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We derive a relationship between two different notions of fidelity (entanglement fidelity and average
fidelity) for a completely depolarizing quantum channel. This relationship gives rise to a quantum
analog of the MacWilliams identities in classical coding theory. These identities relate the weight
enumerator of a code to the one of its dual and, with linear programming techniques, provide a powerful
tool to investigate the possible existence of codes. The same techniques can be adapted to the quantum
case. We give examples of their power. [S0031-9007(97)02478-2]

PACS numbers: 89.70.+c, 02.70.—c, 03.65.—w, 89.80.+h

The discovery of error correcting codes [1,2] for quan-for all i, j, ...,k and wheres} is chosen from the set of
tum computers has revolutionized the field of quantumPauli matrices augmented by the identity, acting on the
information. Although quantum computing holds greatnth qubit. Note that all elements && give the identity
promise, it is plagued by the fragility of quantum infor- when multiplied by their Hermitian conjugate. We define
mation [3—6]. Quantum error correction is a techniquethe setE, as the subset of containing exactlyl Pauli
which enables one to encode quantum information in anatrices different from the identity, and we call it the set
robust way and therefore overcome this fragility. of distanced.

It is important to classify codes in order to know what In a system interacting with an environment, errors
is the most compact way to encode a number of qubit¢differences from the original state) can be classified as
against a given number of errors. Various techniquesit flip, sign flip, or bit and sign flip [1,9] corresponding
have been used to discover such codes [1,7—16]. In th® the three Pauli matrices. The sBtcorresponds to all
classical theory a very powerful technique for looking for possible effects due to independent environments. If we
the existence of codes is the use of MacWilliams identitieassigned an equal probability 6f — p)/3 every time a
[17]. They relate the weight distribution of a code to thePauli matrix appears in a member &f an initial statep;
weight distribution of its dual code. These relationshipswould therefore evolve as
can be used with linear programming to find bounds on | — p\dE)
how good quantum codes can be and to test whether p; = Z p"*d@( p) EpiET, ()
potential good codes can exist [18]. ' EEE 3

In this Letter we give a quantum analog to the WeightWhe _is the final staten th b f qubit d
distributions which obey the (classical) MacWilliams d(E)r?sptﬁéSdistanI:e o?t%:?)pe?at%lim er of qubits, an

identities. These identities are a consequence of the We now define two weightsi, and B, on operators
relationship between two different traces of two arbltrary@h 0,, whered ranges fron0 to 1, as
operators@®; and O,. When these operators are such

that O, = O, = p (p being any density operator) the _ 1 1

relationship gives a connection between two possible Aa = trOtr O, Eztr(EdOI)tr(EdOZ)’ @)
fidelities of transmission [19]. We do not explore the . ‘

physical implications of this relation here but concentrate _ twr(E.OET O 4
on its consequences for quantum error correction codes. 7 0,0, EZ r(EaO1Eq02). @

We use these identities to derive the nonexistence of ) )

some codes. For example, we will show that there igvhere the sum is over all,; of distanced.

no degenerate 5 bit code which encodes 1 qubit of W€ define the weight enumerator as

information and corrects for a general 1 bit error; this n

implies that the perfect code of [9,11] is the best that can AR) = D Agz! (5)

be attained in this respect. We will also show that there d=0

is no 9 bit code which encodes 1 qubit of information andand a similar equation faB. The MacWilliams identities

corrects for a general 2 qubit error. are relationships between the weight enumeratts
Let us first introduce a basis of operators given by theand B(z) given by

Hermitian set
trOtr O, 1 —z

E={o] ®0; - ®0} (1) 5@ = 5r0,0,0 T3 A(l + 3z>' ©)
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[These are MacWilliams identities for codes over GF(4).]the MacWilliams identity (6) then follows from this

The proof uses the expansion &: in terms of the set

F as to
tr(D i
(9,‘ = Z r(in)D (7)
DEF 2
We can rewriteB,; as

B, — tI‘(D (91)

tr(E,DEY D) ——"
tr0,0, D,gD, duE

v tr(D;: (92) . (8)

It is easy to convince ourselves that we must have=

D' for the tracer(E;DET ;D’) to be nonzero as otherwise
there would be a Pauli matrix operating on at least one

qubit. We can now see how to relaBg to a sum ofd,
by deriving the coefficient for ever of weightd’ which
is equal to

_ w(0)tr(0y)

Qaar = 22ntr(@@)2t<EdDE*dD) 9)

expansion.

