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Nonequilibrium Steady State in a Quantum System: One-Dimensional
Transverse Ising Model with Energy Current
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We study the nonequilibrium steady states of an Ising chain in a transverse fieldh by investigating
the effect of a fieldl, which drives the current of energy. The zero-temperature,h-l phase
diagram is determined exactly, and it is found that the energy current appears continuously a
thresholdl . lcshd. The long-range magnetic order (present forh , hc , l , lc) is destroyed in
the current-carrying state where the correlations are characterized by power-law, oscillatory
The mechanism which generates the power-law correlations in the current-carrying state is disc
[S0031-9007(96)02107-2]
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Nonequilibrium steady states have been much inv
tigated, but a general theory comparable to the the
of equilibrium systems is still lacking. A traditional ap
proach to nonequilibrium phenomena starts with the c
struction of deterministic phenomenological equatio
followed by a linear or nonlinear stability analysis
the solutions and ends up with the study of the eff
of fluctuations by adding noise terms to the equatio
[1,2]. An alternative and somewhat more microscopic
proach is the introduction of kinetic Ising models whe
the nonequilibrium steady states are produced by the s
being driven by external fields or by being in contact w
several heat baths at different temperatures [3,4].

Both of these approaches have lead to successful
scriptions of a number of particular phenomena, but th
have not been very helpful in deducing general conc
sions. The main problem is that the observed proper
of nonequilibrium steady states are strongly dependen
the details of the dynamics (even the presence or abs
of a phase transition or the type of the phase transitio
etc., may depend on the details of the transition pro
bilities). From a theoretical point of view the proble
is further complicated by the absence of the detailed b
ance condition which provides at least some constra
on the possible forms of dynamics of near-equilibriu
fluctuations.

A way to avoid the above problem of too much freedo
is to investigate systems which, in contrast to models s
as the Ising model, have natural (quantum mechani
dynamics. A nontrivial model with intrinsic dynamic
investigated in this paper is the one-dimensional (d ­
1) transverse Ising model. Once a quantum mechan
model is chosen, the next question is how to make
nonequilibrium system. A possible route is to couple
to heat baths just as in the case of the various kin
Ising models. Unfortunately, the coupling of quantu
mechanical systems to classical heat baths is not q
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understood and leads again to much arbitrariness.
order to avoid this we follow a different path by notin
that nonequilibrium steady states are always associ
with some kind of current (of heat, particle, momentu
etc.). Thus we make a nonequilibrium steady state
a quantum system by imposing a current on the syst
For example, in the case of the transverse Ising mo
where the only conserved quantity is the energy, we s
constrain the system to have an energy current. It is h
to treat, however, a “microcanonical” type constraint
fixed energy flow, and so we shall actually use the ea
“canonical” description, which consists of introducing
field which drives the given (energy) current.

The next question is what to investigate. An obvio
choice is to study the changes produced by the prese
of a current in the orderings and in the phase diagr
of the system. In particular, for thed ­ 1 transverse
Ising model, one can investigate whether theT ­ 0 Ising
transition remained in the same universality class a
whether new phases emerged as a consequence o
energy current. Furthermore, it is known that currents
nonequilibrium steady states usually generate long-ra
correlations [5]. Thus it is natural to inquire if simila
phenomena would occur in a quantum nonequilibriu
steady state.

The practical realization of the above program cons
of the following steps:

(i) The starting point is the Hamiltonian which, for th
d ­ 1 transverse Ising model, has the form:

ĤI ­ 2
X

,

s
x
, s

x
,11 2

h
2

X
,

s
z
, , (1)

where the spins are represented by Pauli spin matricess
a
,

(a ­ x, y, z) at sites, ­ 1, 2, . . . , N of a d ­ 1 periodic
chain (sa

N11 ­ s
a
1 ), andh is the transverse field in unit

of the Ising coupling.
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(ii) The local energy current̂J, is calculated by taking
a time derivative of the energy density, using the quantu
mechanical equation of motion, and representing the res
as a divergence of the energy current (h̄ ­ 1 is used):

Ĵ, ­
h
4

s
y
, ssx

,21 2 s
x
,11d . (2)

(iii) The “macroscopic” current̂J ­
P

, Ĵ, is added to
ĤI with a Lagrange multiplier2l,

Ĥ ­ ĤI 2 lĴ . (3)

Note that the energy currentĴ is associated witĥHI and
not with the new Hamiltonian̂H. We also emphasize that
Ĥ is just another equilibrium Hamiltonian, it differs from
ĤI by an extra term which breaks the left-right symmetr
of ĤI . Finding the ground state of̂H, however, gives us
the minimum energy state of̂HI which carries an energy
current J ­ kĴyNl (bracketsk l denote the expectation
value in the ground state of̂H). Thus the ground-state
properties ofĤ provide us with the properties of the
nonequilibrium steady states of the transverse Ising mod

(iv) The correlations and ordering properties of th
system are investigated as a function ofl. Of course,
one can also find that value ofl which generates a given
energy currentJ ­ kĴyNl in the transverse Ising model,
and then all steady state properties can be obtained
terms ofJ.

