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Scaling of the Quasiparticle Spectrum ford-wave Superconductors
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In finite magnetic fieldH, the excitation spectrum of the low energy quasiparticles in a two-
dimensionald-wave superconductor exhibits a scaling with respect toH1y2. This property can be
used to calculate scaling relations for various physical quantities at low temperatureT , such as the
finite magnetic field specific heat, quasiparticle magnetic susceptibility, optical conductivity tensor, and
thermal conductivity tensor. These predictions are compatible with existing experimental data. Most
notably, the measured thermal Hall coefficientkxy in YBCO is found to scale askxy , T 2FsaTyH1y2d
for T & 30 K in agreement with our predictions. [S0031-9007(97)02477-0]

PACS numbers: 74.25.Fy, 74.25.Jb, 74.72.–h
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The scientific community has been slowly coming to
consensus that the highTc superconductors have ad-wave
order parameter [1]. One of the major differences betwe
these and conventional superconductors is thatd-wave su-
perconductors have gapless low energy excitations in
tain directions ink space, whereass-wave superconductors
are gapped. As a result, the low temperature behavio
thed-wave case can be quite different from that of conve
tional superconducting materials. Thus, in order to pro
erly interpret experiments on these novel materials (a
eventually develop a microscopic theory), we must ha
a clear understanding of the physics associated with ad-
wave order parameter. In this work, we attempt to e
cidate some of this physics by deriving scaling relatio
obeyed by the quasiparticle energies and eigenfunctio
Using these relations, we are then able to deduce sca
properties of a number of important physical quantities

We begin our analysis with the Bogolubov [2] equ
tions,H c ­ ec wherec ­ su, yd is a Nambu 2-spinor
whose components are the particlelike and holelike par
the quasiparticle wave function, respectively. Here,

H ­

µ
h 1 V 2 EF D̂

D̂p 2hp 2 V 1 EF

∂
(1)

with EF the Fermi energy, andh the kinetic part of
the effective single particle Hamiltonian, andV srd is
the effective disorder potential. As a model system
choose to work with the effective one-particle Hamilto
ian h ­

s p2Ad2

2m with m the electron effective mass. Al
though this neglects any direct Hartree or exchange pie
of the interaction, such pieces are thought to be relativ
unimportant except in renormalizingm and V . (In this
Letter we have set the charge of the electrone, the speed
of light c, and Planck’s constant̄h all to unity.)

In Eq. (1), D̂ is the gap operator for spin singlet su
perconductivity defined aŝDgsrd ­

R
dr0Dsr, r0dgsr0d for

any gsrd, whereDsr, r0d ­ 2ysr 2 r0dkc"srdc#sr0dl with
y the interelectron interaction. If we rewriteDsr, r0d in
terms of center of mass coordinateR ­

r1r 0

2 and rela-
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tive coordinatex ­ r 2 r0, then Fourier transform with
respect tox, we can write the gap function asDsR, kd.

In this work we consider a two-dimensionald-wave
superconductor. It is believed that this accurately rep
resents the highTc materials. We choose to consider a
gap function with puredxy symmetry rather thandx22y2

for notational simplicity. The final results fordx22y2

are identical. The gap function is written asDsR, kd ­
Ddxy sRdkxkyyskFd2. Shifting back to the coordinatesr
and r0, then integrating by parts, the gap operator ca
be re-expressed aŝD ­

1
p2

F
hpx , hpy , Ddxy srdjj, where px

and py are the components of the momentum operato
pF is the Fermi momentum, and the brackets represent t
symmetrization,ha, bj ­

1
2 sab 1 bad. The functionDdxy

is the d-wave order parameter used in Ginzburg-Landa
theory [3]. We can then consider calculatingDdxy

in an
inhomogeneous system by using a Ginzburg-Landau a
proach, then usingDdxy in Eq. (1) to find the quasiparticle
spectrum. We note that this approach is not fully sel
consistent in the sense that we will not use the derive
quasiparticle states to then recalculate the gap function.

