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Chaotic Hysteresis in an Adiabatically Oscillating Double Well
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We consider the motion of a damped particle in a potential oscillating slowly between a
simple and a double well. The system displays hysteresis effects which can be of a periodic or
chaotic type. We explain this behavior by computing an analytic expression of a Poincaré map.
[S0031-9007(97)02442-3]

PACS numbers: 05.45.+b, 64.60.Ht, 64.60.My, 75.60.Nt

Although hysteresis is a quite familiar and ubiquitouscycle? In the overdamped case, it always chooses the
phenomenon, no general theory can actually describe itsame minimum [Fig. 1(a)]. But, at low friction, we
many facets. In condensed matter, hysteresis often accorfound that, depending on the frequency of the parameter
panies a phase transition, which by nature results from theariation, the particle may also fall alternatively into the
cooperative effect of a large number of degrees of freedonieft and right equilibrium [Fig. 1(b)] or even go from
This has recently led some authors to analyze it by meansne minimum to the other in a random way [Fig. 1(c)].
of Langevin type [1] or master equations [2] with infinitely We observed the same phenomenon in an experimental
many degrees of freedom, and to propose various scalingalization of the system, a pendulum on a rotating table.
laws for the area of the hysteresis loop. A mean field treatih this work, we show that this surprising behavior
ment of this problem [3] reduces it to an ordinary differ- can be understood by means of a Poincaré map that
ential equation for the order parameter, with some slowlywe compute explicitly to lowest order of the parameter
time dependent external parameter such as the magnetiariation. We only outline the derivation of this fairly
field. Noise can be incorporated into the problem. Simi-complicated, although essentially one-dimensional map,
lar equations appear naturally to describe mechanical grostponing rigorous proofs for future publication [9].
electrical systems, as well as lasers [4]. Hysteresis effects The equation of motion of a damped particle in a slowly
may appear if the equilibria of the dynamical system withvarying potential can be written as
a static parameter undergo a bifurcation, and scaling laws . . ; _
have also been found in this case [5]. 4+ 2yq + Pg. Alen) =0, (1)

A paradigmatic example is the motion of a damped par-
ticle in a slowly varying potential. Periodically forced and
damped nonlinear oscillators such as the Duffing [6] and
Van der Pol [6,7] oscillator have been extensively stud-
ied. One usually chooses to consider either a linear exter
nal driving, or a modulated potential amplitude (nonlinear
Mathieu equations). Here we consider a rather different Uy
type of forcing, which has, to our knowledge, not yet been
analyzed, although it is physically quite natural as we shall
show. Assume that the symmetric potential depends on i
parameter smoothly interpolating between a simple and ¢
double well, so that the static bifurcation diagram looks | a b
like the inset of Fig. 2. Imagine now that the parameter
is oscillating slowly between these extreme values. The
particle starting close to the initially stable origin does not
react immediately to the bifurcation. Rather, it remains for
some time close to the now unstable origin, before falling 't , ,, , 1, il W . JUi g, N
into one of the newly formed minima, which it follows
until it merges again with the origin. Thus thigfurca-
tion delay which has been observed in various physical
systems [4] and was rigorously analyzed for the first time
by Neishtadt [8], is responsible for metastability leading to | ¢

hyISte;i.S'S'L it dd the followi fi .FIG. 1. Position of the particle (or the pendulum) as a
n IS _e.er we address . ? 0 OV‘{'ng ques Ior?'function of time, each peak corresponding to the particle falling
For a periodic parameter variation, which symmetricinto one of the wells. The sequence of visited wells may be
potential well will the particle fall into during each periodic, biperiodic, or chaotic.
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where the prime denotes derivation with respecy tand  transforming the equation intey = B(7, £)y, whereB is
0 < & < 1 is the adiabatic parameter. as simple as possible. K(r) has distinct eigenvalues,
Introducing the variablesx = (x1,x2) = (¢,¢), this one can findS regular in a neighborhood of = 0
equation can be transformed into the nonautonomous firstuch thatB has exponentially small off-diagonal terms.
order system Complete diagonalization is possible if we requifeto
ex; = xa, admit only an asymptotic expansion én[10]. The full