It should be noted that the terms inĴ can be rearranged
so that the energy current becomes a current through
bonds:

Ĵ ­
X

,

Ĵ, ­
h
4

X
,

ssx
, s

y
,11 2 s

y
, s

x
,11d . (4)

This form is remarkable becausêJ, can be recognized
as the Dzyaloshinskii-Moriya interaction in the theor
of weak ferromagnetism [6]. Moreover, the current o
the z component of the magnetization in the transver
XY model is also of the above form [7], and simila
terms (apart from an overall factor ofi which makes the
Hamiltonian non-Hermitian) appear in the description o
driven diffusive systems [8], as well as in the Hamiltonia
description of the direct electric field of the six-verte
model [9].

We turn now to the solution of the problem. Sinc
fĤI , Ĵg ­ 0, the HamiltonianĤ is diagonalized using
the same transformations which diagonalizeĤI [10,11]:
First, creation-annihilation operators are introduced (a6

, ­
s

x
, 6 is

y
, ), then the Jordan-Wigner transformation [10] i

used to transform them into fermion operators (c,, c1
, ) and,

finally, a Bogoljubov transformation [12] is employed o
theq and2q components of the Fourier transforms ofc,-s.
As a result one finds the spectrum of excitation energies
vq ­ jLqj, where

Lq ­
1
2

s
p

1 1 h2 1 2h cosq 1 z sinqd . (5)
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Here the wave numbers are restricted to2p # q # p

in the thermodynamic limit (N ! `), and we introduced
z ­ lhy2 which appears to be the natural variab
instead ofl. Figure 1 displays the spectrum forh ­
0.5, and variousz and one can see that theq ! 2q
symmetry of the spectrum is broken forz fi 0. For small
z when Lq $ 0, however, the ground state remains th
of the transverse Ising model (z ­ 0) and, accordingly,
no energy current flowssJ ­ 0d. This rigidity of the
ground state against the symmetry-breaking field wh
drives the energy current is a consequence of the facts
the fermionic spectrum of the transverse Ising model ha
gap and that the operatorĴ commutes withĤI . Actually,
the rigidity persists even at the critical pointhc ­ 1 where
the gap disappears. The reason for this is more subtle
related to the fact that the critical spectrum ofĤI has a
finite slope atq ­ 6p.

The ground-state properties do change whenLq , 0 in
an intervalfq2, q1g since theseq states become occupie
and q6 depends on bothh andz . The linezcshd which
borders the region of unchanged transverse Ising beha
is obtained from the conditions

Lq ­ 0, ≠Lqy≠q ­ 0 , (6)

and the solution

zc ­
lch

2
­

Ω
z 1

c ­ h h $ 1 ,
z 2

c ­ 1 h , 1 (7)

is displayed on the phase diagram (Fig. 2) as a so
line. Figure 2 also shows the phase boundary (das
line) between the magnetically ordered (h , 1, z , 1)
and disordered (h $ 1, z , h) transverse Ising regions
Since the ground state is independent ofz for z , zc, the
transition across the dashed line is a second order trans
belonging to thed ­ 2 Ising universality class [11].

FIG. 1. Spectrum of the transverse Ising model in the pr
ence of a field (l) which drives the current of energy. Th
excitation energies are given asvq ­ jLqj. The qualitative
picture is the same at all transverse fieldsh except ath ­ 1,
where theq ­ 6p gap disappears.
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FIG. 2. Phase diagram in theh-z plane, whereh is the
transverse field, whilez ­ hly2 is the effective field which
drives the current of energy. Power-law correlations are pre
in the current-carrying phase (J fi 0) and on the Ising critica
line (dashed line).

In the following we shall argue that thez . zc region
can be considered as a distinct phase since (i) the en
current is nonzero, (ii) there is no long-range magne
order, and (iii) the magnetic correlations are oscillato
with amplitudes decaying as a power of distance.

The energy current is expressed as a product of
fermion operators and can be calculated exactly. It is z
for z # zc while, for z . zc, one obtains

J ­ kĴyNl ­
h

4pz 2

p
sz 2 2 h2d sz 2 2 1d . (8)

At the phase boundaryzc we haveJ ! 0 as

J ,
Ω

sz 2 zcd1y2 h fi 1 ,
z 2 zc h ­ 1 .

(9)

Thus thezc line can be considered as a line of second
der transition providedJ is viewed as an order paramete

There are several other quantities which change n
analytically as we cross into the current carrying pha
For example, the change in thez component of the mag
netization at fixedh is given by

ksz
,lz 2 ksz

,lzc ,

8<: sz 2 zcd1y2 h . 1 ,
z 2 zc h ­ 1 ,
sz 2 zcd3y2 h , 1 .