The origin of this relationship can be traced back to the
fact that the matri¥{;; = trE;E;E;E; is proportional to a
Hadamard matrix. As in the classical case, it is a “coarse
grained” version ofd;; which enters Eq. (9).

In the case whereéP. is a projection operator in the
subspace defined by the set of stdig$ we can rewrite
the weights as

1
Ag = % (15)

2
Z<Ci|Ed|Ci> ‘ )

(16)

d 2k ZZ|<cllEd|C1>|2

E, ij

From the Cauchy-Schwartz inequality we deduce that
these are non-negative numbers wkh = A,;. This is
because theB’s are defined as a sum of the modulus
squared of every element of the operators of weight

for D € E. To prove the relationship we need to projected on the code while thd's are the squared

prove it for only one elementD of distanced’ as

modulus of a sum.

all the others can be reached by permutations of the For a depolarizing channel with the probability of
qubits and transformations which are tensor products oflistance 1 error beingl — p)/3, the weight enumerator
1 qubit unitary transformations. Equations (3) and (4) are4 has the physical interpretation thatA((1 — p)/3p) is

invariant under these transformations.
For 2 qubits, the coefficients are given by

1 1 1
@0 = St @01 = St @0 = S
6 2 —
a0 = 5y = S =S (10)
pr— 9 . pr— _3 . — l
@0 = S @1 = S an =2

from which we deduce the relationship

By = = k(Ao + A+ Ad), (11)
B, = ﬂ(6A() + 24, — 24,), (12)
B, = o k(9AO —3A; + Ay), (13)
with tr(0))tr(0,)/tr(0,0,) = 2.
In general,
tr(0))tr(0) sod— S( ><n - d')

H T 0 (0,0,) Z( b3 d—s

(14)

the fidelity of entanglement [19]. This is the probability
that a completely entangled state constructed from the
basis states of the code remains intact after going through
the channel. The physical interpretation Bfis that
p"B((1 — p)/3p)/tr(P,) is the average fidelity [19], i.e.,
the average probability over the states of an incoherent
ensemble given byP. going through the channel and
giving the same states.

Necessary and sufficient conditions for the quantum
codeC to correct|(d — 1)/2] errors are [10] that for all
basis elementk:,), |c;) (a # b) of P.

(calEalea) = (cp|Ealcy) (17)

and

(calEglep) =0 (18)

for all elementsE, of distance less or equal . For

a degenerate code [i.e., when (17) is nonzero], we can
deduce from Egs. (15) and (16) thay = B, for 1 <

d' = d, and these quantities are zero for a nondegenerate
code. Thus the property of error correction restricts the
possible form of the weights. The existence of non-
negative weights is a necessary condition for a quantum

where thesth term in the sum comes from considering theerror correcting code to exist.

case in Eq. (9) where there are exactlgubits on which As a first example of the power of these inequalities, we
Pauli matrices act itk; and inD simultaneously. Equa- look for the possible existence of a degenerate 5 bit code
tion (14) is the standard expansion of the MacWilliamswhich protects 1 qubit of information against a general
identity in terms of Krawtchouk polynomials [17] and 1 qubit error. This implies we are looking for a code
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with n = 5 andk = 2 which satisfies the equations and ming techniques. The quantum Macwilliams identities

inequalities will lead to a strong bound on the existence of quantum
Ap + Al + Ay + A3 + Ay + As codes as the number of qubits grows large. This will be
By = 16 =4 =1, important to understand the capacity of noisy quantum
channels [19,21].
B, = 1540+ 1AL + 74 + 34 — Ay —5As _ We thank E. Knill for useful comments. We are
16 also grateful to D. DiVincenzo and W. Zurek for the
45A) + 21A; + 5A; — 3A3 — 3A4 + 5As invitation to participate in the Quantum Coherence and
By = 3 = Ay, Decoherence Workshop in Santa Barbara. This research
was supported in part by the National Science Foundation
By— 3240+ 2741 = 94y = SAs #7A4 =545, under Grant No. PHY94-07194 and by funds from the
) 8 ) National Security Agency (R.L.).
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