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We introduce a “prepotential”F in quantum mechanics and show that the coordinatex is
proportional to the Legendre transform ofF with respect to the probability density. Inversion of the
Schrödinger equation leads us to consider anx–c duality related to a modular symmetry. The scaling
of x is determined by the “beta function,” suggesting that in quantum mechanics the space coordina
is a macroscopic variable of a statistical system withh̄ playing the role of scale. The formalism is
extended to higher dimensions and to the Klein-Gordon equation. [S0031-9007(96)02145-X]
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In the past couple of years Seiberg-Witten theory
has shed new light on some aspects of supersymm
quantum field theories. An important quantity in th
theory is the prepotentialF as it fixes the low-energy
dynamics. In terms ofF sFd, which is a holomorphic
function of the chiral superfieldF, one can express th
dual variableFD ­ F 0sFd and the effective coupling
constantt ­ F 00sFd. The quantum moduli space of th
theory is parametrized by the gauge invariant param
u ­ kTr f2l, wheref is the scalar component ofF. In
Seiberg-Witten theory a method has been develope
invert the functiona ­ asud to u ­ usad, wherea ­ kfl
[2]. In this theory a second-order differential equati
is written down for the moduli parametersasud and
aDsud. The prepotential enables the inversion proced
and allows an interesting interpretation of second-or
differential equations.

Following these ideas, we derive a method to
vert the Schrödinger wave functionc ­ csxd to
x ­ xscd. We define a “prepotential”F as func-
tion of c such that the dual variablecD ­ ≠F y≠c

is a solution of the Schrödinger equation. In th
formalism, the quantum dynamics is described
F , which satisfies a nonlinear third-order differe
tial equation which replaces the Schrödinger eq
tion. The inversion formula shows thatx is the
Legendre transform ofF with respect to the proba
0031-9007y97y78(2)y163(4)$10.00
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bility density, implying that in quantum mechanics the
space may be seen as a macroscopic variable of a s
tistical system. In this context we show that the scalin
properties ofx with respect tot ­ ≠

2
cF are determined

in terms of the “beta function”̄h≠h̄t.
Let us consider the Schrödinger equation√

2
h̄2

2m
≠2

x 1 V sxd

!
c ­ Ec , (1)

where E is in the physical spectrum of the Schrödinge
operator. In a general Schrödinger problem, such
Eq. (1), for eachE one can have one or two physica
solutions. LetcE denote a physical solution of Eq. (1)
and cED a solution of Eq. (1) linearly independent from
cE. We define the prepotentialFE by

cED
­

≠FEscEd
≠cE

(2)

and consider

≠xFE ­ cED
≠xcE ­

1
2

£
≠xscEcED

d 1 W
§

, (3)

where by Eq. (1) the WronskianW ­ cED
≠xcE 2

cE≠xcED is a constant. The crucial point is that Eq. (3
can be integrated exactly to

FE ­
1
2

cEcED 1
W
2

x 1 c , (4)
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with c a constant which by Eq. (2) we can set to 0. I
easy to check that Eq. (4) is equivalent to

FEscEd ­ c2
E

∑
Wx0 1 cE0cED0

2c
2
E0

2 W
Z cE

cE0

dyGEs ydy23

∏
, (5)

where cE0 ; cEsx0d, cED0 ; cED sx0d, and the notation
x ­ GEscEd has been introduced in order to denote
functional dependence ofx on cE. By rescalingcE we

can setW ­ 2
2
p

2m
h̄ , so that we have

p
2m
h̄

xscEd ­
1
2

cE
≠FE

≠cE
2 FE , (6)

which we rewrite in the “canonical form”
p

2m
h̄

xscEd ­ c2
E

≠FE

≠sc2
Ed

2 FE , (7)

showing that the classical coordinate is proportional to
Legendre transform of the prepotential with respect toc

2
E.

Duality of the Legendre transform yields

h̄
p

2m
FE ­ fE≠fE x 2 x , (8)

wherefE ­ ≠sc2
EdFE ­ cED y2cE . ThereforeFE is the

Legendre transform of
p

2m
h̄ x and vice versa.

In a quantum mechanical problem we can distingu
two cases depending on whethercE andcE are or are no
linearly dependent functions. In the former case (e.g.,
harmonic oscillator) the quantityc2

E is nothing else bu
the (unnormalized) probability densityrE . Therefore, if
cE ~ cE, Eq. (7) implies that the classical coordinatex is
proportional to the Legendre transform of the prepoten
with respect torE . Furthermore, by Eqs. (6) and (8)
follows that

rE ; c2
E ­

p
2m
h̄

≠fE
x , (9)

that is, x is the generating function for the probabili
density atx itself.

