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Quantum Analog of the MacWilliams Identities for Classical Coding Theory
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We derive a relationship between two different notions of fidelity (entanglement fidelity and average
fidelity) for a completely depolarizing quantum channel. This relationship gives rise to a quantum
analog of the MacWilliams identities in classical coding theory. These identities relate the weight
enumerator of a code to the one of its dual and, with linear programming techniques, provide a powerful
tool to investigate the possible existence of codes. The same techniques can be adapted to the quantum
case. We give examples of their power. [S0031-9007(97)02478-2]

PACS numbers: 89.70.+c, 02.70.–c, 03.65.–w, 89.80.+h
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The discovery of error correcting codes [1,2] for qua
tum computers has revolutionized the field of quant
information. Although quantum computing holds gre
promise, it is plagued by the fragility of quantum info
mation [3–6]. Quantum error correction is a techniq
which enables one to encode quantum information i
robust way and therefore overcome this fragility.

It is important to classify codes in order to know wh
is the most compact way to encode a number of qu
against a given number of errors. Various techniq
have been used to discover such codes [1,7–16]. In
classical theory a very powerful technique for looking f
the existence of codes is the use of MacWilliams identit
[17]. They relate the weight distribution of a code to t
weight distribution of its dual code. These relationsh
can be used with linear programming to find bounds
how good quantum codes can be and to test whe
potential good codes can exist [18].

In this Letter we give a quantum analog to the weig
distributions which obey the (classical) MacWilliam
identities. These identities are a consequence of
relationship between two different traces of two arbitra
operatorsO1 and O2. When these operators are su
that O1 ­ O2 ­ r (r being any density operator) th
relationship gives a connection between two poss
fidelities of transmission [19]. We do not explore th
physical implications of this relation here but concentr
on its consequences for quantum error correction co
We use these identities to derive the nonexistence
some codes. For example, we will show that there
no degenerate 5 bit code which encodes 1 qubit
information and corrects for a general 1 bit error; th
implies that the perfect code of [9,11] is the best that c
be attained in this respect. We will also show that th
is no 9 bit code which encodes 1 qubit of information a
corrects for a general 2 qubit error.

Let us first introduce a basis of operators given by
Hermitian set

E ­ hs1
i ≠ s2

j · · · ≠ s
n
k j (1)
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for all i, j, . . . , k and wheres
n
k is chosen from the set o

Pauli matrices augmented by the identity, acting on
nth qubit. Note that all elements ofE give the identity
when multiplied by their Hermitian conjugate. We defin
the setEd as the subset ofE containing exactlyd Pauli
matrices different from the identity, and we call it the s
of distanced.

In a system interacting with an environment, erro
(differences from the original state) can be classified
bit flip, sign flip, or bit and sign flip [1,9] correspondin
to the three Pauli matrices. The setE corresponds to all
possible effects due to independent environments. If
assigned an equal probability ofs1 2 pdy3 every time a
Pauli matrix appears in a member ofE an initial stateri

would therefore evolve as

rf ­
X

E[E

pn2dsEd
µ

1 2 p
3

∂dsEd
EriE

y, (2)

whererf is the final state,n the number of qubits, and
dsEd is the distance of the operatorE.

We now define two weightsAd and Bd on operators
O1, O2, whered ranges from0 to n, as

Ad ­
1

trO1trO2

X
Ed

trsEdO1dtrsEy
d O2d , (3)

Bd ­
1

trO1O2

X
Ed

trsEdO1E
y
d O2d , (4)

where the sum is over allEd of distanced.
We define the weight enumerator as

Aszd ­
nX

d­0

Adzd (5)

and a similar equation forB. The MacWilliams identities
are relationships between the weight enumeratorsAszd
andBszd given by

Bszd ­
trO1trO2

2ntrO1O2
s1 1 3zdnA

µ
1 2 z

1 1 3z

∂
. (6)
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[These are MacWilliams identities for codes over GF(4).
The proof uses the expansion ofOi in terms of the set
E as

Oi ­
X

D[E

trsDyOid
2n D . (7)

We can rewriteBd as

Bd ­
1

trO1O2

X
D,Ed ,D0

trsEdDEy
dD0d

trsDyO1d
2n

3
trsD0yO2d

2n . (8)

It is easy to convince ourselves that we must haveD ­
D0 for the tracetrsEdDEy

dD0d to be nonzero as otherwise
there would be a Pauli matrix operating on at least on
qubit. We can now see how to relateBd to a sum ofAd0

by deriving the coefficient for everyD of weightd0 which
is equal to

add0 ­
trsO1dtrsO2d
22ntrsO1O2d

X
Ed

trsEdDEy
dDd (9)

for D [ E . To prove the relationship we need to
prove it for only one elementD of distance d0 as
all the others can be reached by permutations of th
qubits and transformations which are tensor products
1 qubit unitary transformations. Equations (3) and (4) ar
invariant under these transformations.

