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Quantum Phase Slips and Transport in Ultrathin Superconducting Wires
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We present a microscopic study of the quantum fluctuations of the superconducting order parameter
in thin homogeneous superconducting wires at all temperatures lelowhe rate of quantum phase-
slip processes determines the resistaR(®) of the wire, which is observable in very thin wires, even at
low temperatures. Furthermore, we predict a new low-temperature metallic phase below a critical wire
thickness in the 10-nm range, in which quantum phase slips proliferate. [S0031-9007(97)02502-7]

PACS numbers: 74.40.+k, 74.20.—z

The role of fluctuations for the superconducting tran-the magnitude of the resistance for the thinnest wires
sition in reduced dimension is well known. Above the measured in Ref. [4] yieldSqps ~ 10 with the QPS rate
critical temperaturé’, fluctuations yield an enhanced con- by orders of magnitude larger than that derived from the
ductivity [1]. Below T. one-dimensional (1D) supercon- above estimates.
ductors have a finite resistance due to thermally activated In this Letter we argue that the above estimate needs
phase slips (TAPS) [2]. Close t6,. the experimental qualitativeimprovement. First, the estimate for the poten-
results [3] fully confirm the theoretical predictions [2]. tial barrier can be improved upon: as the typical electron
However, as the temperature is lowered the number afhean free path in the wires [4] is very smals 10 nm,
TAPS decreases exponentially and no measurable resisne should rather tak¢ ~ /[&) < &, for the typical
tance is predicted by the theory [2] @t not very close QPS size. Second, we show below that the role of the
to T.. Nevertheless, the experiments by Giordano [4]electromagnetic field for thin wires was overestimated in
clearly demonstrate a notable resistivity of ultrathin su-Ref. [8] (roughly by a factor ofg/A; ~ 1071-1072; A is
perconducting wires far below.. More recently, other the London length of a bulk superconductor). Third, the
groups reported on strong deviations from the TAPS predissipative currents turn out not to have a strong impact
diction in thin (quasi-)1D wires as well [5,6]. on the QPS rate, especially in the limit of Ioft  Also

The natural explanation of these obeservations is ifrom a general point of view, TDGL-based theories [7,8]
terms of quantum fluctuations which generate quantunare insufficient a” not very close tdl'. and fail to give
phase slips (QPS) in 1D superconducting wires. A firsigualitatively correct results. A microscopic theory of QPS
estimate [4] for the QPS tunneling rateexp(—Sqps),  is needed that accounts for nonequilibrium, dissipative, and
however, leads to the disappointing conclusion that thelectromagnetic effects during a QPS event.
action Sgps roughly equals the number of transverse This theory is reported upon below. Taking into
channelsN., = k7S in the wire (§ = 7r{ is the cross account the above effects veetermineboth the typical
section of the wire), which is very large even for the sizex, and time scale of a QPS core. For a dirty wire
thinnest wires used in the experiments [4] (e.g., forin the Drude limit we obtaing =~ como = (£2co/Ao)'/?
ro ~ 107% cm we haveSgps ~ 10%-10°), and therefore (co is the velocity of the Mooij-Schén mode [10]). For
QPS effects should be strongly suppressed. This estimatgpical parameters the produshr, (which enters into
is obtained from the formulaSqps ~ Ugps/w,, With  Sqps) is smaller than the naive estimaté,/A. The
energy barrierUqps and attempt frequencyn, ~ A.  resulting QPS actiorSops ~ NoS(Ao&)*3 /et is also
Assuming Uqps to be the condensation energ§A*/2  smaller by a factor of~102, and thus for sufficiently
in a volume &S durin% a time A™!, one obtains thin wires QPS’s are observable for @ll Furthermore,
Sqps ~ £0SNoA?/2A ~ kpS/4m? ~ Nen. A similar gt 7 = 0 we predict a newmetal-superconductofMS)
estimate has been obtained using a phenomenologicghase transition governed by electromagnetic interactions
time dependent Ginzburg-Landau (TDGL) free energybetween different QPS’s. We also evaluate the effective
with second order time derivatives [7,8]. Furthermore resistance of a 1D superconducting wire and determine
recently Duan [8] argued that the electromagnetic fieldhe crossover temperature between the regimes of TAPS
yields an additional suppression of the QPS rate by thend QPS.
factor of exg—1/a); a@ = 1/137 is the fine structure  The modek—Our calculation is based on the effective
constant. Even further suppression of this rate—similagction approach for a BCS superconductor [11]. The
to the case of Josephson junctions [9]—can be expectestarting point is the partition functiod expressed as an
due to dissipative currents in the QPS core. In contrasimaginary time path integral over the electronic fieldds
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and the gauge fieldg, A, with Euclidean action where the kinetic inductance = m/(e?n,S) and the ki-
s (P - . ) netic capacitanc€ = Se?Nyn,/n have been introduced,
S=[ d l‘fo driy [0, —ieV + E(V—ieA/c) ], as well asC’ = Se*Noyn,/n, which we will drop from
— g%%%l/ﬁ + ieVn; now on in the limitz; > n, atlow7T. The geometry and
5 5 screening by dielectrics outside the wire are accounted for
+ [E7 + B]/87}. by the capacitance per length = €,[2In(xo/r0)]” " and
HereB = 1/T, £&(V) = —V?/2m — u describes a single the inductance times length = 2In(xo/r)/c? that re-
conduction bandg is the BCS coupling constantn; de-  Place theE> + B term. Herec is the velocity of light
notes the background charge density of the ions, and uni&de, the dielectric constant of the substrate.
in which i = kg = 1 are used. A Hubbard-Stratonovich  Single QPS—Outside the phase-slip core, the equa-
transformation introduces the energy gapas an order tions of motion forV, A, and¢ are solved by the saddle
parameter and the electronic degrees of freedom can H9INt

