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Quantum Phase Slips and Transport in Ultrathin Superconducting Wires
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We present a microscopic study of the quantum fluctuations of the superconducting order parameter
in thin homogeneous superconducting wires at all temperatures belowTc. The rate of quantum phase-
slip processes determines the resistanceRsT d of the wire, which is observable in very thin wires, even at
low temperatures. Furthermore, we predict a new low-temperature metallic phase below a critical wire
thickness in the 10-nm range, in which quantum phase slips proliferate. [S0031-9007(97)02502-7]

PACS numbers: 74.40.+k, 74.20.–z
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The role of fluctuations for the superconducting tra
sition in reduced dimension is well known. Above th
critical temperatureTc fluctuations yield an enhanced con
ductivity [1]. Below Tc one-dimensional (1D) supercon
ductors have a finite resistance due to thermally activa
phase slips (TAPS) [2]. Close toTc the experimental
results [3] fully confirm the theoretical predictions [2
However, as the temperature is lowered the number
TAPS decreases exponentially and no measurable re
tance is predicted by the theory [2] atT not very close
to Tc. Nevertheless, the experiments by Giordano
clearly demonstrate a notable resistivity of ultrathin s
perconducting wires far belowTc. More recently, other
groups reported on strong deviations from the TAPS p
diction in thin (quasi-)1D wires as well [5,6].

The natural explanation of these obeservations is
terms of quantum fluctuations which generate quant
phase slips (QPS) in 1D superconducting wires. A fi
estimate [4] for the QPS tunneling rate~exps2SQPSd,
however, leads to the disappointing conclusion that
action SQPS roughly equals the number of transver
channelsNch ­ k2

FS in the wire (S ­ pr2
0 is the cross

section of the wire), which is very large even for th
thinnest wires used in the experiments [4] (e.g.,
r0 , 1026 cm we haveSQPS , 102-103), and therefore
QPS effects should be strongly suppressed. This estim
is obtained from the formulaSQPS , UQPSyva, with
energy barrierUQPS and attempt frequencyva , D.
AssumingUQPS to be the condensation energyN0D2y2
in a volume j0S during a time D21, one obtains
SQPS , j0SN0D2y2D , k2

FSy4p2 , Nch. A similar
estimate has been obtained using a phenomenolog
time dependent Ginzburg-Landau (TDGL) free ener
with second order time derivatives [7,8]. Furthermo
recently Duan [8] argued that the electromagnetic fie
yields an additional suppression of the QPS rate by
factor of exps21yad; a ­ 1y137 is the fine structure
constant. Even further suppression of this rate—sim
to the case of Josephson junctions [9]—can be expec
due to dissipative currents in the QPS core. In contra
52 0031-9007y97y78(8)y1552(4)$10.00
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the magnitude of the resistance for the thinnest wir
measured in Ref. [4] yieldsSQPS , 10 with the QPS rate
by orders of magnitude larger than that derived from t
above estimates.

In this Letter we argue that the above estimate nee
qualitativeimprovement. First, the estimate for the pote
tial barrier can be improved upon: as the typical electr
mean free path in the wires [4] is very smalll & 10 nm,
one should rather takej ,

p
lj0 ø j0 for the typical

QPS size. Second, we show below that the role of t
electromagnetic field for thin wires was overestimated
Ref. [8] (roughly by a factor ofr0ylL , 1021-1022; lL is
the London length of a bulk superconductor). Third, th
dissipative currents turn out not to have a strong impa
on the QPS rate, especially in the limit of lowT . Also
from a general point of view, TDGL-based theories [7,
are insufficient atT not very close toTc and fail to give
qualitatively correct results. A microscopic theory of QP
is needed that accounts for nonequilibrium, dissipative, a
electromagnetic effects during a QPS event.