For a homogeneous system there are gapless no
on the Fermi surface at the pointsp ­ s6pF , 0d and
p ­ s0, 6pFd where D̂ vanishes. To study the low
lying excitations near these points, we linearize th
Hamiltonian. As an example, we consider linearizing
around the pointp ­ spF, 0d. We write c ­ eikFxc̃

such that we can recast the Bogolubov equations
sH̃0 1 H̃1dc̃ ­ ec̃ whereH̃0 is the leading linearized
term

H̃0 ­

0@ yFspx 2 Axd 1 V
1

pF
hpy , Ddxy

srdj
1

pF
hpy , D

p
dxy

srdj yFs2px 2 Axd 2 V

1A
(2)

andH̃1 is the remaining piece

H̃1 ­

µ
h D̂

D̂p 2hp

∂
, (3)

whereyF ­ pFym is the Fermi velocity.
© 1997 The American Physical Society
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For sufficiently small energy excitations,̃H0 is much
greater thanH̃1, and it will be a reasonable approxi-
mation to neglectH̃1. To determine when this is a good
approximation, we consider the homogeneous case ofDdxy

a real constant withA ­ 0, and V ­ 0. We then find
thatH̃0 is just the Dirac Hamiltonian for massless ferm
ons in two dimensions, and thus has a conical lin
ar spectrum of quasiparticles with ep ­

6
q

syFpxd2 1 sDdxy
pyypF d2. Note that the conical

spectrum is highly anisotropic sinceyF ¿ Ddxy ypF .
For excitations at temperatureT , the typical momenta
are px , TyyF and py , TpFyDdxy

. The largest term

in H̃1 is then the termp2
yys2md which would be on

orderEFsTyDdxy d2. For YBCO and BSCCO, photoemis-
sion spectroscopy [4] indicates thatEF ø 3000 K, and
Ddxy ø 300 K. We also note that the Fermi surface i
not circular, but is somewhat flattened at the nodes (mo
squarelike with rounded corners). This means we sho
really use an effective massmy in the p2

yys2md term of

H̃1 which lowers the energy scale of̃H1 by another
factor of perhaps two or three. Thus, we estimate th
H̃1yH̃0 ø Tys100 Kd, so that the conditionH̃0 ¿ H̃1
may be well satisfied at temperatures as high as 20 K.

We now apply a magnetic fieldH perpendicular to the
plane of the sample to create a vortex lattice such th
the phase ofDdxy

twists by 2p as we go around each
vortex. Since the screening length is very long, we c
assumeH is homogeneous. The distance between vortic
is proportional to the magnetic lengthlH , H21y2. We
now claim that forT ø Tc and H ø Hc2, to a very
good approximation, the HamiltoniañH0 has a simple
scaling form that we write (in a slight abuse of notation) a
H̃

H
0 srd ­ fHyH0g

1

2 H̃
H0

0 srfHyH0g
1

2 d. In other words, if
we can find the eigenvectors̃cH0

n srd and eigenenergieseH0
n

of the HamiltonianH̃0 in field H0, then the eigenenergies
and eigenvectors in fieldH can be written as

c̃H
n srd ­ c̃H0

n srfHyH0g
1

2 d , (4)

eH
n ­ fHyH0g

1

2 eH0
n . (5)

The first of these equations is the statement that the fu
tional form of the eigenvector scales as the vortex lattic
whereas the second is a reflection of the Hamiltonian be
linear in momentum. To show that these scaling propert
hold, we consider each term iñH0 individually. It is easy
to show that the vector potential in fieldH can be written in
a scaling formAHsrd ­ fHyH0g

1

2 AH0srfHyH0g
1

2 d. Simi-
larly, p must scale as the inverse of the magnetic lengthlH

sopH ­ fHyH0g
1

2 pH0 . Thus we need only examineDdxy

andV .
We first consider the scaling ofDdxy

. In order to

have the desired scaling of̃H0, we must haveDH
dxy

srd ­

D
H0
dxy

srfHyH0g
1

2 d. This is simply the statement that, like
the wave functionc̃, the functional dependence ofDdxy
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on position scales with the vortex lattice. ForH ø Hc2
the vortex cores are very small and far apart so we
not concerned with the behavior of the order parame
in the vicinity of these cores. Away from the cores, th
amplitude of the order parameter is fixed, and the scal
of the remaining phase degree of freedom is then
obvious result of Ginzburg-Landau theory.

