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Chaotic Hysteresis in an Adiabatically Oscillating Double Well
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We consider the motion of a damped particle in a potential oscillating slowly between
simple and a double well. The system displays hysteresis effects which can be of a periodi
chaotic type. We explain this behavior by computing an analytic expression of a Poincaré m
[S0031-9007(97)02442-3]
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Although hysteresis is a quite familiar and ubiquitou
phenomenon, no general theory can actually describe
many facets. In condensed matter, hysteresis often acco
panies a phase transition, which by nature results from t
cooperative effect of a large number of degrees of freedo
This has recently led some authors to analyze it by mea
of Langevin type [1] or master equations [2] with infinitely
many degrees of freedom, and to propose various scal
laws for the area of the hysteresis loop. A mean field trea
ment of this problem [3] reduces it to an ordinary differ
ential equation for the order parameter, with some slow
time dependent external parameter such as the magn
field. Noise can be incorporated into the problem. Sim
lar equations appear naturally to describe mechanical
electrical systems, as well as lasers [4]. Hysteresis effe
may appear if the equilibria of the dynamical system wit
a static parameter undergo a bifurcation, and scaling la
have also been found in this case [5].

A paradigmatic example is the motion of a damped pa
ticle in a slowly varying potential. Periodically forced and
damped nonlinear oscillators such as the Duffing [6] an
Van der Pol [6,7] oscillator have been extensively stud
ied. One usually chooses to consider either a linear ext
nal driving, or a modulated potential amplitude (nonlinea
Mathieu equations). Here we consider a rather differe
type of forcing, which has, to our knowledge, not yet bee
analyzed, although it is physically quite natural as we sha
show. Assume that the symmetric potential depends on
parameter smoothly interpolating between a simple and
double well, so that the static bifurcation diagram look
like the inset of Fig. 2. Imagine now that the paramete
is oscillating slowly between these extreme values. Th
particle starting close to the initially stable origin does no
react immediately to the bifurcation. Rather, it remains fo
some time close to the now unstable origin, before fallin
into one of the newly formed minima, which it follows
until it merges again with the origin. Thus thisbifurca-
tion delay, which has been observed in various physica
systems [4] and was rigorously analyzed for the first tim
by Neishtadt [8], is responsible for metastability leading t
hysteresis.

In this Letter we address the following question
For a periodic parameter variation, which symmetri
potential well will the particle fall into during each
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cycle? In the overdamped case, it always chooses
same minimum [Fig. 1(a)]. But, at low friction, we
found that, depending on the frequency of the parame
variation, the particle may also fall alternatively into th
left and right equilibrium [Fig. 1(b)] or even go from
one minimum to the other in a random way [Fig. 1(c)
We observed the same phenomenon in an experime
realization of the system, a pendulum on a rotating tab
In this work, we show that this surprising behavio
can be understood by means of a Poincaré map
we compute explicitly to lowest order of the paramet
variation. We only outline the derivation of this fairly
complicated, although essentially one-dimensional m
postponing rigorous proofs for future publication [9].

The equation of motion of a damped particle in a slow
varying potential can be written as

q̈ 1 2g Ùq 1 F0sssq, ls´tdddd ­ 0 , (1)

FIG. 1. Position of the particle (or the pendulum) as
function of time, each peak corresponding to the particle falli
into one of the wells. The sequence of visited wells may
periodic, biperiodic, or chaotic.
© 1997 The American Physical Society 1691
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where the prime denotes derivation with respect toq and
0 , ´ ø 1 is the adiabatic parameter.

Introducing the variablesx ­ sx1, x2d ­ sq, Ùqd, this
equation can be transformed into the nonautonomous fi
order system

´ Ùx1 ­ x2 ,

´ Ùx2 ­ 22gx2 2 F0sssx1, lstdddd ,
(2)

where the dots now indicate derivation with respect to t
slow timet ­ ´t.

For fixed lstd ; l0, the dynamics of (2) are well
known. Around the equilibriax1 ­ qpsl0d, x2 ­ 0, where
F0sssqpsl0d, l0ddd ­ 0, the linearization of (2) has eigenvalue
a6 ­ 2g 6

p
g2 2 f00, with f00 ­ F00sssqpsl0d, l0ddd.

Hence the fixed point is a saddle iff00 , 0, a stable node
if 0 , f00 , g2, and a stable focus iff00 . g2. With
this information, the phase portrait is easily drawn.

