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We introduce a “prepotential”f in quantum mechanics and show that the coordinatés
proportional to the Legendre transform f with respect to the probability density. Inversion of the
Schrédinger equation leads us to considerad duality related to a modular symmetry. The scaling
of x is determined by the “beta function,” suggesting that in quantum mechanics the space coordinate
is a macroscopic variable of a statistical system witlplaying the role of scale. The formalism is
extended to higher dimensions and to the Klein-Gordon equation. [S0031-9007(96)02145-X]

PACS numbers: 03.65.Bz, 02.40.—k, 05.70.—a, 11.30.—j

In the past couple of years Seiberg-Witten theory [1]bility density, implying that in quantum mechanics the
has shed new light on some aspects of supersymmetrgpace may be seen as a macroscopic variable of a sta-
quantum field theories. An important quantity in this tistical system. In this context we show that the scaling
theory is the prepotentialff as it fixes the low-energy properties ofx with respect tor = a?,,j—“ are determined
dynamics. In terms off (®), which is a holomorphic in terms of the “beta function?d ;.
function of the chiral superfiel®, one can express the Let us consider the Schrodinger equation
dual variable®, = F/'(®) and the effective coupling ji2
constantr = F"(d). The quantum moduli space of the (— —9% + V(x)>¢ =Ey, 1)
theory is parametrized by the gauge invariant parameter 2m
u = (Tr ¢?), where¢ is the scalar component @. In  whereE is in the physical spectrum of the Schrodinger
Seiberg-Witten theory a method has been developed toperator. In a general Schrodinger problem, such as
invert the functioru = a(u) to u = u(a), wherea = (¢)  Eq. (1), for eachE one can have one or two physical
[2]. In this theory a second-order differential equationsolutions. Lety; denote a physical solution of Eq. (1)
is written down for the moduli parameterg(x) and andy;, a solution of Eq. (1) linearly independent from
ap(u). The prepotential enables the inversion procedurgy;. We define the prepotentigfz by

and allows an interesting interpretation of second-order o Fe(trp)
differential equations. Ve, = —ErE 2
Following these ideas, we derive a method to in- e

vert the Schrodinger wave functiony = (x) to  and consider

x = x(¥). We define a “prepotential”’Ff as func- |

tion of ¢ such that the dual variableyp = 0F /oy 0 Fe = g, d:0g = —[0:(bpibe,) + W],  (3)

is a solution of the Schrédinger equation. In this 2 _

formalism, the quantum dynamics is described bywhere by Eq. (1) the WronskianW = i, d e —
F, which satisfies a nonlinear third-order differen- ¥£dx¥E, is a constant. The crucial point is that Eqg. (3)
tial equation which replaces the Schrodinger equaCan be integrated exactly to

tion. The inversion formula shows that is the 1 w

Legendre transform off with respect to the proba- Fe = E‘WE‘WED + X +c, 4)
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with ¢ a constant which by Eq. (2) we can setto 0. Itis [ plays a crucial role as it encodes the information

easy to check that Eqg. (4) is equivalent to on the microscopic theory. In particular, the Schrodinger
o Wo + Yz, equation can be replaced by= d,,)
‘TE("&E) - ”bE T 52 " ! 113
Z‘ﬁfO 4aF + [Vx) = E)I(Fg — weFe) =0, (12)
-Ww dYGE(Y)y_3i|’ (5)  where /i appears only through/(x) [with x = x(/%)
Vo given by (6)]. Equation (12) is obtained from Eqgs. (1)

where ¥zo = i (xo), ¥, = ¥r,(xo), and the notation and (6_) by folloyving .the method in;roduced in_ [2,3].
x = Gg(yr) has been introduced in order to denote theln particular, by inverting the Schrédinger equation, we

functional dependence af on ¢z. By rescalingyz we  obtain
2V2m

can setW = —=;—, so that we have R X
NeT 1 s 2 duex = YelE — V(x)](9y,x)°, (13)
P x(YE) = E‘AEW - JE, (6)
E which can be seen as dual to Eq. (1). These dual for-
which we rewrite in the “canonical form” mulations of quantum mechanics may generate different
P 9 structures once one considers the'second quantization or
me(gm;) = Y} f‘i - JE, (7) alternatively quantizes the expansion ofin powers of
() the wave function. In order to illustrate this point we first

showing that the classical coordinate is proportional to th&onsider the dual power expansions
Legendre transform of the prepotential with respeatfo

Duality of the Legendre transform yields Yg = Zaij — x = Zﬁf%'% (14)
17 i 3
—Je = ¢ppig.x — x, (8) . L
V2m and note that their structure suggests considering the

where g = .2y Fr = g, /20p. ThereforeFy is the X VE duality as reminiscent of the “mirror symmetry
vx wnTe = U,/ 20 £ phenomenon” first observed for Calabi-Yau threefolds.

