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Strange Waves in Coupled-Oscillator Arrays: Mapping Approach
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A phase model of rings of coupled oscillators is proposed and shown to exhibit a peculiar type of
wave. As a parameter is varied, such waves are born with a characteristic pattern and then develop
into complex waves such that phase differences between neighboring oscillatepmataadly “chaotic,”
showing type-3 intermittency. Their behavior is studied on the basis of a multivalued one-dimensional
map obeyed by the phase differences.  [S0031-9007(97)02511-8]

PACS numbers: 05.45.+b, 02.50.-r, 05.40.+j, 87.10.+e

Large populations of coupled limit-cycle oscillators mostly concerned with such cases théf#) is composed
have been actively studied in recent years (see [1-3phf fundamental harmonic alone like gin This may be
and references therein). Such dynamical systems areasonable if the oscillators are set close to their Hopf
useful as models for a variety of far from equilibrium bifurcation points to display nearly sinusoidal oscillations,
systems, for example, diverse physiological organs such dsit may lose validity if otherwise. Moreover, some fatal
gastrointestinal tracts [1], convecting fluids, and arrays ofoles of z2(#)'s higher harmonic components have been
Josephson junctions (e.g., [4,5]). Besides these “classialiscovered recently in synchronization phenomena under
examples, the recent discovery of 40 Hz oscillations in dhe global coupling [3]. In view of these, the coupling
mammalian visual cortex has renewed interest in coupletlnction is here chosen as
limit-cycle oscillators in a neuroscientific context [6].

Assemblies of interacting limit-cycle oscillators may be h(#) = sing + acos2e 2
viewed as an important category of large-scale dynamical

systems which are now in vogue in nonlinear dynamicswith a as the control parameter. This function is the sim-
Recent studies have demonstrated that such assembligl¢st among “generic” ones which not only have a higher
possess a rich spectrum of interesting behavior comparabl@rmonic but also are free from the special symmetry
to those of other types of systems. An important examplé(—6) = —h(6#), and has been already proposed for the
is macroscopic synchronization in which a macroscopicase of global coupling [11]. Another more general form
number of element oscillators are mutually entrained wittof 2(6) has been confirmed to yield similar behavior as
a common frequency, and the onset of which has someeported below, but the analysis is much easier for (2).
unique features in comparison with conventional phaséor simplicity, the oscillators are assumed to be identical,
transitions [2,3]. thus a set of trivial transformations éfand: simplifying

Most of the previous studies, however, have been carrielig. (1) as
out for globally coupled systems in which each element is
linked to every other in an identical way. Global coupling doj/dt = h(0j—1 — 0;) + h(B;+1 — 0;),  (3)
is a convenient choice for theoretical studies, having made ] ) ]

a variety of investigations possible. By contrast, thewhich form of equations will be used hereafter instead
behavior of populations dbcally coupled oscillators has ©Of (1). This Letter deals only with the case of periodic
not yet been extensively studied. What is now importanPoundary conditionsty = 6y, Oy+1 = 6. Numerical
would be to uncover the whole range of phenomendgimulations have been performed f§r= 100 by means
such systems can exhibit. This Letter addresses thief the fourth order Runge-Kutta-Gill method with time step
issue for one-dimensional arrays of limit-cycle oscillatorsOf 0.03, under random initial conditions.

with nearest-neighbor interactions. Coupling as well as The main results of this work are as follows. It has
incoherency among native oscillations is assumed weal@een known so far that coupled-oscillator systems un-
hence models of the following form are available [2]: for der similar settings exhibit traveling waves with constant

i=1,...,NC>1), phase differences. This Letter shows that in addition to
them, the above system acquires a hew novel type of solu-
do;/dt = Q; + €h(0;-1 — 0;) + €h(0;+1 — 0;), tion beyond a critical value af. Such solutions are tem-

(1)  porally periodic but spatially “chaotic” in a way similar to
chaos in one-dimensional maps. Fkolarge, their spatial
where 6; is the phase of oscillatof, (); its natural irregularity can be identified with type-3 intermittency.
frequency, e the coupling strength, and(#) = h(6 +  The new type of solution is thus important as a clear-
27r) the coupling function. Although there are somecut example of spatial chaos. Another important point
earlier studies for this type of model [7-10], they areis that the behavior of such solutions can be explained
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from a multivalued map obeyed by successive phase dif3 and larger. Its variety also grows with more or less
ferences. Such an approach should be useful, with propeiifferent patterns of); appear depending on initial con-
extensions, for other phenomena and other types of locallglitions. Figure 2 shows a typical wave pattern observed
coupled oscillators as well. Demonstration of its useful-for « = 6, which is remarkably intricate while keeping
ness is another purpose of this Letter. the same basic feature as found near onset. The behavior
Let us begin by noting that there are two kinds ofof the phase differences between nearest elements, as is
traveling wave solutions to (3) of the fory = .t +  seen in Fig. 2(b), is especially curious, resembling an im-
ja with Q, = 2acos2a: (1) @« = ay = 27wk/N, (k =  portant category of trajectories in one-dimensional chaotic
0,....,N—1;@a=ar, =2k + 1)a/(N —2),(k = maps, so called intermittency [12]. Long laminar inter-
0,...,N — 3). The former with cos; > 0 are linearly vals plus occasional bursts define intermittency, which
stable, irrespective af. None of the latter seem stable in feature is indeed found in Fig. 2(b). The spatiotempo-
the parameter range explored here, according to a numerial behavior of the system is examined in Fig. 3; the non-
cal eigenvalue analysis. These solutions will hereafter beimple wave is roughly composed of two ordinary waves
referred to as “simple waves.” Whenis increased from propagating in different directions far close to 2.28, but
0, only the simple waves of the first kind appear until afor a large, there seems to be a mosaic of miniwaves with
new type of solution begins to emerge for some of the inivarious sizes, as is understandable from the intermittency
tial conditions neaw = 2.28. The new solutions are of in Fig. 2(b).
the formé; = Q.t + ;, wherey; are constants witha  To consider why all these happen, one may note
peculiarj dependence. As Fig. 1 exemplifies, near onthat stationary values af; = 6;+; — 6; satisfy (), =
set, such a solution consists of two simple-wave-like part#(x;+;) + h(—x;). Then, using cox =1 — 2sir’ x,
and a pair of transition regions. Among 100 initial con-it is easy to find
ditions tested, most lead to simple waves donear 2.28,

