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Backreaction Problem for Cosmological Perturbations
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We derive the effective energy-momentum tensor for cosmological perturbations and prove its
gauge invariance. The result is applied to study the influence of perturbations on the behavior of
the Friedmann background in inflationary universe scenarios. We found that the back reaction of
cosmological perturbations on the background can become important already at energies below the self-
reproduction scale. [S0031-9007(97)02521-0]

PACS numbers: 98.80.Cq

It is well known that gravitational metric perturbations perturbations on the evolution of the background FRW
treated as propagating on a curved “background spacemiverse in a coordinate-independent manner at every
time” have an effect on the evolution of this “back- moment in time.
ground.” This is due to the nonlinearity of the Einstein We apply our framework to a chaotic inflationary model.
equations. A convenient way to describe the backreactio®iven the spectrum of linear cosmological perturbations
of fluctuations on the background is to consider the “ef-generated during inflation, we evaluate their effective EMT
fective” energy-momentum tensor (EMT) for these metricand find that backreaction becomes important already at
perturbations. energy scales lower than those at which the stochastic

This problem has been studied by several authors idriving terms dominate. This may have important con-
applications concerning gravity waves (see, e.g., [1—4]sequences for the dynamics of chaotic inflationary models.
and references therein). One of the main puzzles needing There has been recent work on the backreaction of
to be solved is the problem of gauge invariance of thedensity inhomogeneities in cosmology. Futamase [5]
effective EMT. Namely, the effective EMT should be considered the problem of backreaction in harmonic
defined in a manner that the answer to the questiogauge. Seljak and Hui [6] reconsidered this issue using
“how important are perturbations for the evolution of aa different gauge but obtained differing results, thus
background?” does not depend on the choice of spacdighlighting the need for a gauge-independent analysis. A
time coordinates (in other words, it should not depend orsimilar problem was also addressed by Buchert and Ehlers
the gauge). in the context of Newtonian cosmology [7].

The issue of gauge invariance becomes critical when This Letter is organized as follows: In Section 2 we
we attempt to analyze how gravitational waves andormulate some useful properties of the diffeomorphism
scalar metric perturbations produced in the early Universé&ransformations. The backreaction problem is set up in
influence the evolution of the background Friedmann-Section 3, where we show how to formulate it in terms
Robertson-Walker (FRW) universe. The procedure sugef gauge-invariant quantities only. Section 4 contains
gested by Isaacson [4] defines a gauge-invariant EMEn application of our results to study the backreaction
for small-wavelength, high-frequency perturbations, ancroblem in the chaotic inflationary scenario.
is not applicable in our case for the following reason. In Diffeomorphism transformations- The gauge group of
order to get the invariant EMT following this prescription, General Relativity is the group of diffeomorphisms. To
one should average terms in the Einstein equations whictiefine it we consider a smooth vector fief¢ on the
are quadratic in the perturbations over time intervals bigspace-time manifoldM . The set of parametrized integral
ger than the typical inverse frequency of perturbationscurves of £* are given by solutions of the differential
Obviously, it is assumed that the time scale characterizingquations
the background is much bigger than the period of the per- dy*(A)
turbations. Since in the early Universe inhomogeneities 24 = £ xP)], (1)
with scales bigger than the horizon scale are frozen, it dA
means that their typical period is much bigger than thqx being an affine parameter) with initial conditions
cosmic time scale and the procedure cannot be used.  y«(A = 0) = x“ for everyx®. This induces a coordinate

In this Letter we consider perturbations about a FRWransformation oM (see also [8]):
manifold and show how to define a gauge-invariant

ca _ — 1= 5
EMT for metric perturbations which involves only spatial X=X =yt =1) =€ oPx"
averaging on a hypersurface of constant time. This N N o s 3
allows us to formulate the problem of backreaction of =TT S et 0, (2
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where ¢ should be considered small if we want to use afunctionals ofg¢, namely,
perturbative expansion in (2). N 1 b N