We note that a similar remark was made in connection

In a quantum mechanical problem we can distinguisy i the differential equation (and its inverse) satisfied
two cases depending on whethier andy; are or are not e generating function for Weil-Petersson volumes of

linearly dependent functions. In the former case (e.g., the 4y spaces of punctured Riemann spheres [4].
harmonic oscillator) the quantity; is nothing else but " gefore considering the quantization of (14), it is worth
the (unnormalized) probability densiyz. Therefore, if  qticing that the above structures are related to the
Yp > Y, EQ. (7) implies that the classical coordinat&  qqylar symmetry which underlies quantum mechanics.
pr'oportlonal to the Legendre transform of the prepoten't|a|n particular, the relation among the space coordinate,
with respect top;. Furthermore, by Egs. (6) and (8) it he prepotential, and the wave function is related to

2 .
Legendre transform 01‘/ﬁ—?x and vice versa.

follows that the basic fact that any linear combination ¢f and
_ «/2ma o Yg, is still a solution of the Sphrbdinger e_quation. For
PE = i = T et (®)  the same reason, the formalism is invariant under the
. . . . ... transformations
that is, x is the generating function for the probability
density atx itself. Jr, = AYp + Bg,,  ¢p = Cip + Dpg, , (15)

Reality of the Schrédinger operator implies thiat is
still a solution of Eq. (1). Therefore, ifz # ¢ (€.9.,in  implying, in particular, that Egs. (6) and (12) are modular
the case of the free particle, whegg, = g = Yg' o« invariant. This symmetry can also be explicitly checked

e'?/n E = p2/2m), then we can set by using the transformation properties ¢fz, which
Vg, = U (10) follow by comparingyg, = o F (¥g)/ I with (15),
[Note that with this choicé¥ is purely imaginary. We _AC ~ BD ,
can choose, without loss of generality, a normalization for 8 Fk 2 ey + 2 Vi + BCYri,
W itself such that = — 22 | Then by (7) | 01 01 (16)
-lo(To)e - (1))
iN2m 4 10 10/]°

pE = lgel* = P + 2%k, (11)

— Ty _(AB
showing that the probability density of finding the partic:leWhere 0Fr = Fele) — Felp), G = (C D> =
atx is _proportlonal tar itself with an qddmve correction SL(2.C), andv = Y, )
which is proportional to the prepotential. VE
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Let us now consider the quantization of the expansions We have seen that botlyz and ¢, enter on the
(14). First note that we have the consistency conditions same level, so that our formalism is manifestly modular

J invariant. An aspect which is related to this invariance is
Yp = Z af(Z B,’fgﬁé) — that there are quantum structures which may be described
J k i (17) in the framework of monodromy transformations. For
X = ZB?(Z afﬂ) i example, by (16) theSL(2,Z) generatorsS = <_01 (1)>
k J
_ (11

2 2 ;
C o . _— . a enerate and g, respectively.
which imply an infinite set of relations. Similar relations 01 g i Vi P y

arise also for an arbitrary state described by a wavé hese quantities correspond to the probability densities
function . In particular, expanding in a given basis depending on ify; # ¢ Or ¢y = Y.

{,}, Eq. (14) generalizes to A feature of our approach is that it extends to higher
dimensions. Furthermore, it may also be applied to the
U = Z“ﬂpj = Zajx«f — case of the Klein-Gordon equation (since the spinor com-

ponents satisfy the Klein-Gordon equation, the construc-

J J
_ _ X (18)  tion applies to the fermionic case as well).
r= %bwk - %'Bk‘r/’ ’ Let us first consider the Schrodinger equation
implying an infinite set of relations which we denote by (_ E_ZA n V(x)>¢ — £y (23)
D(a,B) = 0. (19) 2m ’
Now observe that performing the second quantization  \ynereA = szz—ll 92 . The way to find the generalization
R R = of Eq. (7)isto rewrite (23) in the form
b= &=+ aly) (20)
! B 2 24
induces a quantization of the coefficientss. Therefore, - Ea"k Vil o = EY 24)

whereas they;’s and 8;’s enter in (19) as dual quantities,
in the second quantization the;'s only become opera- for k = 1,..,D — 1, where we have introduced the
tors. The important point is that Eq. (19), which is a“effective potentials”
manifestation of thex-¢ duality, suggests investigating
whether there exists a quantization with {ig's consid- v — | vx) - n? DEI 52 )
ered as operators. Therefore it is natural to consider ebo) = %) 2mp(x) Py x/‘p(x o ﬁxed'
, ™