. 2 tem (2) thus become
ety = ~2ym, — D/(x1, A7), (2) system (2) thus s

where the dots now indicate derivation with respect to the ey1 = af(r,&)y1 + b(y1,y25 7, 8),
slow timer = et. © o o )

For fixed A(7)= Ao, the dynamics of (2) are well &y2 = ax(r. &)y + b-Oyi.yzit.8),
known. Around the equilibria; = g*(Ao), x» =0, where ~ With a%(7,&) = a%(r) + O(e) andb= = O(|y[]*). We
®'(g*(Ao), Ao) =0, the linearization of (2) has eigenvalues assume that (7o) > 0 and define aradiabatic unstable
ar = —y = Jy2 — ¢, with ¢" = ®"(¢*(A), Ag). Manifoldy, = u(y;; 7, e) by the equation

: e ,
0= 8 < 5 and & stable fots B > o Wi & = 4%+ b= = dyulat + b,
this information, the phase portrait is easily drawn. where the initial condition coincides with the instanta-

We will consider potentials of the following type: neous unstable manifold at= 3. The solution, whose
®(g, A) is an even analytic function of such that the asymptotic expansion can be computed, may be continued
origin O is hyperbolic whem > 0, a node forA_(y) < to all times such that the origin is a saddle or a node. We
A < 0, and a focus forx < A_. For positiveA, ® has then carry out the change of variables = u(y;) + 7
two minima *¢4*(A) which are nodes when < A.(y) and define in a similar way aadiabatic stable manifold

3)

and focuses whea > A.. y1 = v(n;7,e). Withy, = v(n) + £, Eq. (3) becomes
The simplest example is tl&inzburg-Landau potential S )

D(g,A)=—3Ag> + 1 g* (here A_ = —y2, A, =72/2), o6 = lai(r.2) + B+(&,m; 7 e)lE, (4)

g being the order parameter andhe difference between en = [a’(1,e) + B_(&,7m;7,€) ],

the temperature and its critical value. But there is also . _ ’ )
a simple mechanical system which can be described bv'th Bx = O + ). .

an equation of this type, namely, a plane pendulum on Ir;] th_e overldamped Cﬁse’ WQIG“T). always rema||ns

a rotating table. In the frame rotating with frequencyIn the interva (A-, A+), the problem is easy to analyze
Q, it experiences a torque LMgsing due to its weight because it can be reduced to a one-dimensional one.
and a centrifugal torquéQ2singcos;, where L is the %Assume that’\(T)g 0 f?‘r 0 <hT < Th ar|1d Ar) < O'bl
distance between suspension paihtand center of mass orm <7 <1 one shows t "’})t Itis always possible
G, I the moment of inertia with respect ®, andg the to transform (2) into (4), withaZ + B- <0 Thgs,
angle betwee®G and the vertical. Taking as a time unit we conclude from the second equation thgtr) wil

e 1/2 ; : : go to zero exponentially fast, and it is sufficient to
&S{h (I),((Lqﬂig)/zl)sin(’]ﬂle_o(?\t?q;st;faan:o?ﬁfT?tlon @) consider the reduced equation on the adiabatic manifold,

Finally, the function A(+) we consider is periodic ©¢ = [a% + B+(£,0)]¢ = g(&;7,¢), which undergoes
with period 1, and has exactly one minimum and one? direct pitchfork bifurcation at = O(e), and an inverse
maximum. In order to analyze the behavior of thePitchfork bifurcationatr = 7, + O(e).
dynamical system, we want to compute the Poincaré maB The most important effect of the adiabaticity of the
in the (x;, x,) plane during one period to dominant order aramet_er var.|at|on' is that _the bifurcation delayed
in &. This proceeds essentially by following the motion ' N€ Orbit starting with a positivg at 7o € (7, — 1’(1)
of x along its static equilibria. Let us denote y(r) reaches theD(e) neighborhood of the origin at; =