Now let us take two different point® and P of Il(g5) + 11.dq° + 5 avdq"0q” + 0@6gp) =0
the manifold /M having the same coordinate value$
in the two distinct coordinate frames and x; that is " Lo ()
x§ = x§ andx¢ = x§. We want to express the value of (omitting tensor indices). From now on we adopt

an arbitrary tensor fieIch at point P in the coordinate Eﬁ)’gﬁ?\/;ﬁgﬁgfe%r;?teaithocrl]uggga lvflth ?ﬁ:%ﬁ itr:](?ii:ggn-
systemx in terms of @ p and its derivatives at poirR in ' *

i a = a(4 i
the coordinate system The answer is well known and & © --» SO that, for instanceg = q (¢!, x") and
is given by the Lie derivative: I1, = 611/64“l, etc. In addition, the summation over

repeated indices is understood to include integration over

O (x0) = (e £¢9Q) (xq) time and/or space.
1 To lowest order, the backgroung (z) and the pertur-
= 9 (x0) — L£9 (x) + > L L9 (x0) bationsé ¢* satisfy, respectively, the equations
Il(gg) =0 and II,6¢° = 0. (20)
+0(£). (3)  However, it is clear from (9) that to next order iy

This Lie operator obeys an important property, which wethe perturbations also contribute to the evolution of the
exemplify below in the case of the Einstein ’tenﬁ)r background homogeneous mode of the metric and matter

’ p i
We can expres& as a function of the metric and its flieldS go. To see this, we take the average of (9)

derivatives: over at = const hypersurface, and obtain the following
“corrected” equations for the evolution of the background:
J 1

Gx) = G[a,g(x)] (4) (gd) = — 5<Hﬂb5qaaqb>, (11)

Since the diffeomorphism transformation (3) does notvhere brackets) denote averagir?_g vafnzgns'[ant time
. . . My X .

effect the derivatives one can write hypersurfaces. For instanc@]) = ~——_ Since
.y 9 . 1, he integrand is quadratic in perturbation variables, the

£§G — G[_ £§ :| 5 the In g q p s

(e ) &) ax’(e g ) ©) average is unchanged to second order under any gauge

transformation. At first glance, it seems natural to iden-

tify the quantity on the right hand side of Eq. (11) with
for example, the following property of the Lie derivative: the effective EMT of perturbations which describes the
' " backreaction of perturbations on the homogeneous back-

,6G(x) ) ground. However, this expression is not invariant with

LeGlx) = ] d'x Sg(x!) Leglx), 6) respect to diffeomorphism transformations and, for in-

stance, does not vanish for “metric perturbations” induced

where §G(x)/8g(x’) is the functional derivative of the jn Minkowski space-time by a coordinate transformation.

Einstein tensor with respect to the metric. Formulas Thys it is clear that if we want to clarify how important
similar to (5) are true also for the EMT and, in fact, for physical perturbations are for the background evolution
arbitrary tensor fields which can be considered as loca)e need a diffeomorphism independent (gauge-invariant)
Backreaction and gauge invarianee-We consider a  The coordinate transformations (2) induce diffeomor-

FRW universe with small perturbations. This means onghism transformations (3) ofig which, in linear order,
can find a coordinate systefn, x’) in which the metric  tzke the form

(gu») and matter fields £), denoted for brevity by the 50" — 85% = 8a% — [0 12
collective variablez® = (g, ¢), can be written as 1 4 q 9o > (12)

RegardingG(x) as afunctional of the metric we can
expand (5) in terms of functional derivatives and obtain

where (¢) = 0. To second order, the background vari-
g“(t,x") = q(t) + 8q“(t,x"), (7)  ablesgg are not gauge invariant either but change as

qé — g8 = (e Le(ql + 89%)

1
=46 — (Ledq") + S(Lig5).  (13)

where ¢¢(t) depends only on the time variable and
[6g%] < |gg]. Itis also assumed that the spatial average
of §4“ over hypersurfaces = const with respect to the

induced “homogeneous” part of the 3-metric vanishes. Let us write the metric for a perturbed flat FRW
The Einstein equations universe
2 _ a2 2 _ 2 S dx!
Gy — 87T, =, = 0 ®) ds® = N-(t) (1 + 2¢)dt a“(t) (B; — S;)dx'dt
) — . . .
can be expanded in a functional power serieséigf a (1 = 24)8;; + 2E’l{ + Fij
about the background; () if we treatG,, andT,, as + Fj; + h;jldx'dx’, (14)
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where the 3-scalarsp, B, ¢, E characterize scalar which is the desired gauge-invariant form of the back-
perturbations$S; and F; are transverse 3-vectors, ahg  reaction equation. Note that in deriving (20) we made
(gravity waves) is a traceless transverse 3-tensor [10]. use of the equations of motion fgr. Finally, Eq. (20)