For 2 qubits, the coefficients are given by

a00 ­
1

2n2k
; a01 ­

1
2n2k

; a02 ­
1

2n2k
,

a10 ­
6

2n2k
; a11 ­

2
2n2k

; a12 ­
22

2n2k
, (10)

a20 ­
9

2n2k
; a21 ­

23
2n2k

; a22 ­
1

2n2k
,

from which we deduce the relationship

B0 ­
1

2n2k
sA0 1 A1 1 A2d , (11)

B1 ­
1

2n2k s6A0 1 2A1 2 2A2d , (12)

B2 ­
1

2n2k
s9A0 2 3A1 1 A2d , (13)

with trsO1dtrsO2dytrsO1O2d ­ 2k .
In general,

add 0 ­
trsO1dtrsO2d
2ntrsO1O2d

dX
s­0

s21ds3d2s

µ
d0

s

∂ µ
n 2 d0

d 2 s

∂
,

(14)

where thesth term in the sum comes from considering the
case in Eq. (9) where there are exactlys qubits on which
Pauli matrices act inEd and inD simultaneously. Equa-
tion (14) is the standard expansion of the MacWilliam
identity in terms of Krawtchouk polynomials [17] and
]

e

e
of
e

s

the MacWilliams identity (6) then follows from this
expansion.

The origin of this relationship can be traced back to th
fact that the matrixHij ­ trEiEjEiEj is proportional to a
Hadamard matrix. As in the classical case, it is a “coars
grained” version ofHij which enters Eq. (9).

In the case wherePc is a projection operator in the
subspace defined by the set of stateshcij we can rewrite
the weights as

Ad ­
1

22k

X
Ed

Ç X
i

kcijEdjcil
Ç2

, (15)

Bd ­
1
2k

X
Ed

X
ij

jkcijEd jcjlj2 (16)

From the Cauchy-Schwartz inequality we deduce tha
these are non-negative numbers withBd $ Ad . This is
because theB’s are defined as a sum of the modulus
squared of every element of the operators of weightd
projected on the code while theA’s are the squared
modulus of a sum.

For a depolarizing channel with the probability of
distance 1 error beings1 2 pdy3, the weight enumerator
A has the physical interpretation thatpnAssss1 2 pdy3pddd is
the fidelity of entanglement [19]. This is the probability
that a completely entangled state constructed from th
basis states of the code remains intact after going throug
the channel. The physical interpretation ofB is that
pnBssss1 2 pdy3pdddytrsPcd is the average fidelity [19], i.e.,
the average probability over the states of an incohere
ensemble given byPc going through the channel and
giving the same states.

Necessary and sufficient conditions for the quantum
codeC to correctbsd 2 1dy2c errors are [10] that for all
basis elementsjcal, jcbl (a fi b) of Pc

kcajEd0 jcal ­ kcb jEd0 jcbl (17)

and

kcajEd0 jcbl ­ 0 (18)

for all elementsEd0 of distance less or equal tod. For
a degenerate code [i.e., when (17) is nonzero], we ca
deduce from Eqs. (15) and (16) thatAd0 ­ Bd0 for 1 #

d0 # d, and these quantities are zero for a nondegenera
code. Thus the property of error correction restricts th
possible form of the weights. The existence of non
negative weights is a necessary condition for a quantu
error correcting code to exist.

As a first example of the power of these inequalities, w
look for the possible existence of a degenerate 5 bit cod
which protects 1 qubit of information against a genera
1 qubit error. This implies we are looking for a code
1601
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with n ­ 5 and k ­ 2 which satisfies the equations an
inequalities

B0 ­
A0 1 A1 1 A2 1 A3 1 A4 1 A5

16
­ A0 ­ 1 ,

B1 ­
15A0 1 11A1 1 7A2 1 3A3 2 A4 2 5A5

16
­ A1 ,

B2 ­
45A0 1 21A1 1 5A2 2 3A3 2 3A4 1 5A5

8
­ A2 ,

B3 ­
135A0 1 27A1 2 9A2 2 5A3 1 7A4 2 5A5

8
$ A3 ,

B4 ­
405A0 2 27A1 2 27A2 1 21A3 2 11A4 1 5A5

16
$ A4 ,

B5 ­
243A0 2 81A1 1 27A2 2 9A3 1 3A4 2 A5

16
$ A5 .

This is a set of linear equations and inequalitie
in the Ai, which can easily be solved using linea
programming techniques. We find that the only solutio
is given by Ai ­ s1, 0, 0, 0, 15, 0d and thereforeBi ­
s1, 0, 0, 30, 15, 18d. This is the unique solution and since
A1 ­ A2 ­ 0 it corresponds to a nondegenerate cod
Thus no degenerate code exists for 5 bits. An expli
code with this weight enumerator was found in [9,11].

In a similar way, we can also show that it is not possib
to find a code which protects 1 qubit of information
against two errors usingn ­ 9 qubits. A solution of
the Macwilliams identities exists for codes mappin
1 qubit inton ­ 10 qubits; however, an extension of the
techniques in this Letter based on classical shadow co
techniques rules this possibility out as well [20]. Th
smallest possible code protecting against two errors th
would map 1 qubit inton ­ 11 qubits; such a code was
constructed in [15].

Both possibilities eliminated above would have re
quired degenerate quantum codes. These might have
lowed us to find more compact codes than would ha
been expected from an analogy to classical codes. A s
tematic study of the MacWilliams identities forn # 30
[20] shows that this is not the case. The most compa
codes appear not to be degenerate. It will be interest
to know if this holds asn ! `.

In conclusion, we have derived the quantum analog
the MacWilliams identities which give necessary cond
tions for the existence of codes. We have demonstra
the power of these identities by showing the nonexi
tence of certain degenerate codes using linear progra
1602
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ming techniques. The quantum Macwilliams identiti
will lead to a strong bound on the existence of quantu
codes as the number of qubits grows large. This will
important to understand the capacity of noisy quant
channels [19,21].
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