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Noise-Enhanced Multistability in Coupled Oscillator Systems
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We study nonequilibrium phenomena in a globally coupled oscillator system with a third harmonic
pinning force in the presence of an additive noise and a fluctuating interaction. The system shows
a subcritical saddle-node bifurcation from an asymmetric state to a symmetric state at a critical noise
intensity leading to multistable states. The fluctuating interaction increases the critical noise intensity
and thus enhances the multistability drastically. We show phase diagrams and discuss the nature of the
phase transition. [S0031-9007(97)02587-8]

PACS numbers: 05.45.+b, 02.50.Ey, 05.40.+j, 05.70.Fh

Noise effect on a dynamical system has been studietivo oscillators with fluctuating interactioré; () andn; ()
extensively in the context of equilibrium and nonequilib- are independent Gaussian white noises characterized by
rium phenomena. The study of phase transition, originally /
limited to equilibrium systems, was extended to nonequi- (1) = (mi(0) = (&) n; (1)) = 0,
librium systems [1]. While an additive noise provides (EWE )y = (mi(t)n; (1)) = 28;;6(t — 1),
equilibrium phenomena such as a disordering effect and a . . -
symmetry-breaking transition, a multiplicative noise cou-an.d o4 and oy measure thg Intensities of the additive
pled to the state of the system induces nonequilibrium pher:'(?Ise and fluctuating Interaction, r(_espectlyely. T_hroughout
nomena such as a change of the stability of the system. THQ'S paper we sek = 1.u3|ng a suitable time unit
multiplicative noise remains the focus of current research. Equation (1) is invariant under the global finite transla-

[L-3]. The question of the interplay between multiplica- ion

tive and additive noises in the systems has also been raised 207

continuously [3,4]. While second-order transition induced bi = bi + = (2)
by the multiplicative noise has been studied [1,5], its effect

on first-order transition remains to be investigated. for all ¢;'s and under the global inversiaty;, — —¢; for

In this paper we study the effect of the multiplicative all ¢;'s. In the absence of the noises the system has three
noise on the multistability investigating the nonequilib- stable fixed points synchronized perfectlyoa2 /3, and
rium phenomena of the globally coupled oscillator systemg /3, respectively. The stable fixed points are related
with a third harmonic pinning force subject to a fluctu- by the symmetry operation (2). For small additive noise,
ating interaction and an additive noise. It is shown thathe system fluctuates near the fixed points implying that
the additive noise and the fluctuating interaction inducesn the largeN limit, the phase space divides into three
a subcritical saddle-node bifurcation from an asymmetrieergodic components related by the symmetry operation
state to a symmetric state at a critical noise intensity2) and that the system remains in a ergodic component
leading to multistable states. The fluctuating couplinggiven initially leading to the asymmetric state. The
increases the critical noise intensity and thus enhances tleggodic components merge into an ergodic whole phase
multistability drastically. We show phase diagrams andspace for large additive noise restoring the symmetry and
discuss the nature of the phase transition. thus leading to a phase transition. Numerical simulations

In the presence of additive and multiplicative noises,show that the global finite translation symmetry is broken
a model of N coupled oscillators with a third harmonic at small additive noise intensity. The global inversion
pinning force under study is expressed by the Langevisymmetry, however, persists regardless of the additive and

equation multiplicative noise intensities with the initial condition
which belongs to the ergodic component including the
% = — bsin(3¢;) — %[1 + oumi(0)] fixed point ¢; =0 for all i. For the other initial
t

conditions the system has the symmetry of the global

N inversion following the global translation.
X Y sing; — ¢)) + oaki(t), ) The macroscopic behavior of the system can be de-
=1 scribed by the probability distributioA({¢;}, t) of ¢;'s at
where¢;,i = 1,2,...,N,isthe phase of thgh oscillator.  time ¢, whose evolution is governed by the Fokker-Planck