Under a gauge transformation (12), the quankty = can be written as
;’,Z—(é))(B — E),—E,; — F;], with a “dot” denoting time
derivative, changes as Guv(Qo) = 87T, (Qo) + 74,(60)],  (21)
XH — XH = XF 4 £- (15)  where
This quantity will be treated formally as a 4-vector in 1
Lie derivatives below. Using* one can form gauge- Tu(86Q) = — F<H,ah5Qa5Qb> (22)
invariant variables characterizing both background and .
linear perturbations = e*xq, that s, can be interpreted as the gauge-invariant effective EMT
509 = 8¢° + Lxqf (16) for perturbatiqns. Therefore' if we want to find out if
the backreaction of perturbations is important we should
and compare 7,,(6Q) with T,,(Qp). Note that none of
1 the terms in Eq. (21) depends on the specific coordinate
05 = qo + (Lx8q") + 5<£;?618 : (17)  system used to evaluate them.

To conclude this section, we will derive the effective
It is easy to verify that the5Q“ correspond to the set EMT for scalar cosmological perturbations about a spa-
of Bardeen’s gauge-invariant variables [10]. T tially flat FRW universe. Since the results do not depend
actually change under diffeomorphism transformations asn the gauge, we can calculate the EMT using a longitu-

~ 1 dinal gauge [10], in which
Q5 — 05 = Q0 + 5 Lqexndi s (18) o

ds* = (1 + 2¢)dr* — a*(1) (1 — 24)8;;dx"dx’, (23)
where [£,X] is the commutator of the vector§ and
X. For uncorrelated andX we have((¢,X]) = 0, and  and the matter perturbation (taking matter to be a scalar
therefore the last term in (18) vanishes (see Ref. [11] fofield) is 6¢. For many types of matter (scalar fields
a detailed discussion of this term). included) T;; is diagonal in linear order inSg, which

Our goal is to rewrite Eq. (11) in terms of quantities implies that¢p = ¢ [10]. By evaluating the functional

which are gauge invariant up to second order in perturbaderivatives in (11) (see also [11]) one can derive the
tions. It is easy to see from identity (5) that if Einstein’s following expression fotr,,:
equations are valid for the set of variablgsthen

DT = TeEg) = THQ) = 0. (19) 700 = 5 [+12H(G$) = 3(J) + 9a (V)]

Expanding (19) to second order ®Q and taking the 1 ) 1
spatial average of the result yields + 5<(5¢)2> + Sa (Vo))
— 1 a b 1
Qo) = = 5 (1w 60507), (20) S Vee(@0)(8¢7) + 2V,o(g0) (5¢). (24)

iy = @yl s TQAH" + 16H) (8 + 24HGBE) + ($P) + HB) — +a X(VHP)] + 46467 + (660

1 _ .o 1
-5 H(Vog)) — 4¢o(Sp ) — EV’W(‘”O)<5‘”2> + 2V,¢(¢o)<¢5¢>}, (25)
whereH = a/a is the Hubble parameter ang;, = 7;; = | Planck units), and space on scales of the particle horizon
0@ # j). is completely inhomogeneous, consisting of many bubble

Backreaction in stochastic inflatior-As an applica- universes. It is usually supposed that in spatial regions
tion of the formalism developed in the previous sectionswhere the scalar field at some point drops belpyw, the
we will evaluate the order of magnitude of backreactionevolution proceeds classically and the metric fluctuations
effects in the chaotic inflationary scenario [12,13], forgenerated are not very important for the evolution of the
simplicity taking a massive scalar field as the inflaton. Inhomogeneous background. We will show below that this
this model, quantum fluctuations of the scalar figlder- is not really the case.
tainly dominate the dynamics of the background when the In a chaotic inflationary universe scenario, linear per-
field is above the self-reproduction scalg ~ m~ "2 (in  turbations on a fixed comoving scakeare completely
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