carries
larger spatial distances). At the critical coupling, the sumall the spatiotemporal information within the time interval

of the prechargé,,.. andsS, of an element right before the N,Ar. In the second step, we draw a small cube around
front is unity (the normalized threshold), i.e.,

Ko(y) = \/;

" xXp—A) + expy) Sy exp—An? — 1)

each firing element with a spatial side lengthand a tem-
poral side lengthi,. Overlapping small cubes intane-
forward directionforms objects which we have termed
coherent space-time clusterdf two thermal waves are
colliding to form one new wave after the collision, the co-
herent cluster corresponding to one of the incoming waves
is terminated at the collision. The sizeof the coherent
clusters, i.e., the number of firing elements whose small
cubes build the cluster, is statistical and characterized by

For K < Ky, all excitation patterns are transient to die the cluster-size distribution functign(s, ). The time de-
out. In the presence of fluctuations, however, |oca||ypendence indicates that the distribution can change with
coherent structures with finite lifetimes emerge after dime before a steady-state distribution is approached. The
transient time. A sequence of snapshots is shown iRarticular choice of the spatial and temporal side length
Fig. 1 for y = 0.05 and K = 0.07 < Ky = 0.09. ] :
Fig. 1(b), one can observe the spontaneous formation & adjustable scales. In this Letter, we have chosen the
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FIG. 1. Snapshots of evolving patterns are shown Kok

0.07, 0> = 0.15, y = 0.05. The snapshots have been taken
equidistantly after a transient time of about 1000 time step
with eight time steps between two consecutive snapshots. Thé —

S

d, andd,, respectively, allows one to analyze the patterns

spatial side lengtll; such that the cubes of neighboring
firing elements in space are overlapping, edy.= 1.3a
whereaq is the lattice constant. The temporal side length
is chosen such that only the cubes of those firing elements
overlap whose firings likely to be causally related, e.g.,

d, = 1 (the normalized time step).

Numerical results—In Fig. 2, the cluster-size distri-
butions are shown fok = 0.07, ¥ = 0.05, and ¢ =
0.15. For small timesy = 10,...,60 (N, = 50) (filled
squares), the cluster-size distribution decays exponentially
with increasing cluster sizes, indicating statistical inde-
pendence of firing events. At later times (empty squares),
regardless of the initial conditions, a remarkable reorga-
nization takes place, which manifests itself by the forma-
tion of large clusters and a cluster-size distribution which
scales like a power law, i.eg(s) « s~*. The exponent
a of the cluster-size distribution is almost independent
on the variance of the noise within a wide range. The
observed variations are within the accuracy of the simula-
tions. At afinite value of the dissipation rate, there is
a critical noise strengtir?(y), below which neither ther-
mal patterns nor power-law scaling of the cluster sizes
can be observed. Furthermore, the power-law scaling of
the cluster-size distribution is corrupted at large noise by
an exponential cutoff, where the cutoff size is smaller
than the system size. Decreasing the dissipation rate, i.e.,
0, however, the critical noise strengih?(y) ap-

time is progressing from (a) to (d). The array consists ofproaches zero and the power law is limited only by the
100 X 100 elements.
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finite system size (see Fig. 3)—Dbeing the linear extension
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Self-organized criticality—The power-law scaling of
the cluster-size distribution suggests the picture of an
avalanche process rather than the propagation of a non-
linear wave. Avalanche processes where the size of the
avalanches scales with a power law have been reported
in quite a variety of systems such as in earthquake ob-
servations and models [4], flux creep in type Il supercon-
ductors [5], domain-wall motion in ferromagnets [6], and
ricepiles [7]. Many of these experimental results are be-
ing discussed in terms of the concept of self-organized
criticality, put forward by Bak and collaborators [3]. The
characteristic features of self-organized criticality are (a)
power-law distributed size of fluctuations and (b) self-

