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Nonequilibrium Steady State in a Quantum System: One-Dimensional
Transverse Ising Model with Energy Current
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We study the nonequilibrium steady states of an Ising chain in a transversé figldnvestigating
the effect of a fieldA, which drives the current of energy. The zero-temperatiird, phase
diagram is determined exactly, and it is found that the energy current appears continuously above a
thresholdA > A.(h). The long-range magnetic order (present for h., A < A.) is destroyed in
the current-carrying state where the correlations are characterized by power-law, oscillatory decay.
The mechanism which generates the power-law correlations in the current-carrying state is discussed.
[S0031-9007(96)02107-2]
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Nonequilibrium steady states have been much invesdanderstood and leads again to much arbitrariness. In
tigated, but a general theory comparable to the theorgrder to avoid this we follow a different path by noting
of equilibrium systems is still lacking. A traditional ap- that nonequilibrium steady states are always associated
proach to nonequilibrium phenomena starts with the conwith some kind of current (of heat, particle, momentum,
struction of deterministic phenomenological equationsetc.). Thus we make a nonequilibrium steady state in
followed by a linear or nonlinear stability analysis of a quantum system by imposing a current on the system.
the solutions and ends up with the study of the effecFor example, in the case of the transverse Ising model
of fluctuations by adding noise terms to the equationsvhere the only conserved quantity is the energy, we shall
[1,2]. An alternative and somewhat more microscopic ap€onstrain the system to have an energy current. It is hard
proach is the introduction of kinetic Ising models whereto treat, however, a “microcanonical” type constraint of
the nonequilibrium steady states are produced by the spirfixed energy flow, and so we shall actually use the easier
being driven by external fields or by being in contact with“canonical” description, which consists of introducing a
several heat baths at different temperatures [3,4]. field which drives the given (energy) current.

Both of these approaches have lead to successful de- The next question is what to investigate. An obvious
scriptions of a number of particular phenomena, but theghoice is to study the changes produced by the presence
have not been very helpful in deducing general concluef a current in the orderings and in the phase diagram
sions. The main problem is that the observed propertiesf the system. In particular, for thé = 1 transverse
of nonequilibrium steady states are strongly dependent olsing model, one can investigate whether the= 0 Ising
the details of the dynamics (even the presence or absentransition remained in the same universality class and
of a phase transition or the type of the phase transitionsyhether new phases emerged as a consequence of the
etc., may depend on the details of the transition probaenergy current. Furthermore, it is known that currents in
bilities). From a theoretical point of view the problem nonequilibrium steady states usually generate long-range
is further complicated by the absence of the detailed baleorrelations [5]. Thus it is natural to inquire if similar
ance condition which provides at least some constraintshenomena would occur in a quantum nonequilibrium
on the possible forms of dynamics of near-equilibriumsteady state.
fluctuations. The practical realization of the above program consists

A way to avoid the above problem of too much freedomof the following steps:
is to investigate systems which, in contrast to models such (i) The starting point is the Hamiltonian which, for the
as the Ising model, have natural (quantum mechanicalj = 1 transverse Ising model, has the form:
dynamics. A nontrivial model with intrinsic dynamics
investigated in this paper is the one-dimensional= o x x h p
1) transverse Ising model. Once a quantum mechanical Hr == %Ue Ter1 T ;U‘“ (1)
model is chosen, the next question is how to make it a
nonequilibrium system. A possible route is to couple itwhere the spins are represented by Pauli spin mata¢es
to heat baths just as in the case of the various kineti¢e = x,y,z) at sites¢ = 1,2,...,N of ad = 1 periodic
Ising models. Unfortunately, the coupling of quantumchain @y+, = of), andh is the transverse field in units
mechanical systems to classical heat baths is not quitef the Ising coupling.
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(ii) The local energy curreni, is calculated by taking Here the wave numbers are restricted—ter < g < 7
a time derivative of the energy density, using the quantunin the thermodynamic limit){ — «), and we introduced
mechanical equation of motion, and representing the result = Ah/2 which appears to be the natural variable

as a divergence of the energy curreit=€ 1 is used): instead of A\. Figure 1 displays the spectrum fér=
R hoy 0.5, and various{ and one can see that the— —¢g
Je=7 o (op-1 — 07+1) (2)  symmetry of the spectrum is broken for# 0. For small

