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Possible occurrence of an equilibrium thermodynamic phase with spontaneously broken time-rev
symmetry is studied in a model ceramic superconductor with anisotropic pairing symmetry. It is sh
by Monte Carlo simulations that such a “chiral-glass” phase is stable even under the influenc
screening. Critical exponents associated with the chiral-glass transition are close to those of the
spin glass. [S0031-9007(97)02438-1]
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Recent experiments have revealed that cuprate hi
Tc superconductors have an anisotropic pairing symm
try, probably of thedx22y2-wave type [1]. Naturally, one
may expect that such an anisotropic nature of the sup
conducting order parameter could give rise to novel the
modynamic properties not encountered in the conventio
s-wave superconductors. In bulk single crystals, howev
this appears not to be the case since thedx22y2-wave or-
der parameter is characterized by a single phase varia
of the condensate as in the conventional superconduct
By contrast, in ceramic or granular samples, the situati
may well differ because ceramic samples can be regard
as a random Josephson network and the anisotropic su
conducting order parameter largely modifies the propert
of the Josephson junction. One remarkable effect is t
appearance of the “p junction” characterized by thenega-
tive Josephson coupling across which the order parame
changes the phase byp . Indeed, suchp junctions were
invoked by Sigrist and Rice [2] to explain the paramag
netic Meissner effect observed experimentally in certa
high-Tc ceramics [3,4].

Among a variety of macroscopic thermodynamic prop
erties of superconductors, the type and the nature of p
sible thermodynamic phases is of central importance. F
example, considerable attention has recently been paid
the possible phase ofrandomhigh-Tc superconductors in
applied magnetic fields. While the existence of a vorte
glass phase with zero linear resistance was predicted
recent simulations suggest that the screening effects ev
tually destabilize it [6].

Meanwhile, one of the present authors (H. K.) recent
proposed that a novel thermodynamic phase might oc
in zero external fieldin certain ceramic high-Tc super-
conductors [7]. This phase is characterized by a spo
taneously broken time-reversal symmetry with keeping
U(1) gauge symmetry, and is called a “chiral-glass phas
The order parameter is then a “chirality,” quenched-
half a vortex, which represents the direction of the lo
cal loop-supercurrent circulating over grains. The frustr
tion effect, which arises due to the random distribution
0031-9007y97y78(8)y1556(4)$10.00
gh-
e-

er-
r-

nal
er,

ble
ors.
on
ed

per-
ies
he

ter

-
in

-
os-
or
to

x-
[5],
en-

ly
cur

n-
a

e.”
in
-

a-
of

p junctions, is essential to realize the chiral-glass phas
The existence of this phase has some experimental s
port from the recent ac susceptibility measurements [8].

However, the theoretical analysis of Ref. [7] was base
on an analogy to theXY spin glass [9], and completely
neglected the effects of screening (coupling of the co
densate to fluctuating magnetic fields). Thus, the fate
the proposed chiral-glass phase in the presence of scre
ing is not yet clear. It should be noted that the scree
ing effect could be substantial in intergranular orderin
of ceramic high-Tc materials, since the length unit to be
compared with the penetration depth is the grain siz
s,1 mmd rather than the short coherence length of th
Cooper pair. As the screening effect makes the otherwi
long-ranged interaction between chiralities short range
one may wonder if it would eventually wash out a shar
phase transition and destabilize the chiral-glass phase, j
as it destabilizes the vortex-glass phase of type-II supe
conductors in a field.

In the present Letter, we study by extensive Monte Car
simulations the question whether the hypothetical chira
glass phase is really stable in the presence of screeni
Our calculation is based on a simple three-dimension
lattice model introduced by Domı´nguezet al. [10]. The
linear [10] and nonlinear [11] susceptibilities of this mode
were studied, but neither of the previous simulations wa
fully equilibrated, and the question about the existence
a true equilibrium phase remains open. By performin
an equilibrium simulation based on an extended ensem
method recently proposed by Hukushima and Nemoto [12
we have found that there indeed exists a stable chiral-gla
phase with a spontaneously broken time-reversal symme
even in the presence of screening. Critical exponen
characterizing the chiral-glass transition are determined

We consider the Hamiltonian given by [10,11]

H ­ 2
X
kijl

Jij cossui 2 uj 2 Aijd

1
1

2L

µ
f0

2p

∂2 X
p

s $= 3 $Ad2, (1)
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whereui is the phase of the condensate at a grain on
ith site of a simple cubic lattice,$A the fluctuating gauge
potential, f0 the flux quantum,L the self-inductance
of a loop (an elementary plaquette),Jij the Josephson
coupling, and the lattice curl is the directed sum ofAij ’s
round a plaquette. The first sum in Eq. (1) is tak
over all nearest-neighbor bonds on the lattice, wher
the second sum is over all elementary plaquettes
the lattice. Quenched randomness occurs only in
distribution ofJij , which is assumed to be an independe
random variable taking the valuesJ or 2J with equal
probability (6J distribution), each representing 0 an
p junctions. While our simulation is performed fo
this particular distribution ofJij , one could expect from
experience in spin-glass studies that the results would
rather insensitive to the details of the distribution, e.g.
slight asymmetry between6J or the detailed form of the
distribution.