On the right-hand side of Eq. (1) the first term is a thirdequation [6]. In the largé¥ limit, after integrating over
harmonic pinning force, and the second term describe® — 1 phases and changing sums to integrals the stochas-
global coupling which depends on the phase difference dic differential equation (1) yields the partial differential
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with the probability distributionP(¢,t) of ¢; at time |
t in Stratonovich interpretation. In Eq. (3)(¢, 1), the
normalized number density of the oscillators with phase A — A L 5C1 + (5bCo + bCy + 5Ci03) 0
at time', is given byn(¢.1) = 3L, 8(¢:(t) — ¢)/N. 2073 4003Cy
Since Eq. (3) has a closed form i with integrations x A2 + 0(AY) (6)
of n(¢’, ) multiplied by sing’ and cosp’ over ¢/, ¢;'s ’
are statistically independent, and thugg,r) may be ith Cu = gﬁ cod ) explb cose /303)dd.  While
identified with P(¢,7). In this paper we analyze the for small o, Eq. (5) gives a solution of nonzem, for
steady state probability distributio®(¢) achieved as large o4 it has only a solutiom = 0. This implies that
r— % o ) ) ~ there is a transition from a symmetrid (= 0) state to a
Since Eq. (3) is invariant under the global inversiongymmetry-breakingX # 0) state at a critical noise inten-
we can assum&(¢) as an even function, i.eB(=¢) =  sjty ¢,..  If the transition is continuous, then the critical
P(¢) restricting the system within the ergodic componentygise intensity is given by, = 1/+/2 [5]. The convex-
including the state; = 0 for all i. This symmetry is jty of Eq. (6) for smallA, however, gives the possibility
confirmed by extensive numerical simulations. One canyf first-order transition.
obtain P(¢)’s of the other ergodic components by the Figure 2 shows\ — f(A) zeros of which are solutions
global translation operation (2). With this assumption theyf self-consistent equation (5). When, = 0Oandb = 1,
stationary probability distribution is written as Fig. 2(a) shows the discontinuous transition. For <
a0 = 1/4/2, there are two zeros oA — f(A); one
is zero and the other is nonzero. Since the slope of
A — f(A) at A = 0 is negative,A = 0 is an unstable
solution of Eq. (5). Thus whewrs < oaco, the system
is on a symmetry-breakingA(# 0) state. Foroa. <
o4 < oa. = 0.7111 there are three zeros of — f(A)

the self-consistent equation (5) as

P(¢) = Z 'exp(—y cosg) (1 + Acosp)? /2
X (1 — Acosg) P12, (4)

where

g = (A + 3b)oyA? + 4bo?
20y A%o2 + o3,A?

4b

y =

with stable symmetric X = 0) and symmetry-breaking
(A # 0) states implying multistability. Fobrs > oac1
there is only a solutiod\ = 0 representing a symmetric
state. The effect of fluctuating interaction on the system

oy A2’
O'MA 0.8

\/a'f‘ + UIZWA2 ’

with a normalization constatt given by [2” P(¢)d¢ =
1 and a self-consistent equation

2
A= f cospP(¢)dd = F(A). (5)
0

WhenA = 0, Eq. (4) has the translational symmetry (2)
leading toP(¢) = exfb cog3¢)/303]/Z, and nonzero
A gives the symmetry-breaking states related by the trans-
lation operation (2). Thus) plays a role of an order pa-
rameter for the translational symmetry. Figure 1 shows

P(¢) for the symmetric and the asymmetric states. FOE|G. 1. Schematic diagram d#(¢) for the symmetric 4 =
smallA expandingP(¢) as a power series @& we obtain  0) state and the asymmetrj (> 0) state.

1617



VOLUME 78, NUMBER 9 PHYSICAL REVIEW LETTERS 3 MRcH 1997

(a)  0.002 : . (a) 0.5
oy=0, b=1
0.4}
0.001} ,=0.714
g 0.3}
- <
< O T T e e 0.2l
0.1}
-0.001
0 0.1 0.2 0.3
A
(h)  0.03 : . : : (b)
c,=08,b=1
0.02+
Oy =
0.01¢
) Oy =24 <
= o T e T ]
4 O =238
-0.01} O =32
Oy = 3.6 Oy = 4
-0.02 . . .
0 0.1 0.2
A

FIG. 2. Plots ofA — f(A) versusA (a) for various values of F|G. 3. Plots ofA obtained from the self-consistent equation
o, with oy = 0 andb = 1, and (b) for various values afy,  (5) (a) versuso, for various values ofoy with b =1,
with o4 = 0.8 andb = 1. and (b) versuso,, for various values ofo, with b = 1.
Solid and dashed lines represent stable and unstable solutions,
respectively. <’s indicate A in steady state obtained from