This theory is reported upon below. Taking int
account the above effects wedetermineboth the typical
sizex0 and time scalet0 of a QPS core. For a dirty wire
in the Drude limit we obtainx0 ø c0t0 ø sj2c0yD0d1y3

(c0 is the velocity of the Mooij-Schön mode [10]). Fo
typical parameters the productx0t0 (which enters into
SQPS) is smaller than the naive estimatej0yD. The

resulting QPS actionSQPS , N0SsD0jd4y3yc
1y3
0 is also

smaller by a factor of,102, and thus for sufficiently
thin wires QPS’s are observable for allT . Furthermore,
at T ­ 0 we predict a newmetal-superconductor(MS)
phase transition governed by electromagnetic interactio
between different QPS’s. We also evaluate the effect
resistance of a 1D superconducting wire and determ
the crossover temperature between the regimes of TA
and QPS.

The model.—Our calculation is based on the effectiv
action approach for a BCS superconductor [11]. T
starting point is the partition functionZ expressed as an
imaginary time path integral over the electronic fieldsc
© 1997 The American Physical Society
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and the gauge fieldsV , A, with Euclidean action

S ­
Z

d3r
Z b

0
dthcsf≠t 2 ieV 1 js=2 ieAycdgcs

2 gc "c #c#c" 1 ieVni

1 fE2 1 B2gy8pj .

Hereb ­ 1yT , js=d ; 2=2y2m 2 m describes a single
conduction band,g is the BCS coupling constant,eni de-
notes the background charge density of the ions, and u
in which h̄ ­ kB ­ 1 are used. A Hubbard-Stratonovic
transformation introduces the energy gapD as an order
parameter and the electronic degrees of freedom ca
integrated out. What remains is an expression for
partition function in terms of an effective action forD,
V , and A, with a saddle-point solutionD ­ DBCS and
V ­ A ­ 0

Seff ­
Z

d3r
Z b

0
dt

"
jDj2

g
1

E2 1 B2

8p

#
2 Tr ln Ĝ21,

Ĝ21 ­

µ
≠t 1

i
2

h=, vsj
∂

1̂ 1 D0ŝ1

1

√
js=d 1

mv2
s

2
2 ieF

!
ŝ3 ,

where the superfluid velocity vs ­ s1y2md f=w 2

2eAycg, the chemical potential for Cooper pai
F ­ V 2 Ùwy2e, andD ­ D0eiw have been introduced

Effective action.—The effective theory is constructe
by expanding up to second order around the saddle p
in F and vs to obtain the electronic polarization term
Using the Ward identity from gauge invariance, the res
can be written as the sum of terms, related to the nor
and superfluid densitiesnn andns, which describe norma
and superconducting “screening,” respectively [12]

Spol ­
S
b

X
jvmj.D0

Z
dx

s

2jvmj
E2

1 S
Z

dx dt

µ
mns

2
y2

s 1 e2N0

∑
nn

n
V 2 1

ns

n
F2

∏∂
,

where use was made of the one-dimensional naturer0 ,

j of the problem, ands is the conductivity of the wire
Transverse screening is irrelevant if the London pene
tion depthlL . r0 and we retain only one component
the vector potential [2].

A phase-slip event in imaginary time involves a su
pression of the order parameter in the phase-slip core
a winding of the superconducting phase around this c
We now separate the total QPS actionSQPS into a core
part Score around the phase-slip center for which the co
densation energy and dissipation by normal currents
important (scalesx # x0, t # t0), and a hydrodynamic
part outside the coreSout which depends on the hydrody
namics of the electromagnetic fields

Sout ­
Z

dx dt

µ
C 1 C0

2
V 2 1

C̃
2

F2

1
1

2Lc2 A2 1
m2v2

s

2e2L̃

∂
,

nits

be
he

s
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.
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ra-
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p-
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where the kinetic inductancẽL ­ myse2nsSd and the ki-
netic capacitancẽC ­ Se2N0nsyn have been introduced,
as well asC0 ­ Se2N0nnyn, which we will drop from
now on in the limitns ¿ nn at lowT . The geometry and
screening by dielectrics outside the wire are accounted f
by the capacitance per lengthC ­ erf2 lnsx0yr0dg21 and
the inductance times lengthL ­ 2 lnsx0yr0dyc2 that re-
place theE2 1 B2 term. Herec is the velocity of light
ander the dielectric constant of the substrate.