but nearly half or more to the new kind of wave tonear wit1 = B £ 1 — wi = Fx(wj), 4)
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FIG. 1.
1200: (a) 6; (raw value); (b)x; = 0+, —
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Portraits of a nonsimple wave far= 2.3 andt =

0; (mod2).

FIG. 2. Portrait of a nonsimple wave far= 6 with the same

details for (a) and (b) as in Fig. 1.
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FIG. 3. The behavior of sif; on the(j,7) plane with lighter ~ FIG. 4. The ‘circle map”, Eg.(4): (a) a translation of
regions having larger values, where @iris chosen just for Fig. 1(b) with them = 3 heteroclinic route indicated by thin
illustration; (a) and (b) correspond to the waves of Figs. 1 andines; (b) the same as in Fig. 2 except thas here 3600. The

2, respectively. The time axis (from bottom to top) has unitvalue ofB is 0.1966 in (a) and 0.088 77 in (b).

0.09 in (a) and 0.06 in (b), covering nearly 1.3 times the period

of the wave in (a) and 1.4 times in (b).

(i) Fr(w-) = B(1 + 4a)/2, as easily known from (4)
and the definition ofv;, respectively, which lead to
wherew; = B(1 + 4asinx;)/2 with B = (% - 2aQ, +

S ; . 9
4¢%)~Y/2. This is a one-dimensional map composed of a= 7 = e (5)
two branches corresponding to the upper and lower half
of a unit circle (see Fig. 4). Suggested by the typical 1 1 < sina = _l_ (6)
form of nonsimple waves near onset, let us assume that 2a 4a
x; remains constant with value in a rangej = jo; B Let us then consider how many intermediate steps are

is then given by(% + 8a’sir? @)~!/2, where e, hence taken forw; to reach the unstable fixed point, in other
Q. as well, depends on initial conditions, and in generalwords, the size of the “ramp” [the left transition region in
differs from «; for the simple waves. FoB < 1, the  Fig. 1(b)], m, defined byx;, = a andxj,+m+1 = 27 —
minus branch of the map has a stable fixed point: w—, . One can prove that = 0, 1,2 are all impossible and
which corresponds ta = «, while the plus branch has that when (6) is taken into account, a rampmpof= 3 may
an unstable fixed pointy = w,, which corresponds to exist with sina = —(3 + +/17)/4a in the range

x =2 — a. In Fig. 1(b), the left (right) plateau is a 5+ JT7

manifestation of the stable (unstable) fixed point. Such =
a solution requires thatv; staying atw- can change 4
branches from the minus to the plus. A couple of necessaryhe nonsimple waves near onset were found to have
conditions for this are given by (ifF+(w—) =1 and m = 3 [see Fig. 4(a)]. Although nonsimple waves with
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IR T ™) pled oscillators. When each oscillator is given more than

é‘ ; ° ] one degree of freedom, one may try to find a higher di-
§ © mensional map of suitable local quantities. A different

o . °c ° approach is developed in [9], which is available when the
e ; spatial variation of the system is fairly smooth. By con-
001l © trast, the present approach would be particularly useful for

phenomena characterized by wild spatial variations just as
, the strange waves.
L/a=a3 The strong anharmonicity df(¢) as treated here might
; 1 appear, for example, in coupled highly relaxational oscil-
. lators where effectively strong nonlinearity excites higher

[ : ) harmonics. It should also be realizable in laboratory ex-
oFo—2—° 4 periments (electronic circuits etc.) by devising such a
L TR R L] coupling that Fourier components of a resulting) are

’ controllable. However, the scenario presented above may

FIG. 5. The probability of hitting a nonsimple wave around not be the only one for the appearance of strange waves or
a = az; 1800 samples of initial conditions were tested for gjmilar phenomena. Hopefully this work triggers attempts
eacha. at looking for them experimentally as well as numerically.
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