We now turn to consider the disorder termV . For
Gaussian delta-function correlated disorder such t
kV l ­ 0, and kV srdV srdl ­ V0dsr 2 rd, the disorder
does not define a length scale so that given a re
zation of disorder V srd, another configuration
V 0srd ­ fHyH0g

1

2 V srfHyH0g
1

2 d is equally likely. In
other words, the disorder term (in an ensemble avera
has the proper scaling properties to preserve Eqs.
and (5). However, in perturbation theory, disorder lea
to a logarithmic divergence which is cut off by th
band width. When such a cutoff and scattering betwe
low energy nodes is accounted for, disorder produce
nonzero density of states [7] at zero energy which brea
the scaling. The energy scale below which the scaling
expected to fail, however, is exponentially small in th
inverse of the disorder strength. Thus, for weak disord
the scaling should hold at temperatures high compa
to this exponentially small scale. For more gener
types of disorder with a nonzero correlation length, th
temperature scale below which scaling is broken c
become somewhat larger. We also note that since ther
no Anderson’s theorem [2] ford-wave superconductors
disorder will reduce the overall value of the gap an
thereby reduce the maximum temperature at which
conditionH̃0 ¿ H̃1 is satisfied.

As with adding a magnetic field to free electron
the freek states are no longer good eigenstates for t
system, but in a semiclassical approximation the parti
can be thought of as having dynamics in bothk space
and real space. Thus, the particle equally samples e
direction of the anisotropic Dirac cone and the effectiv
velocity becomes the geometric average of the two Fer
velocitiesyF andDdxy ypF . It is then convenient to define

a21 ­
q

Ddxy ym, which is this average velocity.
Neglecting disorder,Ddxy

andA can both be considered
to be periodic functions with the periodicity of the vor
tex lattice [6]. Due to this periodicity, the eigenstates c
be divided into Brillouin zones with one band of excita
tions per zone. The first zone should then have a ma
mum k vector of approximatelyjkmaxj ø l21

H , with lH

the magnetic length. The number of different zones w
momentum less than somek is roughly skykmaxd2. The
typical energy scale of an excitation of wavevectork is
thenka21. Thus, the typical energyEn of the nth band
is given roughly byEn ,

p
n kmax or E2

n ø na22H. Fi-
nally, it will be useful to define the dimensionless param
eterx ­ aTyH1y2 which is roughly the number square
of bands that are considerably occupied at temperatureT .
For YBCO,a ø 0.05T1y2yK.
1549



VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997

ay
e
we

al
ge

er
e

ed

me
s
g

te.
ed

n
ted.
of

s

e
on
l)
nic

ric
t

he

e
or,
t,
Using the above described scaling laws, we can extr
a number of important statements about physical quan
ties. As a first example we examine the specific heat. W
write the energy as

U ­
X
n

eH
n fseH

n yT d

­ fHyH0g1y2
X
n

eH0
n fseH0

n fHyH0g
1

2 yT d , (6)

where f is the Fermi function. The volumen of the
system here scales asl2

H , 1yH so thatn ­ n0fH0yHg.
Thus, the energy density can be written asUyn ­
H3y2FU saTyH1y2d where FU is some scaling function
that we can write down in terms of eigenenergies, b
cannot evaluate without fully diagonalizing̃H0. Here
we have used the fact that the sum in Eq. (6) is on
a function of the dimensionless quantityx ­ aTyH1y2.
Recall thatT ø Tc so that the magnitude of the gap doe
not change much withT . Differentiating to obtain the
electronic specific heat per unit volume, we find

Cy ­ TH
1

2 FCsaTyH
1

2 d , (7)

where FC is again some unknown scaling func
tion. Note that Eq. (7) does not include contribution
to the specific heat from electrons in the vorte
cores. These contributions, however, are thought to
small [10].