Single QPS.—Outside the phase-slip core, the equa
tions of motion forV , A, andw are solved by the saddle
point

w̃ ­ argsx 1 ic0td; c2
0 ­

C21 1 C̃21

L 1 L̃
,

V ­
1

1 1 CyC̃
≠tw

2e
; A ­

c
1 1 L̃yL

≠xw

2e
.

The space-time anisotropy is determined by the plasm
velocity c0, rather than byyF . For generic parameters
the velocity c0 reduces to the velocity of the Mooij-
Schön mode, which has dispersionv2 ­ c2

MSk2 with
c2

MS ­ Sv
2
ply4pC [10], where vpl is the 3D plasma

frequency. The corresponding saddle-point action is

Sp
out ­ m lnfminsc0b, Xdy maxsc0t0, x0dg , (1)

with m ­ pyf4e2c0sL 1 L̃dg.
The contribution from the core part is estimated to be

Sp
core ­

N0

2
St0x0D2

0

1
S
b

X
jvmj.t

21
0

x0s

jvmj

Ç
E

µ
vm,

x0

2

∂ Ç2
. (2)

The first part is the condensation energy that is lo
inside the core and the second part defines the energy
dissipative currents in the core during a phase-slip eve
(We assume that the conductivity equals the normal sta
value inside the QPS core.) Inserting the saddle-poi
solution, and minimizing the action with respect tox0 and
t0, we find x0 ø c0t0 ø ssc0y2e2N0D

2
0d1y3 andSp

core as
three times the condensation energy in (2). In the Drud
limit s ­ 2e2N0yFly3, we obtain x0 ø sj2c0yD0d1y3

and

Sp
core ­ bN0SsD0jd4y3yc

1y3
0 , b , 1 . (3)

QPS Interactions.—The next step is to consider a gas
of QPS’s in a superconducting wire. We also assum
that an applied currentI (much smaller than the de-
pairing current) is flowing through the wire. Substitut-
ing the saddle-point solutionw ­

Pn
i w̃sx 2 xi , t 2 tid

into the action and keeping track of the additional termR
dt

R
dxsIy2ed≠xw [11], we find

Sn ­ nSp
core 2 m

X
ifij

ninj ln

µ
rij

x0

∂
1

F0

c
I

X
i

niti . (4)
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Here rij ­ fc2
0sti 2 tjd2 1 sxi 2 xjd2g1y2 defines the

distance between theith andjth QPS in thesx, td plane,
ni ­ 11 (21) are the QPS (anti-QPS) “charges,” an
F0 ­ hcy2e is the flux quantum. Only neutral QPS
configurations withntot ­

Pn
i ni ­ 0 (and hencen even)

contribute to the partition function. This is a consequen
of the boundary conditionwsx, td ­ wsx, t 1 bd in the
path integral for the partition function [11].

Metal-superconductor phase transition.—For I ­ 0
Eq. (4) defines the standard model of a 2D gas
logarithmically interacting chargesni. The effective
(small) fugacity y of these charges (or the QPS rat
yyx0t0) is

y ­ x0t0B exps2Sp
cored , (5)

where B is the usual fluctuation determinant with zer
modes excluded. From the Coulomb gas analogy, we c
clude that a Kosterlitz-Thouless-Berezinskii (KTB) phas
transition [13] for QPS’s occurs in a superconducting wi
at m ­ mp ; 2 1 4py ø 2: for m , mp the density of
free QPS in the wire (and therefore its resistance) alwa
remains finite, whereas form . mp QPS’s and anti-QPS’s
(AQPS) are bound in pairs and thelinear resistance of a
superconducting wire is strongly suppressed andT depen-
dent. We arrive at animportant conclusion: at T ­ 0 a
1D superconducting wireis in a superconducting state
with vanishing linear resistance, provided the electroma
netic interaction between phase slips is sufficiently stron
i.e., m . mp.