Reality of the Schrödinger operator implies thatcE is
still a solution of Eq. (1). Therefore, ifcE 6~ cE (e.g., in
the case of the free particle, wherecED ­ cE ~ c

21
E ~

eipxy h̄, E ­ p2y2m), then we can set

cED ­ cE . (10)

[Note that with this choiceW is purely imaginary. We
can choose, without loss of generality, a normalization

cE itself such thatW ­ 2
2i

p
2m

h̄ .] Then by (7)

rE ; jcEj2 ­
i
p

2m
h̄

x 1 2FE , (11)

showing that the probability density of finding the partic
at x is proportional tox itself with an additive correction
which is proportional to the prepotential.
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F plays a crucial role as it encodes the informatio
on the microscopic theory. In particular, the Schrödinge
equation can be replaced by (0 ; ≠cE )

4F 000
E 1 fV sxd 2 Edg sF 0

E 2 cEF 00
E d3 ­ 0 , (12)

where h̄ appears only throughV sxd [with x ­ xscEd
given by (6)]. Equation (12) is obtained from Eqs. (1
and (6) by following the method introduced in [2,3].
In particular, by inverting the Schrödinger equation, w
obtain

h̄2

2m
≠2

cE
x ­ cEfE 2 V sxdg s≠cE

xd3, (13)

which can be seen as dual to Eq. (1). These dual fo
mulations of quantum mechanics may generate differe
structures once one considers the second quantization
alternatively quantizes the expansion ofx in powers of
the wave function. In order to illustrate this point we firs
consider the dual power expansions

cE ­
X

j

aE
j xj () x ­

X
k

bE
k ck

E (14)

and note that their structure suggests considering t
x-cE duality as reminiscent of the “mirror symmetry
phenomenon” first observed for Calabi-Yau threefolds
We note that a similar remark was made in connectio
with the differential equation (and its inverse) satisfie
by the generating function for Weil-Petersson volumes o
moduli spaces of punctured Riemann spheres [4].

Before considering the quantization of (14), it is worth
noticing that the above structures are related to th
modular symmetry which underlies quantum mechanic
In particular, the relation among the space coordinat
the prepotential, and the wave function is related t
the basic fact that any linear combination ofcE and
cED is still a solution of the Schrödinger equation. Fo
the same reason, the formalism is invariant under th
transformations

c̃ED ­ AcE 1 BcED , c̃E ­ CcE 1 DcED , (15)

implying, in particular, that Eqs. (6) and (12) are modula
invariant. This symmetry can also be explicitly checke
by using the transformation properties ofFE, which
follow by comparingc̃ED ­ ≠fF secEdy≠c̃E with (15),

dFE ­
AC
2

cE2
D

1
BD
2

c2
E 1 BCcEcED

­
1
4

yt

∑
Gt

µ
0
1

1
0

∂
G 2

µ
0
1

1
0

∂∏
y ,

(16)

where dFE ­ fFEsc̃Ed 2 FEscEd, G ­
µ

A
C

B
D

∂
[

SLs2, Cd, andy ­
µ

cED

cE

∂
.



VOLUME 78, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JANUARY 1997

s

s

,

a
g

e
r
io
c
s

t
t
u
a
t
w

h

lar
is

ibed
or

ties

er
the
m-
uc-

n

e

tion
rs

the
here

tain

ce

s”
Let us now consider the quantization of the expansio
(14). First note that we have the consistency condition

cE ­
X

j

aE
j

√X
k

bE
k ck

E

!j

()

x ­
X

k

bE
k

√X
j

aE
j xj

!k

,
(17)

which imply an infinite set of relations. Similar relation
arise also for an arbitrary state described by a wa
function c. In particular, expandingc in a given basis
hcjj, Eq. (14) generalizes to

c ­
X

j

ajcj ­
X

j

ajxj ()

x ­
X

k

bkck ­
X

k

bkck,
(18)

implying an infinite set of relations which we denote by

Dsa, bd ­ 0 . (19)