We will consider potentials of the following type:
Fsq, ld is an even analytic function ofq such that the
origin O is hyperbolic whenl . 0, a node forl2sgd ,

l , 0, and a focus forl , l2. For positivel, F has
two minima 6qpsld which are nodes whenl , l1sgd
and focuses whenl . l1.

The simplest example is theGinzburg-Landau potential
Fsq, ld ­ 2

1
2 lq2 1

1
4 q4 (here l2 ­ 2g2, l1 ­ g2y2),

q being the order parameter andl the difference between
the temperature and its critical value. But there is al
a simple mechanical system which can be described
an equation of this type, namely, a plane pendulum
a rotating table. In the frame rotating with frequenc
V, it experiences a torque2LMgsinq due to its weight
and a centrifugal torqueIV2sinqcosq, where L is the
distance between suspension pointP and center of mass
G, I the moment of inertia with respect toP, andq the
angle betweenPG and the vertical. Taking as a time uni
V21

cr ­ sLMgyId1y2, we obtain the equation of motion (1)
with F0sq, ld ­ sinqf1 2 sl 1 1dcosqg, l ­ V2 2 1.

Finally, the function lstd we consider is periodic
with period 1, and has exactly one minimum and on
maximum. In order to analyze the behavior of th
dynamical system, we want to compute the Poincaré m
in the sx1, x2d plane during one period to dominant orde
in ´. This proceeds essentially by following the motio
of x along its static equilibria. Let us denote byao

6std
and ap

6std the eigenvalues of the linearization aroundO
andqpssslstdddd, respectively, and use the notation

ao,pst1, t2d ­
Z t2

t1

Refao,p
1 stdgdt ,

fo,pst1, t2d ­
Z t2

t1

Imfao,p
1 stdgdt ,

do,pst1, t2d ­
Z t2

t1

Refsao,p
1 2 ao,p

2 dstdgdt .

We first study (2) in a neighborhood of the origin
The linearized systeḿ Ùx ­ Astdx can be solved by
constructing a linear change of variablesx ­ Sst, ´dy
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transforming the equation intóÙy ­ Bst, ´dy, whereB is
as simple as possible. IfAstd has distinct eigenvalues
one can findS regular in a neighborhood of́ ­ 0
such thatB has exponentially small off-diagonal term
Complete diagonalization is possible if we requireS to
admit only an asymptotic expansion iń[10]. The full
system (2) thus becomes

´ Ùy1 ­ ao
1st, ´dy1 1 b1s y1, y2; t, ´d ,

´ Ùy2 ­ ao
2st, ´dy2 1 b2s y1, y2; t, ´d ,

(3)

with ao
6st, ´d ­ ao

6std 1 O s´d andb6 ­ O sjyj3d. We
assume thatao

1st0d . 0 and define anadiabatic unstable
manifoldy2 ­ us y1; t, ´d by the equation

´Ùu ­ ao
2u 1 b2s y1, ud 2 ≠yufao

1y1 1 b1s y1, udg ,

where the initial condition coincides with the instant
neous unstable manifold att ­ t0. The solution, whose
asymptotic expansion can be computed, may be contin
to all times such that the origin is a saddle or a node.
then carry out the change of variablesy2 ­ us y1d 1 h

and define in a similar way anadiabatic stable manifold
y1 ­ ysh; t, ´d. With y1 ­ yshd 1 j, Eq. (3) becomes

´ Ùj ­ fao
1st, ´d 1 b1sj, h; t, ´dgj ,

´ Ùh ­ fao
2st, ´d 1 b2sj, h; t, ´dgh ,

(4)

with b6 ­ O sj2 1 h2d.
In the overdamped case, whenlstd always remains

in the intervalsl2, l1d, the problem is easy to analyz
because it can be reduced to a one-dimensional o
Assume thatlstd . 0 for 0 , t , tb and lstd , 0
for tb , t , 1. One shows that it is always possib
to transform (2) into (4), withao

2 1 b2 , 0. Thus,
we conclude from the second equation thathstd will
go to zero exponentially fast, and it is sufficient
consider the reduced equation on the adiabatic manif
´ Ùj ­ fao

1 1 b1sj, 0dgj ; gsj; t, ´d, which undergoes
a direct pitchfork bifurcation att ­ O s´d, and an inverse
pitchfork bifurcation att ­ tb 1 O s´d.