Experimental measurements of electronic specific he
are quite difficult being that there are many nonelectron
contributions such as phonons. The easiest way to exp
mentally test Eq. (7) is to compare the specific heat
magnetic field perpendicular to thec axis to that in
field parallel to thec axis. Assuming isotropic magnetic
field dependence of all other contributions to the speci
heat (including Schottky anomaly), the difference in the
specific heats should also follow Eq. (7). This is indee
found to be true in the data of Ref. [8], but for the data o
Ref. [9] the scaling form holds well only at high fields.

A semiclassical approximation by Volovik [10], as wel
as later work of Won and Maki [11], predicts the low
temperature formCy , T

p
H (equivalent toFC being a

constant for small argument). This term in the electron
specific heat has been measured by several groups [
Kopnin and Volovik [13] also calculated the form of the
scaling functionFC at large argument, with a crossove
between the two forms predicted forTyH1y2 ø yF , which
is roughly the same scale as our predicted crossover sc
TyH1y2 ø a21 ø yF

q
Ddxy yEF ø 20 KyT1y2.

Similar to the discussion above, the free energy de
sity, Fyn ­ sU 2 TSdyn with S ­

P
nf fn ln fn 1 s1 2

fnd lns1 2 fndg and fn ­ fsenyT d, can be written in
the scaling form Fyn ­ H3y2FFsTyH1y2d. We then
conclude that the quasiparticle magnetic susceptibil
per unit volume [11] scales asx ­ d2sFyndydM2 ­
1
T FxsaTyH

1

2 d with Fx an unknown scaling function.
Since there is no crossing of states through the Fer
level as we change magnetic field, we do not predict a
1550
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de Haas–van Alphen oscillations. However, there m
be oscillatory contributions to the susceptibility from th
condensed fraction and the normal vortex cores that
do not consider here [14].

We now turn to consider electrical and therm
transport properties. We first define [15] the char
velocity operator v s1d ; ifH , rszg and the thermal
velocity operatorv s2d ; ifH , hH , rjg. Operating on a
statec ­ eikF xc̃ near the node atspF, 0d, we find

v s1deikF xc̃ ­ eikF xfH̃0, rs2gc 1 smaller terms, (8)

v s2deikF xc̃ ­ eikF xfH̃0, hH̃0, rjgc̃ 1 smaller terms,

(9)

where the smaller terms are typically smaller by ord
H̃1yH̃0. It is then easy to see from this form that th
operatorv s2d scales asH1y2 whereasv s1d scales asH0.

We now use the Kubo formula to write the generaliz
response function at frequencyv as [15]

Lab
ij ­

T
n

X
nm

knjv
sad
i jml kmjv

sbd
j jnlfsenyT , emyT d

sen 2 em 2 v 2 i01d sen 2 em 1 i01d

wheref is the thermal occupation factor,n is the volume
of the system, the indicesi andj take the valueŝx andŷ,
and the indicesa andb take the values1 and2 (for charge
and heat transport, respectively). Noting that the volu
of the system scales asH21 and the energies all scale a
H1y2, we immediately obtain the two parameter scalin
law Lab

ij , T a1b21Fab
ij saTyH1y2, avyH1y2d, whereFab

ij
is again some scaling function that we will not evalua
The real part of the optical conductivity tensor is defin
as Refsijg ­

1
T Re fL11

ij g which immediately yields a two
parameter scaling law for the optical conductivity.