. - _ _ . the numerical simulation for the system of size= 10* at
is shown in Fig. 2(b) atr, = 0.8 andb = 1. While for o4 =08 andb = 1.

oy < oye =29, A — f(A) has only a solutiomA =
0 representing a symmetric state, fot, > o it has
three solutions, two stable and one unstable, implying théons A = 0 andA; [solid line in Fig. 3(b)] for all values
multistability of symmetric and symmetry-breaking states.of o; while A = 0 is an unstable solutiomy; # 0 is a
Figure 3(a) shows the solutions of the self-consistenstable solution. Whewry > 4.0, for small oy, there is
equation (5) as a function @f, for various values ofry,. only a stable solutiolh = 0. At oy = oy the stability
For smallo4 there are two solutiond = 0 andA, [solid  of A = 0 changes from an unstable state to a stable state
line in Fig. 3(a)]. WhileA = 0 is an unstable solution, and the saddle-node bifurcation occurs at firitproduc-
A; # 0 is a stable solution. Ag, increases up t@r4. ing a stable and an unstable solutiods, [solid line in
the stabilities of the solutions persist reducing. At  Fig. 3(b)] andA, [dashed line in Fig. 3(b)], respectively.
oA = 0ac0, @ Saddle-node bifurcation occurs changing theAs o, increases above,,. up to some value ofy;, o0,
stability of A = 0 from an unstable state to a stable stateA; increases and, decreases. Atry; = oyo A has a
and producing an unstable nonzero solutibp [dashed maximum value, and ag), increases furthed; also de-
line in Fig. 3(a)] atA = 0. As o, increases further up creases. In Fig. 3(b) we also show the numerical simula-
to oac1, A, increases and; decreases.A, andA; meet tion result consistent with the analytical onesat = 0.8.
together atos = o0 4.1 leading to an inverse saddle-node Figure 4 shows phase diagrams in thg-o 4 plane for
bifurcation. Foro, > o4 there is only a stable solution various values ob. For all oy, there are two transition
A = 0 implying a symmetric state. points o 4.0 and o4.; at which the transitions from the
Figure 3(b) shows the solutions of self-consistent equasymmetry-breaking phases§) to the multistable phase
tion (5) as a function o#ry, for various values ob4. For  (MS) and from the multistable phase to the symmetric
oa < oaco [o0a = 0.705 in Fig. 3(b)], there are two solu- phase §), respectively, occur. While in th& phase with
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FIG. 5. Plots of jump values oA at transition points versus

FIG. 4. Phase diagrams in tlsg,-o, plane for various values oy for various vaiues ob.

of b. S, BS, andMS represent symmetric, symmetry breaking,
and multistable phases, respectively.
has been enhanced drastically by the multiplicative noise.

) ) . Discontinuity of the transition is maximized at finite mul-
A = 0 the phase space is ergodic as a whole, inBfSe tjpjicative noise intensity. This noise-enhanced multista-
phase withA # 0 the phase space divides into the threepjjity comes from the role of the multiplicative noise that
ergodic components related by the translation operatiof reduces the fluctuation intensiti’-\;l sin(¢; — ¢;) =
(2). In theMb_’ phase there are four ergodic components sin¢; in the Langevin equation (1")_ Sinde = 0in the
one symmetric component with = 0 and three asym- symmetric state angh; = 0 for all i in the synchronized
metric components withh # 0. The asymmetric com- (symmetry-breaking) state, the fluctuation intensity is zero
ponents are also related by the translation operation (2 poth states. Thus the multiplicative noise tends to sta-
Thus, in theMS phase symmetric and asymmetric com-pjjize hoth symmetric and synchronized states enhancing

ponents coexist. N _  the multistability.
The transitions are subcritical saddle-node bifurcations. This work has been supported by the Ministry of
As oy increasesg,. increases with constamt,.o €X-  |nformation and Communication, Korea. We are grateful

panding the multistable phase. While whefy = 0the g pr. E.H. Lee for his support on this research.
multistable region isry, € (0.707,0.711), whenoy, = 10

itis o4 € (0.707,1.017) expanded 77.5 times. The fluc-
tuating interaction enhances the multistable region drasti-
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