(10)

The different exponents obtained forh . 1 and h , 1
reflect the fact that theJ fi 0 phase neighbors magnetical
ordered (ksx

, l fi 0) and magnetically disordered (ksx
, l ­

0) phases along thez 1
c and z 2

c portions of thezc phase
boundary.

The long-range magnetic order (ksx
, l fi 0) disappears

for z . zc. This can be seen by investigating t
ksx

, s
x
,1nl correlations which can be expressed throu

Pfaffians [13,14]. In the presence of long-range ord
one should haveksx

, s
x
,1nl ! ksx

, l2 fi 0 for n ! `.
Instead, we find that the correlations decay to zero at la
nt
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distances as

ksx
, s

x
,1nl ,

Qsh, z d
p

n
cossknd , (11)

where the wave numberk depends only onz ,

k ­ arccosz 21. (12)

The above results (11) and (12) are exact in thez ! `

limit where Qsh, `d ­ e1y2224y3A26 ø 0.147 is the am-
plitude of the ksx

, s
x
,1nl correlations of thed ­ 1 XY

model [14] (A ø 1.282 is Glaisher’s constant). The con
nection to theXY model and the details of the calculatio
will be published separately [15].

For zc , z , `, the expressions (11) and (12) ar
obtained from the numerical analysis ofksx

, s
x
,1nl for

finite n # 100. Typical results are shown on Fig. 3. Th
numerical results are behaved well enough so that,
addition to then dependence ofksx

, s
x
,1nl, the functional

form of the amplitudeQsh, z d can also be investigated
We find that the following expression fits the resul
everywhere (z . zc) except close to the phase boundari
z 6

c or near theh ­ 1 line:

Qsh, z d ø Qsh, `d
µ

z 2 2 h2

z 2 2 1

∂1y4

. (13)

Near eitherz ­ z 6
c or h ­ 1, the convergence to the

asymptotic form (11) is slow and the numerics becom
unreliable. The convergence becomes fast again on
h ­ 1 line itself where the following form appears to b
valid:

Qs1, z d ø Qsh, `d
µ

z 2

z 2 2 1

∂1y8

. (14)

FIG. 3. The correlation functionksx
, s

x
,1nl at various trans-

verse fieldsh with z ­ hly2 fixed at z ­ 2. The lines are
fits to the largen behavior, which is assumed to be of th
form Qn21y2 coskn. Changes in the amplitudeQ occur mainly
near thez 1

c phase boundarysh ! 2d whereQ ! 0. Note that
the convergence to the asymptotic behavior becomes slowe
h ! 2. For comparison, we have also plotted the correlatio
ksx

, s
x
,1nl , n21y4 on the Ising critical line (dashed line on

Fig. 2).
169



VOLUME 78, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JANUARY 1997

h

i
u

l
p
s
b
th
s
n
o
ti
e

t
n

in

s
in

s

d
h
e
h
i

la
r
n
e

tz
s
d

C

,

al,

tt.
ls

ins,
nt

s

ay
l
te
us
Power-law decay of correlations forz . zc is present
in other physical quantities as well. For example, t
envelopes of bothksz

,s
z
,1nl and kĴ,Ĵ,1nl decay in the

large n limit as n22 [15]. Thus we find power-law
correlations in the current carrying state in agreement w
the notion that power-law correlations are a ubiquito
feature of nonequilibrium steady states [16].

Power-law correlations in quantum models are usua
associated with a gapless excitation spectrum. Thus
vided the transverse Ising model can be considered a
instructive example, we can see a general connection
tween the emergence of power-law correlations and
presence of a current. Indeed, let us assume that a sy
with HamiltonianĤ0 has a spectrum with a gap betwee
the ground state and the lowest excited state. Furtherm
let Ĵ be a macroscopic current of a conserved quan
such thatfĤ0, Ĵg ­ 0. Generally there is no current in th
ground state, and adding2lĴ to Ĥ0 does not change the
kĴl ­ 0 result for smalll. Current can flow only if some
excited states mix with the ground state and, consequen
a branch of the excitation spectrum must come down a
intersect the ground-state energy in order to havekĴl fi 0.
Once this happens, however, the gap disappears, and
can expect power-law correlations in the current-carry
state.

Admittedly, the above argument is not strict and is ju
a reformulation (in general terms) of the transverse Is
results. We believe, however, that the above picture
robust and suggestive enough to warrant further studie
this direction.

In summary, we have seen that nonequilibrium stea
states in quantum systems can be constructed by switc
on fields which drive the current of conserved quantiti
Studies of these states may be of importance since t
construction is free from the arbitrariness inherent
classical nonequilibrium dynamics. On the particu
example of the transverse Ising model, we could obse
that there are power-law correlations in the curre
carrying states, and we argued that this may be a gen
feature of quantum systems.
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