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A phase model of rings of coupled oscillators is proposed and shown to exhibit a peculiar type
wave. As a parameter is varied, such waves are born with a characteristic pattern and then dev
into complex waves such that phase differences between neighboring oscillators arespatially “chaotic,”
showing type-3 intermittency. Their behavior is studied on the basis of a multivalued one-dimensio
map obeyed by the phase differences. [S0031-9007(97)02511-8]

PACS numbers: 05.45.+b, 02.50.–r, 05.40.+ j, 87.10.+e
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Large populations of coupled limit-cycle oscillator
have been actively studied in recent years (see [1–
and references therein). Such dynamical systems
useful as models for a variety of far from equilibrium
systems, for example, diverse physiological organs such
gastrointestinal tracts [1], convecting fluids, and arrays
Josephson junctions (e.g., [4,5]). Besides these “class
examples, the recent discovery of 40 Hz oscillations in
mammalian visual cortex has renewed interest in coup
limit-cycle oscillators in a neuroscientific context [6]
Assemblies of interacting limit-cycle oscillators may b
viewed as an important category of large-scale dynami
systems which are now in vogue in nonlinear dynamic
Recent studies have demonstrated that such assem
possess a rich spectrum of interesting behavior compara
to those of other types of systems. An important examp
is macroscopic synchronization in which a macroscop
number of element oscillators are mutually entrained w
a common frequency, and the onset of which has so
unique features in comparison with conventional pha
transitions [2,3].

Most of the previous studies, however, have been carr
out for globally coupled systems in which each element
linked to every other in an identical way. Global couplin
is a convenient choice for theoretical studies, having ma
a variety of investigations possible. By contrast, th
behavior of populations oflocally coupled oscillators has
not yet been extensively studied. What is now importa
would be to uncover the whole range of phenome
such systems can exhibit. This Letter addresses t
issue for one-dimensional arrays of limit-cycle oscillato
with nearest-neighbor interactions. Coupling as well
incoherency among native oscillations is assumed we
hence models of the following form are available [2]: fo
j ­ 1, . . . , Ns¿1d,

dujydt ­ Vj 1 ehsuj21 2 ujd 1 ehsuj11 2 ujd ,
(1)

where uj is the phase of oscillatorj, Vj its natural
frequency,e the coupling strength, andhsud ­ hsu 1

2pd the coupling function. Although there are som
earlier studies for this type of model [7–10], they ar
0031-9007y97y78(9)y1683(4)$10.00
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mostly concerned with such cases thathsud is composed
of fundamental harmonic alone like sinu. This may be
reasonable if the oscillators are set close to their Ho
bifurcation points to display nearly sinusoidal oscillation
but may lose validity if otherwise. Moreover, some fata
roles of hsud’s higher harmonic components have bee
discovered recently in synchronization phenomena und
the global coupling [3]. In view of these, the coupling
function is here chosen as

hsud ­ sinu 1 a cos2u (2)

with a as the control parameter. This function is the sim
plest among “generic” ones which not only have a high
harmonic but also are free from the special symmet
hs2ud ­ 2hsud, and has been already proposed for th
case of global coupling [11]. Another more general for
of hsud has been confirmed to yield similar behavior a
reported below, but the analysis is much easier for (2
For simplicity, the oscillators are assumed to be identic
thus a set of trivial transformations ofu andt simplifying
Eq. (1) as

dujydt ­ hsuj21 2 ujd 1 hsuj11 2 ujd , (3)

which form of equations will be used hereafter instea
of (1). This Letter deals only with the case of periodi
boundary conditions:u0 ­ uN , uN11 ­ u1. Numerical
simulations have been performed forN ­ 100 by means
of the fourth order Runge-Kutta-Gill method with time ste
of 0.03, under random initial conditions.