The most important effect of the adiabaticity of th
parameter variation is that the bifurcation isdelayed.
The orbit starting with a positivej at t0 [ stb 2 1, 0d
reaches theO s´d neighborhood of the origin att1 ­
t0 1 O s´j ln ´jd. As long asj ­ O s´d, we havé Ùj ­
fao

1std 1 O s´dgj so that

jstd ­ jst1dexp

µ
1
´

faost1, td 1 O s´dg
∂

.

The smallness ofj is thus guaranteed as long asao ,

0. For t1 , t , 0, ao is decreasing; it has increase
again to zero only att ­ Cst1d . 0, which is by
definition thedelayed bifurcation time. Afterwards, the
orbit quickly jumps on the upper branchqp and follows
it adiabatically until the inverse bifurcation attb , where
we can prove thatjstbd ­ C´1y4. The next delayed
bifurcation occurs at̂t ­ Cstbd.
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It follows that the Poincaré map, defined byjst̂ 1

1d ­ Tsssjst̂dddd, is a monotonic odd function ofj, such that
for j . expf2 1

´ aost̂, t̂ 1 1dg one has 0 , c1´1y4 ,

T sjd , c2´1y4. This implies that the map has three
fixed points, the unstable origin and two symmetric stab
points. The positive solution corresponds to the attracti
periodic orbit of Fig. 1(a), and, if plotted in thesl, jd
plane, to an asymptotic hysteresis cycle (see inset
Fig. 2), whose area we are able to prove scales the sa
asAs´d . As0d 1 c´3y4.

We now turn to the most complicated case, when t
amplitude oflstd is large enough for the origin to be
a focus forto

2 , t , to
1 and for qp to be a focus for

tp
2 , t , tp

1. We make a Poincaré section at the dela
time t̂ ­ Cstb 2 1d, which we assume to be in the
interval stp

2, tp
1d (Fig. 2).

The variablesz ­ sj, hd are defined fort ” fto
2, to

1g
and jjj , d, whered is a constant such thatx1 is closer
to the origin than the focus atqp. We want to compute
z st̂ 1 1d ­ sj1, h1d as a function ofz st̂d ­ sj0, h0d in
the case wherej0 [ s0, dd and h0 ­ O s´d. From (4),
we deduce thatjstd ­ d at t ­ t̄sj0d 1 O s´d, where
t̄sj0d is the solution of

aost̂, t̄d ­ 2´ lnsj0ydd . (5)

For most trajectories,̄t is very close tot̂, but orbits
which are exponentially close to the origin att̂ can be
appreciably delayed.t̄sj0d is a decreasing function of
j0 for jc # j0 # d, with t̄sdd ­ t̂ and t̄sjcd ­ tp

1,
wherejc ­ d expf2 1

´ aost̂, tp
1dg [for practical purposes,

one may approximatētsj0d by t̂ 2 ´c lnsj0ydd].
Next, we construct a particular solution of (2),x̄std,

which remains in the neighborhood of the upper bran
qpstd and such that̄jstbd ­ C´1y4, h̄stbd ­ 0. Writing
x ­ x̄std 1 y, we obtain the equatiońÙy ­ Āst; ´dy 1

bs y, td, whereĀ has eigenvaluesap
6std 1 O s´1y2d. The

nonlinear termbs y, td may be decreased to order´ by
the change of variablesy ­ z 1 xszd, which puts the

FIG. 2. Fixed points in thest, x1d plane. Full lines represent
nodes, dashed lines represent hyperbolic points, and wavy li
represent focuses. The thin lines are orbits of the system. T
inset shows the static bifurcation diagram in thesl, x1d plane
(thick lines) with an asymptotic hysteresis cycle (thin lines).
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instantaneous system into normal form. Whent fi tp
1,

the linear part of the equation can be diagonalized. Th
we have to take care of the turning pointtp

1, where
the eigenvalues of̄Astd cross andSstd diverges. The
problem is solved by carrying out, in the intervalftp

1 2

´2y3, tp
1 1 ´2y3g, a change of variables which putsB into

Jordan form, so that one obtains Airy’s equation. Puttin
together these steps, we finally obtain

jstbd ­ j̄stbd 1 eapy´sinsfpy´d ,

hstbd ­ esap2dpdy´sinsfpy´ 1 upd ,
(6)

wheredp ­ dpstp
1, 1d 1 O s´1y2d is a constant andap ­

apsj0d 1 O s´1y2d, fp ­ fpsj0d 1 O s´d, with

apsj0d ­ apssst̄sj0d, 1ddd ,

fpsj0d ­ fpssst̄sj0d, tp
1ddd .