integrated out. What remains is an expression for the c! + ¢!
partition function in terms of an effective action fd, @ = argx + icoT); c(z) = 1
V, and A, with a saddle-point solutiold = Agcs and

= = ;0 A= = .
1+ C/C 2e 1+ L/L 2e

B 2 2 2
seffzjd%f dT|:|A| L E+B :|—Tr InG~!, _ _ _ _
0 g 87 The space-time anisotropy is determined by the plasmon
velocity cg, rather than bywr. For generic parameters
the velocity ¢y reduces to the velocity of the Mooij-
my2 Schén mode, which has dispersian® = cygk? with
+ (f(V) + ZS - ie@)&s, cus = Sw,,/4mC [10], where w,; is the 3D plasma
frequency. The corresponding saddle-point action is

G'= <87- + é{V,V;})i + Aogo

where the superfluid velocityv, = (1/2m)[Ve —
2¢A/c], the chemical potential for Cooper pairs Sk = pIn[min(coB, X)/ max(coo, x0)], 1)
® =V — ¢/2e, andA = Age'¥ have been introduced.

Effective action—The effective theory is constructed with u = 7 /[4e2co(L + L)].

by expanding up to second order around the saddle point The contribution from the core part is estimated to be
in ® and v, to obtain the electronic polarization terms.

Using the Ward identity from gauge invariance, the result SE = No S7oxoA2

can be written as the sum of terms, related to the normal 2

and superfluid densities, andn,, which describe normal S XoO x0\ |? 5
and superconducting “screening,” respectively [12] + EI Z oyl E @p> "y - (2

w,|>7

2|w,l The first part is the condensation energy that is lost

mng 5, 5 Ny n My - inside the core and the second part defines the energy of
+ S] dx d7< v; te NO[; Vet n @ D dissipative currents in the core during a phase-slip event.
where use was made of the one-dimensional natyre (We assume that the conductivity equals the normal state

£ of the problem, andr is the conductivity of the wire. value inside the QPS core.) Inserting the saddle-point

Transverse screening is irrelevant if the London penetra‘?Oluuon' and minimizing the action with respectpand

i ~ ~ 2 2y1/3 *
tion depthA, > ro and we retain only one component of 70 W€ find.xo ~ coro = (7.co/2¢*NoAg)"” andSg,. as

core
the vector potential [2]. three times the condensation energy in (2). In the Drude
A phase-slip event in imaginary time involves a sup-

S
Spi == > fdx 7 g
B loi=a,

limit o = 2¢2Nyvrl/3, we obtain xo = (£2co/Ag)/?

pression of the order parameter in the phase-slip core anacpd /3

a winding of the superconducting phase around this core. Soore = BNoS(AgE)3 /ey, b ~ 1. 3)

We now separate the total Q.PS actiiges Into a core QPS Interactions—The next step is to consider a gas
part Score around the pha.se-_shp_ center for which the CoN-o QPS'’s in a superconducting wire. We also assume
Qensatlon energy and dissipation by normal currents arg ¢ an applied currenf (much smaller than the de-
important (scalex = xy, 7 =< 7¢), and a hydrodynamic