and a*.(7) the eigenvalues of the linearization arouad 7o + O(elInel). Aslong as¢ = O(e), we havesé =

andg*(A(7)), respectively, and use the notation [a%(7) + O(e)]¢ so thatl
a(rem) = [ Relat (. £) = érex{ - [a(r1.7) + O()]).
7172 . The smallness of is thus guaranteed as long @% <
% (11, m2) = ] Im[a$” (7)]dT, 0. For7; <7 <0, a° is decreasing; it has increased
& again to zero only atr = ¥(r;) > 0, which is by
59 (r1.79) — f“ R0 — a®")(r)]d7 definition thedelayed bifurcation time Afterwards, the
112 * - ’ orbit quickly jumps on the upper branefi and follows

We first study (2) Tin a neighborhood of the origin. it adiabatically until the inverse bifurcation at, where
The linearized systemex = A(7)x can be solved by we can prove that(r,) = Ce'/4. The next delayed
constructing a linear change of variables= S(r, ¢)y bifurcation occurs at = V(7).
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It follows that the Poincaré map, defined {7 +
1) = T(£(%)), is a monotonic odd function af, such that
for & > exp[—éa"(%,% + 1)] one has0 < ¢;e'/* <

instantaneous system into normal form. Whert 77,
the linear part of the equation can be diagonalized. Then
we have to take care of the turning point, where

T(£) < c,e'/*. This implies that the map has three the eigenvalues ofA(7) cross andS(T) div_erges. The
fixed points, the unstable origin and two symmetric stableproblem is solved by carrying out, in the interjat, —
points. The positive solution corresponds to the attractive?, 7 + £¥7], a change of variables which pussinto

periodic orbit of Fig. 1(a), and, if plotted in the, &)

Jordan form, so that one obtains Airy's equation. Putting

plane, to an asymptotic hysteresis cycle (see inset dbgether these steps, we finally obtain

Fig. 2), whose area we are able to prove scales the same

asA(e) = A0) + ce¥/4,

We now turn to the most complicated case, when the

amplitude of A(7) is large enough for the origin to be
a focus forr2 < 7 < 7% and for ¢* to be a focus for

F < 71 < 75. We make a Poincaré section at the delay

time 4 = ¥(r, — 1), which we assume to be in the
interval (77, %) (Fig. 2).

The variables = (¢, ) are defined forr & [72, 19
and|¢| < d, whered is a constant such that is closer
to the origin than the focus at*. We want to compute
J(7 + 1) = (&1, 1) as a function off (7)) = (&y, mo) in
the case wher&, € (0,d) and no = O (g). From (4),
we deduce that(r) = d at 7 = 7(&) + O(e), where
7(&o) is the solution of

a’(#,7) = —¢eln(&/d). (5)

For most trajectoriest is very close tof, but orbits
which are exponentially close to the origin atcan be
appreciably delayed.7(£&y) is a decreasing function of
& for &, = &y =d, with 7(d) = # and 7(&,) = 77,
whereé,. = dex;{—éa”(%, 7] [for practical purposes,
one may approximate(&y) by 2 — ecln(&y/d)].

Next, we construct a particular solution of (2)(7),

E(rp) = E(mp) + e“/*sin(¢p./e),

n(rp) = @0V °sin(¢./e + 67), ©)
wheres* = 6*(r%,1) + O(¢'/?) is a constant and.. =
a.(éo) + 0(s'?), . = p.(£0) + O(e), with
a:(éo) = a*(7(&9), 1),
(7)

¢+(€0) = ¢ (7(&0), 77) .
Of course{(7;,) also depends om via y(7), but only
at next-to-leading order. Fafy € [&.,d], Eq. (6) is the
parametric equation of an exponentially squeezed spiral.
Proceeding in a similar way around the origin, we find
(7 + 1) = Ul(rp), with
( sin( ") e %/esin(L + 03))
e o esin(e + 07) e % /esin(e + 63) )

8
where ¢°=¢°(r2,79)+ 0('/?) is the dy-
namic  phase, & =258°(0,72)+ 0(e'?), 85=
8°(r9,# + )+ O('/?), and 65=267+65.
geometric phase shiftg; can be expressed in terms of

The
Airy functions (plus corrections of ordes'/3). This
transformation acts like a rotation of angl¢’ /e and an

U

which remains in the neighborhood of the upper branctfXPonential contraction along the stable manifold.