(25)
Equation (24) is now seen as a second-order equation

. . . . _in the variablex;, with x;»;, considered as parameters
We now have two inequivalent dual pictures defined xk ik ) dp¢(k) b
and g, be

by (20) and (21), respectively. Whereas Eq. (20) correfor the effective potentialv,. Let ¢ |
sponds to the second quantization of the wave functioin€arly independent solutions of Eq. (24). Repeating the
[associated to the Schrodinger equation (1)], Eq. (21) caRrocedure considered in the one-dimensional case, where

be considered as the quantization of the coordinate [assfoW for any k the integration is taken fromyo t0 x;
ciated to Eq. (13), dual to Eq. (1)]. We note that sas keeping the other coordinate components fixed, we obtain

x— 3= > Bt + BIYH. (21)
k

takes complex values we can use the notation N " w0 j:(k) ©
. - ALk I Xk(%s ) = g 5()2 - .’FE (26)
R =D (Bt + B, (22) (e
k

This expression is conjectured in order to preserve thir k =1,...D — land (=9 ,v)

correspondence suggested by Eq. (18). The fact that this . / 3
equation leads to the quantization of the coordinate should 4}‘E(k) + [Vilxp) — E]( E(k) — ¢/,ék) E(k) ) =0,
be further investigated. In particular, we remark that

the structure of Eqg. (22) resembles the expansion for the (27)

target coordinate in string theory. For the time being, W& hich is an ordinary differential equation fcﬁ“@é’”)

note that invertingy = (x) to x = x(y) one obtains ;.0 Sy i replaced with its functional dependence
a description of geometrical quantities in terms of the

* . . . - .
wave function. Therefore we can think of the inversion®" ‘_”E) given in (26). It gsi}/vorth hoticing th_at N
method as a way to transfer quantum aspects directly '€ important caseé/(x) = 2.;—; fj(x;), the functional
the coordinate, suggesting that (21) should play a role istructure ofj-"ék) does not depend on the “parameters”
guantizing geometry. Xtk
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In the case of the Klein-Gordon equation, we rewrited Fr/dy play a similar role tox and p in Hamilton-
(0 + m?)¢ = 0in the form Jacobi theory. The inversion formula Eq. (6) is the key
© 214 starting point for this investigation [6].

[0 0 + Vil + m]d =0 (28) Other aspects which merit further investigation concern
for w =0,..,D — 1, where we have introduced the the possible role of our construction in the framework
effective potentials of the stochastic approach to quantum mechanics [7],

1 Dl the many—particle systems, the case of coherent states,
Viulxy) = [m > a”ay¢(x):| - (29)  and geometric quantization. Here we limit ourself to
v=0wFu lvysp fixed observe that in the case of two-particle systems with

The important difference with respect to the case ofcentral potentialV(r), one can find forr an expression
the Schrodinger equation is that, as a consequence etmilar to (6) with ¢z and ¢, replaced byyr and
its relativistic nature, the time derivative appears inxg, = 9,,Fe, respectively [we are using the standard
the Klein-Gordon equation at the second order. Thigotationyr = Y,,,(6, ¢)xe(r)/r]. Thisis a consequence
implies that the inversion formula also holds for theof the fact that bothyrz and xg, are in the kernel of
time component’® = ¢+ and Egs. (26) and (27) extend the operatow? + 2m(E — V)/k* — (I + 1)/r?, where
to the relativistic case witlt € [1,D — 1] replaced by m = mymy/(m; + m) is the reduced mass.

u €[0,D — 1]. In conclusion, we observe that starting from the inver-
Another manifestation of the statistical structure un-sion formula we arrived at a statistical interpretation of
derlying the formalism is suggested by an analogy withthe space coordinate opening the way for a possible un-
N = 2 SYM. The point is that, in analogy with the role derstanding of the link between space-time structure and
played by the scalé\ in Seiberg-Witten theory, we can quantum theory. In particular, we stress that the inversion

interpret/i as a parameter defining the scale of a statisticalormula allows us to use

system. In particular, following the approach introduced _ox
in [3], we first note that for dimensional reasons dx = w‘w (37)
Kx _ G(r) (30) for connecting geometrical and quantum concepts.
I/ ’ It is well known that after a Wick rotation of the
whereK = 2mE and time coordinate, the path-integral formulation of quantum

) mechanics resembles the partition function of a thermody-
_ 9 JE (31) namical system. The appearance of the Legendre trans-
opE form relating quantum and macroscopic quantities may

In this framework it makes sense to apply the operator Clarif_y th?s relationship suggesting a possiple thermody-
namical interpretation of quantum mechanics whose im-

hd g (32)  plications may bring about a new deep understanding of
to Eqg. (30). We have the fundame_ntal connection between geometry and quan-
tum mechanics.
B0.G(r) = — Q, (33) We thank G. Bonelli and M. Tonin for important dis-
h cussions and the CERN Theory Division for hospitality.
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