Now observe that performing the second quantization

c ! ĉ ­
X

j

sâjcj 1 â1
j cjd (20)

induces a quantization of the coefficientsaj ’s. Therefore,
whereas theaj ’s andbk ’s enter in (19) as dual quantities
in the second quantization theaj ’s only become opera-
tors. The important point is that Eq. (19), which is
manifestation of thex-c duality, suggests investigatin
whether there exists a quantization with thebk ’s consid-
ered as operators. Therefore it is natural to consider

x ! x̂ ­
X

k

sb̂kck 1 b̂1
k c

kd . (21)

We now have two inequivalent dual pictures defin
by (20) and (21), respectively. Whereas Eq. (20) cor
sponds to the second quantization of the wave funct
[associated to the Schrödinger equation (1)], Eq. (21)
be considered as the quantization of the coordinate [a
ciated to Eq. (13), dual to Eq. (1)]. We note that asc

takes complex values we can use the notation

x̂ ­
X

k

sb̂kzk 1 b̂1
k z̄kd . (22)

This expression is conjectured in order to preserve
correspondence suggested by Eq. (18). The fact that
equation leads to the quantization of the coordinate sho
be further investigated. In particular, we remark th
the structure of Eq. (22) resembles the expansion for
target coordinate in string theory. For the time being,
note that invertingc ­ csxd to x ­ xscd one obtains
a description of geometrical quantities in terms of t
wave function. Therefore we can think of the inversio
method as a way to transfer quantum aspects directly
the coordinate, suggesting that (21) should play a role
quantizing geometry.
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We have seen that bothcE and cED enter on the
same level, so that our formalism is manifestly modu
invariant. An aspect which is related to this invariance
that there are quantum structures which may be descr
in the framework of monodromy transformations. F

example, by (16) theSLs2, Zd generatorsS ­
µ

0
21

1
0

∂
and T ­

µ
1
0

1
1

∂
generate jc

2
Ej and c

2
E , respectively.

These quantities correspond to the probability densi
depending on ifcE 6~ cE or cE ~ cE.

A feature of our approach is that it extends to high
dimensions. Furthermore, it may also be applied to
case of the Klein-Gordon equation (since the spinor co
ponents satisfy the Klein-Gordon equation, the constr
tion applies to the fermionic case as well).

Let us first consider the Schrödinger equation√
2

h̄2

2m
D 1 V sxd

!
c ­ Ec , (23)

whereD ­
PD21

k­1 ≠2
xk

. The way to find the generalizatio
of Eq. (7) is to rewrite (23) in the form√

2
h̄2

2m
≠2

xk
1 Vksxkd

!
c ­ Ec (24)

for k ­ 1, ..., D 2 1, where we have introduced th
“effective potentials”

Vksxkd ­

"
V sxd 2

h̄2

2mcsxd

D21X
j­1,jfik

≠2
xj

csxd

#
jxjfik fixed

.

(25)
Equation (24) is now seen as a second-order equa
in the variablexk, with xjfik considered as paramete

for the effective potentialVk. Let c
skd
E and c

skd
ED

be
linearly independent solutions of Eq. (24). Repeating
procedure considered in the one-dimensional case, w
now for any k the integration is taken fromxk0 to xk

keeping the other coordinate components fixed, we ob
p

2m
h̄

xksc skd
E d ­ c

skd2

E
≠F

skd
E

≠sc skd2

E d
2 F

skd
E (26)

for k ­ 1, ..., D 2 1 and (0 ; ≠c
skd
E

)

4F
skd000

E 1 fVksxkd 2 Eg
≥
F

skd0

E 2 c
skd
E F

skd00

E

¥3
­ 0 ,

(27)

which is an ordinary differential equation forF
skd

E sc skd
E d

oncexk in Vk is replaced with its functional dependen
on c

skd
E given in (26). It is worth noticing that in

the important caseV sxd ­
PD21

j­1 fjsxjd, the functional

structure ofF
skd

E does not depend on the “parameter
xjfik .
165
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In the case of the Klein-Gordon equation, we rewri
sh 1 m2df ­ 0 in the form£

≠m≠m 1 Vmsxd 1 m2
§
f ­ 0 (28)

for m ­ 0, ..., D 2 1, where we have introduced the
effective potentials

Vmsxmd ­

"
1

fsxd

D21X
n­0,nfim

≠n≠nfsxd

#
jxnfim fixed

. (29)

The important difference with respect to the case
the Schrödinger equation is that, as a consequence
its relativistic nature, the time derivative appears
the Klein-Gordon equation at the second order. Th
implies that the inversion formula also holds for th
time componentx0 ­ t and Eqs. (26) and (27) extend
to the relativistic case withk [ f1, D 2 1g replaced by
m [ f0, D 2 1g.