¢*(7) and such thak(r,) = C&'/4, 5(7,) = 0. Writing
x = x(7) + y, we obtain the equationy = A(r; &)y +
b(y, ), whereA has eigenvalues® (7) + O(¢'/?). The
nonlinear termb(y, 7) may be decreased to orderby
the change of variableg = z + x(z), which puts the

FIG. 2. Fixed points in thér, x;) plane. Full lines represent

nodes, dashed lines represent hyperbolic points, and wavy lines
represent focuses. The thin lines are orbits of the system. Th

inset shows the static bifurcation diagram in thex;) plane
(thick lines) with an asymptotic hysteresis cycle (thin lines).

Combining (6) and (8), we finally obtain the expression
of the Poincaré mapé, = T1(&o, noi €), m1 = Ta(&o,
M0; €) with

T, = Sir(%)[csl/ét + ea»./ssir(%>i|

andT, = O (e /%),

The expression (9) off; is valid for & > &é.. By
symmetry,T; is an odd function of,, and for|&,| < &.,
it is monotonic as in the overdamped case. All variables
appearing in (9) are independent&f 7o at lowest order
in e, excepta. and ¢.. which are given by (7).

Since n is exponentially contracted at each iteration,
we may replace the two-dimensional invertible Poincaré
map by the noninvertible one-dimensional mgp—
T1(&,0). lts graph is oscillating aroun@e!/*sin(¢? /&)
with increasing amplitude and frequency&s\ &.. One
can prove that there is a positive constantsuch that
Wwhen siri¢?/e) > e #/*, T admits only one positive
fixed point at¢é ~ £!/4sin(¢°/¢), which is stable. In this
case, we obtain a hysteresis cycle of period 1. Similarly,
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when siffi¢? /g) < —e #/¢, the map has a stable orbit of  The most interesting situation occurs for intermediate
period 2, corresponding to the particle falling alternativelyvalues of the dynamical phase, whédsin(¢?/s)| <
into the left and right well. e */¢. In this case, we observed both numerically and

These predictions agree very well with numerical simu-experimentally a great variety of behaviors, including
lations of the rotating pendulum (Fig. 3). If $i#°/e)  period doubling cascades and chaotic orbits [see inset
is sufficiently positive, the pendulum performs an inte-of Fig. 3 and Fig. 1(c)]. These “chaotic” zones occur at
ger number of oscillations around the origin. After a fewinteger values ok = ¢°/me, and the width and height
periods, it reaches an asymptotic hysteresis cycle witlof the nth zone are proportional te~(#7/¢")n  This
the same period as the forcing [Fig. 1(a)], characterizegrediction has been confirmed numerically.
by £(# + n) ~ &'/*sin(¢?/e). When sii¢p?/¢) is suf- The map (9) certainly deserves further study. But the
ficiently negative, the pendulum oscillates a half-integemost important fact to us is that it explains accurately the
number of times around the origin. Asymptotically, it alternates of periodic, biperiodic, and chaotic hysteresis,
follows a cycle withtwice the driving period [Fig. 1(b)], in accordance with numerical simulations as well as with
described by (4 + n) ~ (—1)"e"/*sin(¢p?/¢). the laboratory experiment of the rotating pendulum.

We thank P. Braissant and B. Egger for carrying out
the laboratory experiment of the rotating pendulum. This
work is supported by the Fonds National Suisse de la
Recherche Scientifique.
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