. - A A ¢ whenA, = 0, however, the ground state remains that
_ (iii) The "macroscopic” current/ = 3, J; is added to  f the transverse Ising model (= 0) and, accordingly,
H; with a Lagrange multiplier-A, no energy current flowsJ = 0). This rigidity of the
H=1H - AJ. 3) ground state against the symmetry-breaking field which
drives the energy current is a consequence of the facts that
Note that the energy curredtis associated wittif; and  the fermionic spectrum of the transverse Ising model has a
not with the new Hamiltonial. We also emphasize that gap and that the operatdrcommutes with;. Actually,
H is just another equilibrium Hamiltonian, it differs from the rigidity persists even at the critical poiiat = 1 where
H, by an extra term which breaks the left-right symmetrythe gap disappears. The reason for this is more subtle and
of H;. Finding the ground state d¥, however, gives us related to the fact that the critical spectrum /@f has a
the minimum energy state @¥; which carries an energy finite slope aty = *7.
currentJ = (J/N) (brackets() denote the expectation  The ground-state properties do change whgn< 0 in
value in the ground state d¥). Thus the ground-state an intervallg-, g+ ] since thesg states become occupied
properties of H provide us with the properties of the andg- depends on both and/. The line.(k) which
nonequilibrium steady states of the transverse Ising modeforders the region of unchanged transverse Ising behavior
(iv) The correlations and ordering properties of theis obtained from the conditions
system are investigated as a function xof Of course, A, =0, aA,/dq =0, (6)
one can also find that value afwhich generates a given
energy current/ = (J/N) in the transverse Ising model, and the solution
and then all steady state properties can be obtained in Aoh (=
terms of/. {e = 5 = {éf_ -1
It should be noted that the terms.Jrcan be rearranged ¢
so that the energy current becomes a current through the displayed on the phase diagram (Fig. 2) as a solid
bonds: line. Figure 2 also shows the phase boundary (dashed
line) between the magnetically orderetd € 1, { < 1)
J= Z T = L Z(Ugggﬂ — oy0t,,). (4) and disorderedi( = 1, { < h) transverse lIsing regions.
¢ 4 Since the ground state is independent dbr £ < ., the
transition across the dashed line is a second order transition
belonging to thel = 2 Ising universality class [11].

’ (7)

/\IV

h
h

This form is remarkable becausk can be recognized

as the Dzyaloshinskii-Moriya interaction in the theory
of weak ferromagnetism [6]. Moreover, the current of
the z component of the magnetization in the transverse

XY model is also of the above form [7], and similar 15} =2
terms (apart from an overall factor ofwhich makes the
Hamiltonian non-Hermitian) appear in the description of h=05 S 8=l
driven diffusive systems [8], as well as in the Hamiltonian Lr FT TN
description of the direct electric field of the six-vertex

model [9]. <
We turn now to the solution of the problem. Since
[H;,J] = 0, the HamiltonianH is diagonalized using

the same transformations which diagonalfg [10,11]: (Y S

First, creation-annihilation operators are introducgd & a4, P

o} * ioy), then the Jordan-Wigner transformation [10] is §=hA2

used to transform them into fermion operatars ¢, ) and, 05p

finally, a Bogoljubov transformation [12] is employed on B 0 T

theq and—¢q components of the Fourier transformseefs. a

As a result one finds the spectrum of excitation energies a9G. 1. Spectrum of the transverse Ising model in the pres-
w,; = IAqI, where ence of a field {) which drives the current of energy. The