Another manifestation of the statistical structure u
derlying the formalism is suggested by an analogy w
N ­ 2 SYM. The point is that, in analogy with the role
played by the scaleL in Seiberg-Witten theory, we can
interpreth̄ as a parameter defining the scale of a statisti
system. In particular, following the approach introduce
in [3], we first note that for dimensional reasons

Kx
h̄

­ Gstd , (30)

whereK ­
p

2mE and

t ­
≠2FE

≠c
2
E

. (31)

In this framework it makes sense to apply the operator

h̄≠ h̄ (32)

to Eq. (30). We have

b≠tGstd ­ 2
Kx
h̄

, (33)

where

bstd ­ h̄≠ h̄t . (34)

Integrating (33) we obtain

x ­
h̄
h̄0

x0e
2

R
t

t0
dyb21s yd

, (35)

showing that the space coordinate has an anomal
dimension determined by the beta function (34).
this context we observe that the Heisenberg uncertai
principle depends on the scale

DxDp $ h̄ ­ h̄0 1 corrections. (36)

We note that generalizations of the Heisenberg unc
tainty principle have been discussed in the context of d
ferent approaches to quantum gravity in [5].

We observe that our approach sheds new light on
role of the dual wave functioncDE

. In this contextFE

plays the crucial role as it can be seen as the analog
the Hamilton principal function. Actually,cE andcDE ­
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≠FEy≠cE play a similar role tox and p in Hamilton-
Jacobi theory. The inversion formula Eq. (6) is the k
starting point for this investigation [6].

Other aspects which merit further investigation conce
the possible role of our construction in the framewo
of the stochastic approach to quantum mechanics
the many–particle systems, the case of coherent sta
and geometric quantization. Here we limit ourself
observe that in the case of two-particle systems w
central potentialV srd, one can find forr an expression
similar to (6) with cE and cED

replaced byxE and
xED ­ ≠xE FE, respectively [we are using the standa
notationcE ­ Ylmsu, wdxEsrdyr]. This is a consequence
of the fact that bothxE and xED are in the kernel of
the operator≠2

r 1 2msE 2 V dyh̄2 2 lsl 1 1dyr2, where
m ­ m1m2ysm1 1 m2d is the reduced mass.

In conclusion, we observe that starting from the inve
sion formula we arrived at a statistical interpretation
the space coordinate opening the way for a possible
derstanding of the link between space-time structure a
quantum theory. In particular, we stress that the invers
formula allows us to use

dx ­
≠x
≠c

dc (37)

for connecting geometrical and quantum concepts.
It is well known that after a Wick rotation of the

time coordinate, the path-integral formulation of quantu
mechanics resembles the partition function of a thermo
namical system. The appearance of the Legendre tra
form relating quantum and macroscopic quantities m
clarify this relationship suggesting a possible thermod
namical interpretation of quantum mechanics whose i
plications may bring about a new deep understanding
the fundamental connection between geometry and qu
tum mechanics.

We thank G. Bonelli and M. Tonin for important dis
cussions and the CERN Theory Division for hospitalit
This work was supported in part by DOE Grant No. DE
FG-0586ER40272 (A. E. F.) and by European Commun
Research Programme,Gauge Theories, applied super
symmetry and quantum gravity,Contract No. SC1-CT92-
0789 (M. M.).

[1] N. Seiberg and E. Witten, Nucl. Phys.B426, 19 (1994).
[2] M. Matone, Phys. Lett. B357, 342 (1995).
[3] G. Bonelli and M. Matone, Phys. Rev. Lett.76, 4107

(1996).
[4] R. Kaufmann, Yu. Manin, and D. Zagier, Report No. alg

geomy9604001.
[5] For a partial list, see, e.g., D. Gross and P. Mend

Nucl. Phys.B303, 407 (1988); D. Amati, M. Ciafaloni,
and G. Veneziano, Phys. Lett. B216, 41 (1989);
M. Maggiore, Phys. Lett. B304, 65 (1993); S. Doplicher,
K. Fredenhagen, and J. E. Roberts, Phys. Lett. B331, 39
(1994).

[6] A. E. Faraggi and M. Matone (to be published).
[7] See, for example, F. Guerra, Phys. Rep.77, 263 (1981).