The above analysis is valid for sufficiently long wires
For typical experimental parameters, however,X , c0b

(or even X ø c0b), and the finite wire size needs
to be accounted for. To this end, we first apply th
standard 2D scaling analysis [13]≠lm ­ 24p2m2y2 and
≠ly ­ s2 2 mdy, wherem and y depend on the scaling
parameterl. Solving these equations up tol ­ lX ­
lnsXyx0d we obtain the renormalized values̃m ­ mslXd
and ỹ ­ yslX d. For larger scalesl . lX only the time
coordinate matters and the problem reduces to a that o
1D Coulomb gas with logarithmic interaction. Therefore
(for ỹ ø 1) further scaling for l . lX is defined by
[11,14] ≠lm ­ 0 and ≠ly ­ s1 2 mdy. For m̃ . 1 the
fugacity scales down to zero, which again corresponds
a superconducting phase, whereas form̃ , 1 it increases
indicating a resistive phase in complete analogy to
single Josephson junction with Ohmic dissipation. Thu
our above conclusion about the presence of a MS ph
transition atT ­ 0 remains valid also for relatively short
wires, although the phase transition point is given by th
somewhat different conditioñm ­ 1. In practice, both
conditionsm ­ mp andm̃ ­ 1 are realized in wires with
diameter2r0 , 10 20 nm; see also the discussion below

Wire resistance at low T.—At any nonzeroT the wire
has a nonzero resistanceRsT , Id even in the “ordered”
phasem . mp (or m̃ . 1). In order to evaluateRsT d in
this phase for a long wire we proceed perturbatively a
first calculate the free energy correctiondF due to one
1554
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bound QPS-AQPS pair. [See Ref. [11] (Chap. 5.3) for a
discussion of a similar procedure.] The one QPS-AQPS
pair contributiondF to the free energy of the wire is

dF ­
Xy2

x0t0

Z b

t0

dt

t0

Z X

x0

dx
x0

esF0Itycd22m lnfrst,xdyx0g,

(6)

where r ­ sc2
0t2 1 x2d1y2. It is convenient to first

integrate over the spatial coordinatex and take the wire
lengthX ! `. For nonzeroI the expression in Eq. (6) is
formally divergent forb ! ` and acquires an imaginary
part Im dF after analytic continuation of the integral
over the temporal coordinatet [11,15]. This indicates
a QPS-induced instability of the superconducting state o
the wire: the state with a zero phase differencedwsXd ­
wsXd 2 ws0d ­ 0 decays into a lower energy state with
dwsXd ­ 2p . The corresponding decay rate isG2p ­
2Im dF. The rate for the opposite transition (which is
nonzero at nonzeroT ) is defined analogously withI !

2I. The average voltage dropV ­ sF0ycd fG2psId 2

G2ps2Idg across the wire is

V ­
F0Xy2

ct0x0

p
p Gsm 2

1
2 d

GsmdGs2m 2 1d
sinh

µ
F0I
2cT

∂
3

Ç
G

µ
m 2

1
2

1
i
p

F0I
2cT

∂ Ç2 ∑
2pt0

b

∏2m22

. (7)

Gsxd is the Euler gamma function. For the wire resistance
RsT , Id ­ VyI this yields R ~ T 2m23 and R ~ I2m23

for T ¿ F0I and T ø F0I , respectively. For thick
wires with m . mp, we expect a strong temperature
dependence of the resistivity. For thinner wires the
temperature dependence of the resistivity becomes line
at the transition to the disordered phase in which ou
analysis is not valid. AtT ø F0Iyc we expect a strongly
nonlinearI-V characteristicV , Ia in thick wires, and a
universalasmpd ­ 2 in thin wires at the transition into
the resistive state withV , I , i.e., a ­ 1. Note that
in contrast to the KTB transition in 2D superconducting
films, the jump is froma ­ 2 to 1, instead ofa ­ 3 to 1.

For a short wireX , c0yT we again proceed in two
steps. A 2D scaling analysis yields the “global” param-
etersỹ, m̃, and the microscopic cutoff̃t0 ­ t0Xyx0. In
analogy with the resistively shunted Josephson junctio
[11], the voltage drop from the imaginary part of the free
energy reads

V ­
2F0ỹ2

Gs2m̃dct̃0
sinh

µ
F0I
2cT

∂
3

Ç
G

µ
m̃ 1

iF0I
2pcT

∂ Ç2 ∑
2pt̃0

b

∏2m̃21

,

giving R ~ T2m̃22 and R ~ I2m̃22, respectively, at high
and low T . This result is valid form̃ . 1 and also for
smaller m̃ at not very smallT [11]. At T ! 0 in the
metallic phase the resistance flattens off and becomes [1

R ­ Rqym̃ , (8)
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whereRq ­ py2e2 . 6.5 kV is the quantum resistance
Note that in this limit the size dependence of the res
tance enters only through the renormalized valuem̃.