Note that, contrary to the well-studied vortex-gla
(gauge-glass) models, the present Hamiltonian define
zero field keeps the time-reversal symmetry, and the fr
tration arises from the random distribution of the neg
tive coupling,not from external magnetic fields. The bar
Josephson penetration depth in units of lattice spacin
given byl0 ­ 1y

p
L̃ , whereL̃ is the dimensionless in-

ductance defined by

L̃ ­ s2pyf0d2JL . (2)

Magnetization per plaquette is given by

m ­ s4pSNpd21
X

p[kxyl

$= 3 $A , (3)

whereS is the area of a plaquette and the sum is tak
over all Np plaquettes on thekxyl plane. The local
chirality may be defined at each plaquette by the gau
invariant quantity [7,11],

kp ­ 223y2
pX

kijl
sJijyJd sinsui 2 uj 2 Aijd , (4)

where the sum runs over a directed contour along the s
of the plaquettep. Note that the chirality is a pseudoscal
in the sense that it is invariant under global U(1) gau
transformation,ui ! ui 1 Du, Aij ! Aij , but changes
its sign under globalZ2 time-reversal transformation
ui ! 2ui , Aij ! 2Aij .

We choose the gauge where theAij ’s along thez di-
rection are fixed to be zero, and impose free bound
conditions on all sides of the lattice [13]. Simulation
performed according to the version of an extended ens
ble method of Ref. [12], where the whole configuratio
at two neighboring temperatures of the same sample
occasionally exchanged. Most extensive calculations
made for the inductancẽL ­ 1, which corresponds to the
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bare penetration depthl0 equal to one lattice spacing. We
expect that the effect of screening should manifest itself f
this inductance even for rather small lattices studied he
which containL 3 L 3 L sites withL ­ 4, 6, 8, 10. The
sample average is taken over 1540sL ­ 3d, 1000sL ­ 4d,
500 sL ­ 6d, 300 sL ­ 8d, and 100sL ­ 10d indepen-
dent bond realizations. We run in parallel two indepe
dent replicas with the same bond realization and compu
the overlap between the chiral variables in the two ind
pendent replicas,

q ­ N21
p

X
p

ks1d
p ks2d

p . (5)

In terms ofq, the Binder ratio of the chirality is calculated
by

gCG ­ s3 2 fkq4lgyfkq2lg2dy2 , (6)

where k· · ·l represents the thermal average andf· · ·g
represents the average over bond disorder. Since
present spin-glass-like model possesses the link variab
in addition to the site variables, an equilibrium simulatio
is rather hard even with the new efficient algorithm
Typically, for a given sample, we prepare 20 temperatu
points and perform1.5 3 105 exchanges per temperatur
of the whole system, combined with the same numb
of standard “single-spin-flip” Metropolis sweeps [12]
Equalibration is checked by monitoring the stability of th
results against at least three-times longer runs for a sub
of samples.

Figure 1(a) displays the size and temperature d
pendence ofgCG for L̃ ­ 1. The data ofgCG for
L ­ 3, 4, 6, 8 all cross at almost the same temperatu
T , 0.28 0.29, suggesting the occurrence of a finite
temperature chiral-glass transition atTc ­ 0.286 6 0.01
(T is measured in units ofJ). Via a standard finite-size
scaling, the chiral correlation-length exponent is es
mated to benCG ­ 1.3 6 0.2 [see Fig. 1(b)]. A similar
finite-size scaling analysis has also been made for
chiral-glass susceptibilityxCG ­ Npfkq2lg (not shown
here), yielding the chiral critical-point-decay exponen
hCG ­ 20.2 6 0.2. The obtained chiral-glass exponent
are reasonably close to the values determined previou
for the model without screening,nCG ­ 1.5 6 0.3 and
hCG ­ 20.4 6 0.2 [7,9], and are also close to the
spin-glass exponents of the three-dimensional Ising s
glass [14]. Thus, our present result seems consistent w
the view that the screening effect is irrelevant at the 3
chiral-glass transition and that it lies in the universalit
class of the Ising spin glass. Anyway, the occurrence
an equilibrium ordered phase appears to be clear, and
in sharp contrast to the vortex-glass problem where t
screening is found to destabilize the equilibrium ordere
phase [6]. Presumably, such a difference comes from
fact that the broken symmetry is a discreteZ2 symmetry
here while it is a continuous U(1) symmetry in [6].
1557



VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997

ro-

l
ed
e

al
m
e
n.
is

s

l-
as
FIG. 1. (a) The temperature and size dependence of
Binder ratio of the chiralitygCG for L̃ ­ 1. Inset is a
magnified view around the transition temperatureTc , 0.286.
(b) Finite-size scaling plot ofgCG with Tc ­ 0.286 andnCG ­
1.3.