1 excitation energies are given as, = |A,|. The qualitative
Ay =— (/1 + h? + 2hcosq + ¢sing). (5)  picture is the same at all transverse fieldexcept ath = 1,
2 where theg = *7 gap disappears.
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5 distances as
X X Q(ha g)
J=0 <U€ Ty n> -~ T = COS(kn) s (11)
disordered k#0 " \/ﬁ
(of) =0 where the wave numbérdepends only ol
N I 740 k = arccoy . (12)
The above results (11) and (12) are exact in ghes o
J=0 (0F0F,n) ~ Jmcoskn limit where Q(h, %) = ¢'/227%347¢ = 0.147 is the am-
ordered plitude of the(o¢oy,,) correlations of thed = 1 XY
{of) #0 model [14] @ =~ 1.282 is Glaisher’s constant). The con-
k=0 nection to theXY model and the details of the calculation
0 will be published separately [15].
0 1 (=hr2 For {. < ¢{ < =, the expressions (11) and (12) are

FIG. 2. Phase diagram in the-¢ plane, whereh is the Obtained from the numerical analysis of;ov..,) for
transverse field, while” = hA/2 is the effective field which finite » = 100. Typical results are shown on Fig. 3. The
drives the current of energy. Power-law correlations are presemumerical results are behaved well enough so that, in
in the current-carrying phasé (# 0) and on the Ising critical  5qdition to then dependence ofo; o},,), the functional
line (dashed line). form of the amplitudeQ(k, {) can also be investigated.
We find that the following expression fits the results

In the following we shall argue that the > . region  everywhere { > ¢.) except close to the phase boundaries
can be considered as a distinct phase since (i) the energy or near the: = 1 line:

current is nonzero, (ii) there is no long-range magnetic 72— p2\/4
order, and (iii) the magnetic correlations are oscillatory QO(h,¢{) = Q(h,oo)<27> . (13)
with amplitudes decaying as a power of distance. ¢ -1

The energy current is expressed as a product of twdlear either{ = ¢* or h = 1, the convergence to the
fermion operators and can be calculated exactly. Itis zerasymptotic form (11) is slow and the numerics becomes
for ¢ = £, while, for / > £, one obtains unreliable. The convergence becomes fast again on the
h h =1 line itself where the following form appears to be

V=) (-1, (8 valid:
e 22 1/8
At the phase boundar§. we have/ — 0 as 0(1,7) = Q(h,») <§2 — 1) )

@ =)V 1,
/ {g—a h=1. ©

Thus the/, line can be considered as a line of second or-
der transition provided is viewed as an order parameter. 0.05 ||

There are several other quantities which change non-
analytically as we cross into the current carrying phase.
For example, the change in taecomponent of the mag-
netization at fixed: is given by

(i) ={oi)e ~1¢ — & h=1, (10) 0.05
(& =2 h<l.
The different exponents obtained far> 1 and 2 < 1 01 ) :
reflect the fact that thé # 0 phase neighbors magnetically o 10 20 20
ordered (o7) # 0) and magnetically disorderedof;) = n

0) phases along thg" and . portions of thel. phase FiG. 3. The correlation functiofo} o{,,) at various trans-

boundary. verse fieldskz with 7 = hA/2 fixed at/ = 2. The lines are
The long-range magnetic ordefo{) # 0) disappears fits to the largen behavior, which is assumed to be of the

for £ > ¢.. This can be seen by investigating the form On~'/?coskn. Changes in the amplitude occur mainly

x x ; ; ear the/" phase boundargh — 2) whereQ — 0. Note that
{07 0¢.,) correlations which can be expressed througk{]he convergence to the asymptotic behavior becomes slower as

Pfaffians [13,14]. Ir)! tt;e presence of long-range order;, _., " 'For comparison, we have also plotted the correlations
one should hav&(oroyry,) — (op)” # 0 for n— . (sip y ~ u=1/4 on the Ising critical line (dashed line on
Instead, we find that the correlations decay to zero at largEig. 2).

J=({J/N)=

(14)

0.1

<0 0" >
o
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