The main results of this work are as follows. It ha
been known so far that coupled-oscillator systems u
der similar settings exhibit traveling waves with consta
phase differences. This Letter shows that in addition
them, the above system acquires a new novel type of so
tion beyond a critical value ofa. Such solutions are tem-
porally periodic but spatially “chaotic” in a way similar to
chaos in one-dimensional maps. Fora large, their spatial
irregularity can be identified with type-3 intermittency
The new type of solution is thus important as a clea
cut example of spatial chaos. Another important poi
is that the behavior of such solutions can be explain
© 1997 The American Physical Society 1683
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from a multivalued map obeyed by successive phase d
ferences. Such an approach should be useful, with pro
extensions, for other phenomena and other types of loca
coupled oscillators as well. Demonstration of its usefu
ness is another purpose of this Letter.

Let us begin by noting that there are two kinds o
traveling wave solutions to (3) of the formuj ­ Vet 1

ja with Ve ­ 2a cos2a: (1) a ­ ak ­ 2pkyN, sk ­
0, . . . , N 2 1d; (2) a ­ ak ­ s2k 1 1dpysN 2 2d, sk ­
0, . . . , N 2 3d. The former with cosak . 0 are linearly
stable, irrespective ofa. None of the latter seem stable in
the parameter range explored here, according to a num
cal eigenvalue analysis. These solutions will hereafter
referred to as “simple waves.” Whena is increased from
0, only the simple waves of the first kind appear until
new type of solution begins to emerge for some of the in
tial conditions neara ­ 2.28. The new solutions are of
the formuj ­ Vet 1 cj, wherecj are constants with a
peculiar j dependence. As Fig. 1 exemplifies, near o
set, such a solution consists of two simple-wave-like pa
and a pair of transition regions. Among 100 initial con
ditions tested, most lead to simple waves fora near 2.28,
but nearly half or more to the new kind of wave fora near

FIG. 1. Portraits of a nonsimple wave fora ­ 2.3 and t ­
1200: (a) uj (raw value); (b)xj ; uj11 2 uj (mod 2p).
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3 and larger. Its variety also grows witha: more or less
different patterns ofcj appear depending on initial con-
ditions. Figure 2 shows a typical wave pattern observe
for a ­ 6, which is remarkably intricate while keeping
the same basic feature as found near onset. The behav
of the phase differences between nearest elements, a
seen in Fig. 2(b), is especially curious, resembling an im
portant category of trajectories in one-dimensional chaot
maps, so called intermittency [12]. Long laminar inter
vals plus occasional bursts define intermittency, whic
feature is indeed found in Fig. 2(b). The spatiotempo
ral behavior of the system is examined in Fig. 3; the non
simple wave is roughly composed of two ordinary wave
propagating in different directions fora close to 2.28, but
for a large, there seems to be a mosaic of miniwaves wi
various sizes, as is understandable from the intermitten
in Fig. 2(b).

To consider why all these happen, one may not
that stationary values ofxj ; uj11 2 uj satisfy Ve ­
hsxj11d 1 hs2xjd. Then, using cos2x ­ 1 2 2 sin2 x,
it is easy to find

wj11 ­ B 6
p

1 2 w2
j ; F6swjd , (4)

FIG. 2. Portrait of a nonsimple wave fora ­ 6 with the same
details for (a) and (b) as in Fig. 1.
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FIG. 3. The behavior of sinuj on thes j, td plane with lighter
regions having larger values, where sinu is chosen just for
illustration; (a) and (b) correspond to the waves of Figs. 1 a
2, respectively. The time axis (from bottom to top) has un
0.09 in (a) and 0.06 in (b), covering nearly 1.3 times the perio
of the wave in (a) and 1.4 times in (b).

wherewj ; Bs1 1 4a sinxjdy2 with B ; s 1
2 2 2aVe 1

4a2d21y2. This is a one-dimensional map composed
two branches corresponding to the upper and lower h
of a unit circle (see Fig. 4). Suggested by the typic
form of nonsimple waves near onset, let us assume t
xj remains constant with valuea in a rangej # j0; B
is then given bys 1

2 1 8a2 sin2 ad21y2, where a, hence
Ve as well, depends on initial conditions, and in gener
differs from ak for the simple waves. ForB , 1, the
minus branch of the map has a stable fixed point,w ­ w2,
which corresponds tox ­ a, while the plus branch has
an unstable fixed point,w ­ w1, which corresponds to
x ­ 2p 2 a. In Fig. 1(b), the left (right) plateau is a
manifestation of the stable (unstable) fixed point. Su
a solution requires thatwj staying at w2 can change
branches from the minus to the plus. A couple of necess
conditions for this are given by (i)F1sw2d # 1 and
nd
it
d
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FIG. 4. The “circle map”, Eq. (4): (a) a translation o
Fig. 1(b) with them ­ 3 heteroclinic route indicated by thin
lines; (b) the same as in Fig. 2 except thatt is here 3600. The
value ofB is 0.1966 in (a) and 0.088 77 in (b).