) ; pairing current) is flowing through the wire. Substitut-
ey fehen s on he PYOrO%: ing e saade-point soluon = 37 p(x = .7 1)

into the action and keeping track of the additional term

} -
Sout = ] dx d7.<c +C V2 + < ®2 [dr [dx(I1/2e)d. ¢ [11], we find
2 2
ij D
n 1, n m2V52> Sy = nSere — /.LZVilljln<&>+ _OIZViTi~ (4)
2Lc? 2e2L)° i#] X0 ¢ 5
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Here p;j = [c5(ri — 7))> + (x; — x;)?]"/? defines the bound QPS-AQPS pair. [See Ref. [11] (Chap. 5.3) for a
distance between thih andjth QPS in the(x, 7) plane, discussion of a similar procedure.] The one QPS-AQPS
v; = +1 (—1) are the QPS (anti-QPS) “charges,” andpair contributionsé F to the free energy of the wire is

®y = hc/2e is the flux quantum. Only neutral QPS 2 B X

configurations withw,,, = >" »; = 0 (and hence: even) oF = X ] dr ] dx e ®olr/0)=2uinlp(r.x)/x0],
contribute to the partition function. This is a consequence 070 Jro T0 Jx X0 (6)
of the boundary conditior(x,7) = ¢(x,7 + B) in the

path integral for the partition function [11]. where p = (372 + x2)!/2. It is convenient to first

Metal-superconductor phase transitiealFor 7 =0 integrate over the spatial coordinateand take the wire
Eq. (4) defines the standard model of a 2D gas ofengthX — «. For nonzerd the expression in Eq. (6) is
logarithmically interacting charges;. The effective formally divergent for3 — < and acquires an imaginary
(small) fugacity y of these charges (or the QPS ratepart Im §F after analytic continuation of the integral
y/x070) iS over the temporal coordinate [11,15]. This indicates

_ Bexp—S* ). 5 a QPS-induced instability of the superconducting state of
y = ot A= Seore ©) the wire: the state with a zero phase differedeg(X) =
where B is the usual fluctuation determinant with zero ¢(X) — ¢(0) = 0 decays into a lower energy state with
modes excluded. From the Coulomb gas analogy, we cors¢(X) = 27. The corresponding decay rate Iis,, =
clude that a Kosterlitz-Thouless-Berezinskii (KTB) phase2lm §F. The rate for the opposite transition (which is
transition [13] for QPS’s occurs in a superconducting wirenonzero at nonzer@) is defined analogously with —
atu = u* =2+ 4wy = 2: for p < u* the density of —71. The average voltage drop = (®y/c)[T2,(I) —
free QPS in the wire (and therefore its resistance) alway¥, . (—1)] across the wire is
remains finite, whereas far > u* QPS’s and anti-QPS’s _ ®oXy? JTT(p — %) Dol
(AQPS) are bound in pairs and tkieear resistance of a V= sinfn ——
g o ctoxg I'(w)I'Qu — 1) 2¢T
superconducting wire is strongly suppressed Ardepen-
1 i (I)()I 2 2777'0 2u2
Nw-—+—— .

dent. We arrive at aimportant conclusionat7 = 0 a <z

1D superconducting wirés in a superconducting state, 2 7 2¢cT B

with vanishing linear resistance, provided the eIectromagT(x) is the Euler gamma function. For the wire resistance
ingtu;m;er;ftlon between phase slips is sufficiently strongR(TJ) — V/I this yields R  T>*=> and R x I24-3

The above analysis is valid for sufficiently long wires. for > @l and T < @ol, respectively. For thick

For typical experimental parameters, howe&r< co8 wires with p > p*, we _éxpect a strong temperature
(or even X < cof), and the finite wire size needs dependence of the resistivity. For thinner wires the

to be accounted for. To this end, we first apply thel€Mperature dependence of the resistivity becomes linear
standard 2D scaling énalysis [13]x > —4m2u2y? and at the transition to the disordered phase in which our

a1y = (2 — u)y, whereu andy depend on the scaling ﬁga:f'sa'? Q/O%Z“dd“ féfcbfll/ac _W(ihgxlfeqtast;or:jgg/
parameter/. Solving these equations up to= Iy = niinears- racterist N NICK WIres, an

. . _ universala(u®) = 2 in thin wires at the transition into
In(X/fCO_) we obtain the renormalized valugs 'u(-lX) the resistive state with/ ~ I, i.e., a = 1. Note that
and y = y(lx). For larger scaleg > Ix only the time . L .
coordinate matters and the problem reduces to a that of ' contrast to the KTB transition in 2D superconducting