(7)

Of coursez stbd also depends onh0 via yst̄d, but only
at next-to-leading order. Forj0 [ fjc, dg, Eq. (6) is the
parametric equation of an exponentially squeezed spira

Proceeding in a similar way around the origin, we fin
z st̂ 1 1d ­ Uz stbd, with

U ­

√
sin

≥
fo

´

¥
e2d

o
2 y´sins fo

´ 1 u
o
2 d

e2d
o
1 y´sins fo

´ 1 u
o
1 d e2d

o
3 y´sins fo

´ 1 u
o
3 d

!
,

(8)

where fo ­ fosto
2, to

1d 1 O s´1y2d is the dy-
namic phase, d

o
1 ­ dos0, to

2d 1 O s´1y2d, d
o
2 ­

dosto
1, t̂ 1 1d 1 O s´1y2d, and d

o
3 ­ d

o
1 1 d

o
2 . The

geometric phase shiftsui can be expressed in terms o
Airy functions (plus corrections of ordeŕ 1y3). This
transformation acts like a rotation of anglefoy´ and an
exponential contraction along the stable manifold.

Combining (6) and (8), we finally obtain the expressio
of the Poincaré mapj1 ­ T1sj0, h0; ´d, h1 ­ T2sj0,
h0; ´d with

T1 ­ sin
≥

fo

´

¥∑
C´1y4 1 eapy´sin

≥
fp

´

¥∏
1 esap2dp2d

o
2 dy´sin

≥
fo

´
1 u0

¥
sin

≥
fp

´
1 up

¥
(9)

andT2 ­ O se2d
o
1 y´d.

The expression (9) ofT1 is valid for j0 . jc. By
symmetry,T1 is an odd function ofj0, and forjj0j , jc,
it is monotonic as in the overdamped case. All variabl
appearing in (9) are independent ofj0, h0 at lowest order
in ´, exceptap andfp which are given by (7).

Since h is exponentially contracted at each iteration
we may replace the two-dimensional invertible Poinca
map by the noninvertible one-dimensional mapj0 °
T1sj0, 0d. Its graph is oscillating aroundC´1y4sinsfoy´d
with increasing amplitude and frequency asj & jc. One
can prove that there is a positive constantm such that
when sinsfoy´d . e2my´, T1 admits only one positive
fixed point atj , ´1y4sinsfoy´d, which is stable. In this
case, we obtain a hysteresis cycle of period 1. Similar
1693
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when sinsfoy´d , 2e2my´, the map has a stable orbit o
period 2, corresponding to the particle falling alternative
into the left and right well.

These predictions agree very well with numerical sim
lations of the rotating pendulum (Fig. 3). If sinsfoy´d
is sufficiently positive, the pendulum performs an inte
ger number of oscillations around the origin. After a fe
periods, it reaches an asymptotic hysteresis cycle w
the same period as the forcing [Fig. 1(a)], characteriz
by jst̂ 1 nd , ´1y4sinsfoy´d. When sinsfoy´d is suf-
ficiently negative, the pendulum oscillates a half-integ
number of times around the origin. Asymptotically,
follows a cycle withtwice the driving period [Fig. 1(b)],
described byjst̂ 1 nd , s21dn´1y4sinsfoy´d.

FIG. 3. Numerically computed bifurcation diagram of th
Poincaré map for the rotating pendulum. For each value o´
on the abscissa, we plot the asymptotic behavior ofjst̂ 1 nd,
n [ N, for one initial condition. Regions with a period-1 and
period-2 cycle are separated by small chaotic zones, the in
shows an enlargement of the second zone from the right.
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The most interesting situation occurs for intermedi
values of the dynamical phase, whenjsinsfoy´dj ,

e2my´. In this case, we observed both numerically a
experimentally a great variety of behaviors, includi
period doubling cascades and chaotic orbits [see in
of Fig. 3 and Fig. 1(c)]. These “chaotic” zones occur
integer values ofk ­ foyp´, and the width and heigh
of the nth zone are proportional toe2smpyfodn. This
prediction has been confirmed numerically.

The map (9) certainly deserves further study. But
most important fact to us is that it explains accurately
alternates of periodic, biperiodic, and chaotic hystere
in accordance with numerical simulations as well as w
the laboratory experiment of the rotating pendulum.

We thank P. Braissant and B. Egger for carrying o
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work is supported by the Fonds National Suisse de
Recherche Scientifique.
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