(ii) F1sw2d # Bs1 1 4ady2, as easily known from (4)
and the definition ofwj , respectively, which lead to

a $
9
4

; ac , (5)

1
2a

2 1 # sina # 2
7

4a
. (6)

Let us then consider how many intermediate steps
taken for wj to reach the unstable fixed point, in othe
words, the size of the “ramp” [the left transition region i
Fig. 1(b)], m, defined byxj0 ­ a and xj01m11 ­ 2p 2

a. One can prove thatm ­ 0, 1, 2 are all impossible and
that when (6) is taken into account, a ramp ofm ­ 3 may
exist with sina ­ 2s3 1

p
17 dy4a in the range

a $
5 1

p
17

4
­ 2.280 77 . . . ; a3 . (7)

The nonsimple waves near onset were found to ha
m ­ 3 [see Fig. 4(a)]. Although nonsimple waves wit
1685
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FIG. 5. The probability of hitting a nonsimple wave aroun
a ­ a3; 1800 samples of initial conditions were tested fo
eacha.

m much larger than 3 were found within the intervalac ,

a , a3, the probability of coming across a nonsimpl
wave [13] abruptly drops virtually to zero as the parame
passesa3 from above, as is evident in Fig. 5. Thus
practically,a ­ a3 is the threshold for the appearance o
the peculiar waves.

Note that the fixed point,w ­ w1, is unstable with
dF1ydw , 21, thusxj eventually departing from2p 2

a in an oscillatory way asj increases fromj0 1 m 1 1
until finally jumping back to the minus branch [se
Fig. 1(b)]. As seen earlier, the whole wave is broken in
pieces fora large, which fact may be roughly explaine
as follows: as its definition reveals,wj can become large
more and more easily asa grows, and hence tends to
change branches more and more often because of
constraintjwjj # 1. The “intermittency” as in Fig. 2(b)
may be considered type 3 [12] becausewj is repeatedly
reinjected around a fixed point which is oscillator
unstable. Interestingly, here, the multivaluedness of t
map provides mechanisms of bursts and reinjectio
[cf. Fig. 4(b)]. Further increase ina results in more
complex behavior as will be discussed elsewhere.

This Letter has shown for a model of rings of couple
oscillators that peculiar waves emerge when the anh
monicity of the coupling function exceeds a certain lev
and that their properties can be studied on the basis
a multivalued one-dimensional map for successive ph
differences. The peculiarity of the waves fora large is
due to the chaotic behavior of the phase differences.
convenience, one may call the new type of wave astrange
wave,which is important as a clear-cut example of a sp
tially irregular but temporally regular phenomenon. As
spatially chaotic behavior, one may recall a quasistea
solution of the spatially continuous, complex Ginzburg
Landau equation [14,15], but it is chaotic temporally a
well as spatially. The mapping approach proposed in t
Letter would be applicable for a wide class of locally cou
1686
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pled oscillators. When each oscillator is given more tha
one degree of freedom, one may try to find a higher d
mensional map of suitable local quantities. A differen
approach is developed in [9], which is available when th
spatial variation of the system is fairly smooth. By con
trast, the present approach would be particularly useful f
phenomena characterized by wild spatial variations just
the strange waves.

The strong anharmonicity ofhsud as treated here might
appear, for example, in coupled highly relaxational osci
lators where effectively strong nonlinearity excites highe
harmonics. It should also be realizable in laboratory e
periments (electronic circuits etc.) by devising such
coupling that Fourier components of a resultinghsud are
controllable. However, the scenario presented above m
not be the only one for the appearance of strange waves
similar phenomena. Hopefully this work triggers attempt
at looking for them experimentally as well as numerically
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