Crossover temperature.—The crossover between the
TAPS and the QPS regime occurs at a temperatureTp that
can be estimated by comparing the corresponding re
tivities RTAPS andRQPS. The standard result of Ref. [2]
is RTAPS ­ bVshy4e2d exps2bDFd, with DF ­p

2 H2
c Sjy3p , attempt frequencyV ­ sXyjd

p
bDFt21

s ,
and relaxation timet21

s ­ 8sTc 2 T dyp. For thin
wires with m , Sp

core the valueTp which follows from a
comparison of the exponentsbDF and2Sp

core is

Tp ­
DF

2Sp
core

ø D
2y3
0 c

1y3
0 yj1y3. (9)

The pre-exponential factorB in Eq. (5) can be estimated
by matching the pre-exponential factors ofRQPS and
RTAPS at T ­ Tp. A more detailed analysis of the pre
exponent will be published elsewhere.

Discussion.—For typical system parameter
k21

F , 0.2 nm , l , 7 nm, j , 10 nm , j0 , lL ,
100 nm, we find thatL and C̃ drop out of the problem
and L̃ and C determine the physics (unlessT , Tc or
er ¿ 1). We will also take the lengthX of the wire to be
smaller than the localization length, so that localization e
fects do not play a role. Takingr0 , 10 nm ander ­ 1,
we obtain the velocityc0yc ­ cMSyc ø sr0y6lLd,

m ­ sp
p

ery8ad sr0ylLd ø 50sr0ylLd ,

and 2Sp
core & 10. Thus—in contrast to previous studie

[8]—quantum fluctuations in thin superconducting wire
are not negligibly small and can be well observed
experiment. Furthermore, our estimate for the classic
to-quantum crossover temperature Eq. (9) yieldsTp ,
10DsT pd, i.e., for thin wires one expects this crossov
to happen quite close toTc. These features are in good
agreement with the experimental findings [4].

For the quoted parameters, we predict the supercond
tor to metal transition at a wire thicknessr0 . lLy25 ø
5 10 nm. This prediction agrees with the results of Gio
dano, who finds that wires withr0 ø 8 nm have a re-
sistivity that saturates at a measurable level at lowT ,
whereas the resistivity of thicker wiresr0 * 13 nm de-
creases withT even at the lowest temperatures [4]. Als
the saturation valueR ­ Rqym̃ , 10 20 kV (8) is con-
sistent with that measured in [4].

Independent measurements ofRsTd for superconduct-
ing wires have been reported in Ref. [5]. Whereas t
data [5] for thicker wires agree with the TAPS theor
[2], the resistance ofthinner wires was found to be sys-
tematically higher than RTAPS. This behavior is quali-
tatively similar to that observed in [4] and can be als
attributed to the effect of QPS discussed here. Furth
more, the resistivity of the thinnest wires used in [5] (wit
S ø 10213 cm2) extrapolates to a finiteT ­ 0 value.
.
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This is consistent with our prediction that wires with cros
sectionS & 10213 cm2 (i.e., m , 1 2) exhibit metallic
behavior even atT ­ 0. Further measurements at lowe
T would be desirable to verify our conclusions.

Note that superconductivity in wires with radiusr0 ,
5 nm is not destroyed by finite size and level spacin
effects; particles of radius down to 1–3 nm do tur
superconducting [16]. Finally, the MS phase transitio
discussed here is in many respects different from that
granular wires [17]. In the latter case the onsite Coulom
interaction drives the transition into an insulating phas
For homogeneous wires, in contrast, the transition is in
a metallic state.

In conclusion, we have studied QPS’s starting fro
microscopic theory and find a measurable resistivity
superconducting ultrathin wires at temperaturesT ø Tc,
as well as a new superconductor to metal phase transit
as a function of the wire thickness.
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