10° 10t 10? tuning into criticality. An essential feature of the sand-
s pile automata [3] and also later models (such as the
, o Bak-Sneppen model for biological evolution) is that the
FIG. 2. The cluster-size distributions are shown W= 5 J1anches happen instantaneously on the time scale of
0.07, o* = 0.15, and y = 0.05 during the initial interval of . .
the first 50 time steps (filled squares) and a later time intervail® Perturbation, externally imposed on the system (e.g.,
(between 800 and 850 time steps), where the system hag grain of sand thrown on the sandpile). This separation
reached its steady state (empty squares). The lines through tled time scales is not a general feature of our model. The
symbols (actual simulation results) represent an exponential fgystem evolves and all sites are affected by local fluctu-

pls) = exp(—s/so) for the initial time interval and a power- aiinng during an avalanche. As observed from the nu-
law fit p(s) o« s™@ for the steady-state interval. The inset

shows the exponent as a function of the dissipation rate Merical simulations, criteria (a) and (b) for self-organized
y at constant variance of the noise* = 0.15. The solid criticality are not fulfilled for finite values of the dissipa-

curve is fitted through the numerical data points (crosses) tdion ratey since tuning of the noise to? is necessary
guide the eye. The array used for the calculations consists qb obtain power-law distributed cluster sizes. This noise
200 < 200 elements. tuning, however, appears not necessary in the limit of van-
ishing dissipationy — 0 where the cutoff size strongly
of the array due to the slimness of the clusters. In thencreases and the critical noise Strengtgl approaches
inset of Fig. 2, the exponent is shown as a function . Here criteria (a) and (b) for self-organized criticality
of the dissipation rate’ at constant variance of the noise gre fulfilled. The significance of the limig — 0 is that
o = 0.2. For decreasing, the exponentr approaches  time-scale separation of local dynamics and avalanche dy-
ao = 2 from above. namics is reinstalled. Local dynamics consists of dissi-
pation with ratey and thermal activation to the excited
100 | state_vyith amean activation tirﬂe,_c < exp(1/202). The _

: conditions for time-scale separation are that the activation
time T,. and the relaxation time/~! have to be larger
10-1 | '\&.‘ i than the longest possible duration of an avalanche being
03] &+ roughly estimated in dimensionless units by the linear ex-
i 84:+ tensionL of the array (a wave front moves one lattice
" i constant per time interval and shows no significant rota-
B D tion). For the parameters used in Fig. 3, i€ = 0.2
. @\ and L = 200, the relevant condition for time-scale sepa-
10-3 | \ O\ i ration y < 1/L = 0.005 is compatible with the obser-

P e vation that the cutoff of the power-law distribution has
‘ disappeared ay = 0.005. Furthermore, the exponent of
10-4 . | @ the power-law distributed cluster sizes is closexto= 2
10° 10! 102 within the regime of time-scale separation. This means
s that the system is—as it should be for a system in a criti-
FIG. 3. The normalized cluster-size distribution is shown forCal state—long-range correlated. Thgper universaéx-
several dissipation rateg at constant variance of the noise ponentay, = 2 has been reported on [8] for the scaling of
o? =02. Fory = 0.005 and0.05, we have fitted a power the size distribution of time-forward avalanches in models
law through the points at small cluster sizes. The deviationgy invasion percolation [9] and biological evolution [10].

from this line at large cluster sizes (cutoff) is visible at .
y = 0.05. The line through the points foy = 0.1 represents Coherent cluster method vs avalanche statisties

an exponential fit. The array used for the calculations consistd he abOV_e diSC'U_Sse_d CanE‘Ction of our _mOdel and
of 200 X 200 elements. self-organized criticality raises the question in how far
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avalanche statistics, mostly used in the context of selfters have been found with the universal exponent around
organized criticality, is related to the method of coherenta = 2 (variations due to experimental inaccuracies)—
clusters introduced in this Letter. In the following, we a strong hint that self-organized criticality in excitable

list a number of differences in the procedure and scope. media plays a relevant role for brain functions.
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