1D Coulomb gas with logarithmic interaction. Therefore, : rEs, the J#m{o IS fr;”i - /ZTtO L, mstgad otz = é’ to %w
(for ¥y <« 1) further scaling forl > Iy is defined by ora short wire co/T W€ again proceed in two

[11,14] 0, = 0 and 9,y = (1 — w)y. For i > 1 the S'E[epS; ,f\ 2DdS(;ﬂ“ng _anaIyS|s. y|elctisﬁthe_ glc))(b/al p;laram-
fugacity scales down to zero, which again corresponds t§ er|5y, K ?t? h € m!ctr.OSTOP'ﬁ cut Od "J_ Toh 0. 1N i
a superconducting phase, whereas ok 1 it increases anajogy wi € resistively shunted Josephson junction

indicating a resistive phase in complete analogy to a{ll]’ the voltage drop from the imaginary part of the free

single Josephson junction with Ohmic dissipation. ThusENerey reads

X

our above conclusion about the presence of a MS phase V= 2005 %)

transition atT = 0 remains valid also for relatively short I'Cu)c7y 2¢T

wires, aIthou.gh the phasg .transition point is given by the ) idol \ 2 [ 27, T2
somewhat different conditiom = 1. In practice, both X |T'{a + S B ,

conditionsuy = u* and i = 1 are realized in wires with

diameter2ry ~ 10-20 nm; see also the discussion below. giving R « 72472 and R « [?#~2, respectively, at high
Wire resistance at low At any nonzerdl" the wire  and low7. This result is valid foriz > 1 and also for

has a nonzero resistan@q7, ) even in the “ordered” smaller i at not very smalll [11]. At T — 0 in the

phaseux > u* (or & > 1). In order to evaluat®(T) in  metallic phase the resistance flattens off and becomes [11]
this phase for a long wire we proceed perturbatively and

first calculate the free energy correctioF due to one R =R,/f1, (8)
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whereR, = m/2¢? = 6.5 kQ) is the quantum resistance. This is consistent with our prediction that wires with cross
Note that in this limit the size dependence of the resissectionS < 10713 cn? (i.e., u < 1-2) exhibit metallic

tance enters only through the renormalized vaiue behavior even al’ = 0. Further measurements at lower
Crossover temperature-The crossover between the T would be desirable to verify our conclusions.
TAPS and the QPS regime occurs at a temperattthat Note that superconductivity in wires with radiug ~

can be estimated by comparing the corresponding resi$-nm is not destroyed by finite size and level spacing
tivities Rtaps andRqps. The standard result of Ref. [2] effects; particles of radius down to 1-3 nm do turn

iS  Rraps = BQ(h/4e?)exp(—BAF), with AF =  superconducting [16]. Finally, the MS phase transition
V2 H?S¢ /3, attempt frequency) = (X/£)\/BAFr; !, discussed here is in many respects different from that in
and relaxation timer; ! = 8(T, — T)/w. For thin granular wires [17]. In the latter case the onsite Coulomb
wires with u < S} .. the valueT* which follows from a interaction drives the transition into an insulating phase.
comparison of the exponenBA F and2S;,,. is For homogeneous wires, in contrast, the transition is into
a metallic state.
T = AF A§/3c(1)/3/§1/3. (9) In conclusion, we have studied QPS’s starting from
28 ore microscopic theory and find a measurable resistivity in

. ) ) superconducting ultrathin wires at temperatufe 7.,
The pre-exponential factds in Eq. (5) can be estimated 55 \vell as a new superconductor to metal phase transition
by matching the pre-exponential factors Bfyps and g 3 function of the wire thickness.
Rraps @tT = T7. A more detailed analysis of the pre-  \ye thank G. Blatter, R.Fazio, D. Geshkenbein,
exponent will be published elsewhere. G. Schon, and A. Tagliacozzo for encouragement. Sup-
7?ISCUSSIOH—F0r typical  system  parameters port py the Humboldt Foundation, Deutsche Forschungs-
kp= ~02nm <l ~7nm< £~10nm< & ~ AL ~  gemeinschaft within SFB 195, the Swiss National Fonds,

100 nm, we find thatZ and C drop out of the problem anq NSF Grant No. 95-28535 is gratefully acknowledged.
and L and C determine the physics (unle§s~ T, or

e, > 1). We will also take the lengtly of the wire to be
smaller than the localization length, so that localization ef-
fects do not play a role. Taking ~ 10 nm ande, = 1,
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