We have also computed the zero-field linear and no
linear susceptibilities,x andx2 defined byx ; dmydH
andx2 ; s1y6dd3mydH3 (H is the external field), via fluc-
tuations of the magnetization (3). As can be seen fro
Fig. 2(a), the equilibriumx is paramagnetic over an en
tire temperature range studied, including in the disorder
phaseT . Tc, without a clear anomaly atTc. In shorter
simulations on the same model where the full equilibr
tion is not achieved,x tends to get smaller and sometime
becomes negative [11]. It should be noted that the s
of x is in fact a nonuniversal property: Effects not take
into the present model, such as intragranular supercurre
1558
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FIG. 2. The temperature and size dependence of the ze
field linear susceptibilityx (a), and of the zero-field nonlinear
susceptibility x2 (b), for L̃ ­ 1. x2 is given in units of
s4pSyf0d2. An arrow represents the location of the transition
point.

could give additional diamagnetic contribution in rea
systems, and could easily change the sign of the observ
x. By contrast, on general theoretical grounds, th
nonlinear susceptibilityx2 is expected to show a negative
divergence at the transition point where the time-revers
symmetry is spontaneously broken in a spatially rando
manner [7,11]. Indeed, as shown in Fig. 2(b), we hav
observed a behavior fully consistent with this expectatio
The exponent associated with this negative divergence
estimated asg2 , 4.4.

We also made similar calculations for other inductance
including L̃ ­ 3, 4, 5 in order to study the inductance
dependence of the ordering. As expected, the chira
glass transition temperature monotonically decreases
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L̃ increases. The obtained phase diagram in theT -L̃
plane is sketched in Fig. 3. There appears to be
finite critical value of the inductance,5 & L̃c & 7, above
which there is no equilibrium chiral-glass transition.

The dimensionless inductancẽL given by Eq. (2) is
a highly sample-dependent quantity. Our present res
suggests that an equilibrium chiral-glass state could
realized in the type of samples with smallerL̃ , but largely
suppressed for the samples with largerL̃ . One may
roughly estimate the typical value of̃L in real granular
samples: If one models a loop as a cylinder of radiusr
and heighth, its inductance is given byL ­ 4p2r2yh.
Putting r , 1 mm, hyr , 0.01, and J , 20 K (these
values are chosen to mimic the sample used in Ref. [8
one getsL̃ , 1022. Since this value is considerably
smaller than the possiblẽLc, an equilibrium chiral-glass
phase may well occur in such samples. By contrast, if t
sample has too large a grain size or too strong Joseph
coupling, an equilibrium chiral-glass phase may not
realized. Another requirement is that the grains mu
be connected via weak links into an infinite cluster, n
decomposed into finite clusters. Obviously, finite-clust
samples cannot exhibit a chiral-glass transition, althou
the paramagnetic Meissner effect is still possible [2
The chiral-glass transition could be detected by stand
magnetic measurements looking for a negative diverge
of x2 or an aging phenomenon [15]. Recently, a sha
negatively divergent anomaly ofx2 was reported in a
YB2C4O8 ceramic sample by the ac method [8], whic
might be a signal of the chiral-glass transition. It may al
be possible to detect a spontaneously induced flux in

FIG. 3. A phase diagram in theT -L̃ plane. Renormalized
inductanceL̃ is defined by Eq. (2). The data point at̃L ­ 0
is taken from Ref. [9].
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chiral-glass state by muon spin relaxation or by electro
holography in zero external field.

In summary, we have shown by extensive Monte Car
simulations that an equilibrium zero-field phase wit
spontaneous broken time-reversal symmetry, a chira
glass phase, is possible in certain ceramic superconduct
with anisotropic pairing symmetry. This phase is truly
stable even in the presence of screening. It is interesti
to experimentally search for this novel phase, since
could be realized only in anisotropic superconductors su
asd-wave superconductors.

The numerical calculation has been performed on th
FACOM VPP500 at the supercomputer center, Institu
of Solid State Physics, University of Tokyo. One of the
authors (M. S. L.) thanks the Japan Society for Promotio
of Science for the award of a fellowship.
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