Re fsijg , F11
ij saTyH1y2, avyH1y2d . (10)

It should be noted that in this Kubo formula calculatio
the response of the superfluid fraction has been neglec
This then does not include, for example, the response
the system due to the motion of vortices [16].

We now turn our attention to the dc (v ­ 0) thermal
conductivity tensork, defined as the matrix that relate
the heat currentjq to the temperature gradient viajq ­
k=T . We note that experimentally, a large part of th
diagonal components of this tensor is due to phon
transport of heat. However, the Hall (off diagona
component of this tensor should be completely electro
in origin [17]. Note, that when calculatingk, one must
usually take into account the effect of the thermoelect
coefficient L12. However, here we can neglect tha
contribution, since there is never any voltage in t
superconducting state. Thus, we havekij ­

1
T2 L22

ij , and
we obtain the naive scaling lawkij , TF22

ij saTyH1y2d.
Although this is indeed the correct scaling form for th
(electronic part of the) diagonal component of the tens
it is not correct for the Hall component. It can, in fac
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be shown that the scaling functionF22
xy here is precisely

zero due to the particle-hole symmetry inherent in t
linearized HamiltonianH̃0. This result is very easy to
understand. Imposing a heat source on one side of
system excites many particles and holes. Both partic
and holes diffuse in the direction of the heat sink. In
magnetic field, the particles curve one way and the ho
curve the other way. Thus, when there is particle-ho
symmetry, there is no net Hall transport of heat.

The proof [6] that the linearized Hamiltonian yield
kxy ­ 0 is a little bit involved. The particle-hole symme
try is expressed mathematically by saying that given
eigenpairen, c̃n satisfying c̃n ­ enc̃n, it can be shown
that there exists another eigenvectorc̃ 0

n ­ syc̃p
n with the

same eigenvalue also satisfying̃H0c̃ 0
n ­ enc̃ 0

n wheresy

is the usual Pauli spin matrix. Using this symmetry an
adding up the contributions tokxy from all four nodes on
the Fermi surface, it can be shown thatkxy vanishes. It
should be noted thatkxy remains zero even when we in
clude the smaller terms from Eq. (9) (butsxy does not).

In order to find a nonzerokxy, we must break the
particle-hole symmetry by including the contribution
from H̃1. As mentioned above, at lowT , we have
H̃1 ø H̃0 so that˜̃H1 can be treated perturbatively
Inclusion of this term then shifts the eigenenergies v
en ! en 1 den and the eigenstatesjnl ! jnl 1 djnl.
Lowest order perturbation theory then yields

deH
n ­ knH jH̃1jn

Hl

djnHl ­
X
m

jmHl kmH jH̃1jnHl
eH

n 2 eH
m

­ fHyH0g1y2djnH0 l .

FIG. 1. Thermal Hall data from Ref. [18]. (a) Thermal Ha
transport coefficientkxy plotted against external magnetic field
H at temperatures (from bottom to top) 20, 22.5, 25, 27
and 30 K. For technical reasons data have not yet been ta
below 20 K. (b) Collapse of these five curves according
the scaling law shown in Eq. (11). Note that the characteris
scale ofH1y2yT is approximately0.05 T1y2yK.
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Including these first-order corrections into the Kubo
formula and expanding, we find these correction term
give a leading contribution to the thermal Hall conduc
tivity that scales as

kxy , T2Fkxy
saTyH1y2d (11)

with Fkxy again some scaling function. As shown in
Fig. 1, experimental results of Ref. [18] do indeed show
this scaling form at temperatures below 30 K. (for tech
nical reasons data have not yet been taken at temperatu
below 20 K). The characteristic scale for features in th
function Fkxy

(i.e., where the curve becomes nonlinear) i
predicted to bex ø 1 or H1y2yT ø 0.05 T1y2yK, which
is in good agreement with experiment.

In conclusion, we have found that the scaling propertie
of the quasiparticle spectrum ind-wave superconductors
provides a very general and powerful tool for analyzing
various physical quantities.
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