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Scaling of the Quasiparticle Spectrum ford-wave Superconductors
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In finite magnetic fieldH, the excitation spectrum of the low energy quasiparticles in a two-
dimensionald-wave superconductor exhibits a scaling with respecHtd*. This property can be
used to calculate scaling relations for various physical quantities at low tempefatisech as the
finite magnetic field specific heat, quasiparticle magnetic susceptibility, optical conductivity tensor, and
thermal conductivity tensor. These predictions are compatible with existing experimental data. Most
notably, the measured thermal Hall coefficieqt in YBCO is found to scale ag,, ~ T>F(aT/H'/?)
for T < 30 K in agreement with our predictions. [S0031-9007(97)02477-0]

PACS numbers: 74.25.Fy, 74.25.Jb, 74.72.-h

The scientific community has been slowly coming to ative coordinatex = r — r/, then Fourier transform with
consensus that the high superconductors havedawave  respect tax, we can write the gap function @gR, k).
order parameter [1]. One of the major differences between In this work we consider a two-dimensiondlwave
these and conventional superconductors isdhative su-  superconductor. It is believed that this accurately rep-
perconductors have gapless low energy excitations in ceresents the higif,. materials. We choose to consider a
tain directions ink space, whereaswave superconductors gap function with pured,, symmetry rather thaa,.,-
are gapped. As a result, the low temperature behavior ifor notational simplicity. The final results fod,._ -
thed-wave case can be quite different from that of conven-are identical. The gap function is written a$R, k) =
tional superconducting materials. Thus, in order to propA,, (R)k.k,/(kr)*>. Shifting back to the coordinates
erly interpret experiments on these novel materials (andnd r/, then integrating by parts, the gap operator can
eventually develop a microscopic theory), we must havéye re-expressed ds = — { p., {py.Aq, (r)}}, where p,
a clear understanding of the physics associated with a gnd p, are the componFents of the momentum operator,
wave order parameter. In this work, we attempt to elu-,. is the Fermi momentum, and the brackets represent the
cidate some of this phyglcs by der_|vmg scal_lng relat'f)”ssymmetrization{a,b} - %(ab + ba). The functionA
obeyed by the quasiparticle energies and eigenfunctiongs the 4-wave order parameter used in Ginzburg-Landau
Using these relations, we are then able to deduce scalifgeory [3]. We can then consider calculatidg  in an
properties of a number of important physical quantities. jnnomogeneous system by using a Ginzburgi)Landau ap-
~ We begin our analysis with the Bogolubov [2] equa- proach, then usind,. in Eq. (1) to find the quasiparticle
tions, H ¢y = ey whereyy = (u,v) is a Nambu 2-spinor - spectrum. We note that this approach is not fully self-
whose components are the particlelike and holelike part Gfonsistent in the sense that we will not use the derived

the quasiparticle wave function, respectively. Here, quasiparticle states to then recalculate the gap function.
R For a homogeneous system there are gapless nodes
H = <h + ‘f*_ Ep . A > (1) on the Fermi surface at the poings = (*+pr,0) and
A —h =V + Eg p = (0, =pr) where A vanishes. To study the low

lying excitations near these points, we linearize the

with Er the Fermi energy, and: the kinetic part of Hamiltonian. As an example, we consider linearizing
the effective single particle Hamiltonian, and(r) is  around the pointp = (pr,0). We write ¢ = ek
the effective disorder potential. As a model system wesych that we can recast the Bogolubov equations as
choose to work with the effective one-particle Hamilton- (57, + 4{,)J, = €y where 1, is the leading linearized
ianh = % with m the electron effective mass. Al- term
though this neglects any direct Hartree or exchange pieces _ 1
of the interaction, such pieces are thought to be relatively 7{, = UFl(Px A:‘) v pr 1Py, Ba, (0}
unimportant except in renormalizing and V. (In this APy, Ag, (0} vR(=pr — Ay) =V
Letter we have set the charge of the electeotthe speed )
of light ¢, and Planck’s constarit all to unity.) -

In Eq. (1), A is the gap operator for spin singlet su- and 3, is the remaining piece
perconductivity defined asg(r) = [dr'A(r,r')g(r’) for - no A
any g(r), whereA(r,r’) = —v(r — r'){¢x(r)y(r')) with H, = <A* —h*)’ 3)
v the interelectron interaction. If we rewrit®(r,r’) in

. +r/ . . .
terms of center of mass coordinake = rzr and rela- wherevg = pg/m is the Fermi velocity.
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For sufficiently small energy excitationg;[o is much on position scales with the vortex lattice. Fir< H,,
greater than#{;, and it will be a reasonable approxi- the vortex cores are very smqll and far apart so we are
mation to neglectf{l. To determine when this is a good not concerned with the behavior of the order parameter

approximation, we consider the homogeneous cage;of in the_ vicinity of these cores. Away _from the cores, the
a real constant withh = 0. andV = 0. We then fiﬁd amplitude of the order parameter is fixed, and the scaling

of the remaining phase degree of freedom is then an
obvious result of Ginzburg-Landau theory.

We now turn to consider the disorder tervh For

5 5 . Gaussian delta-function correlated disorder such that

=/ Wep)? + (Mg, py/pr)?. Note that the conical (v 0 and (V(r)V(r) = Vod(r — 1), the disorder
spectrum is highly anisotropic sincer > Ay /pr.  does not define a length scale so that given a reali-
For excitations at temperaturE, the typical momenta zation of disorder V(r), another configuration
are p. ~ T/ve and py ~ Tpp/Aq,. The largest term iy _ g/ sV (e[H/HJ?) is equally likely. In
in #, is then the termp2/(2m) which would be on other words, the disorder term (in an ensemble average)
order Er(T/A,,,)>. For YBCO and BSCCO, photoemis- has the proper scaling properties to preserve Egs. (4)
sion spectroscopy [4] indicates thay =~ 3000 K, and and (5). However, in perturbation theory, disorder leads
Ay, = 300 K. We also note that the Fermi surface isto a logarithmic divergence which is cut off by the
not circular, but is somewhat flattened at the nodes (morband width. When such a cutoff and scattering between
squarelike with rounded corners). This means we shoultbw energy nodes is accounted for, disorder produces a
really use an effective mass, in the p7/(2m) term of  nonzero density of states [7] at zero energy which breaks

FH, which lowers the energy scale dH; by another the scaling. The energy scale below which the scaling is
factor of perhaps two or three. Thus, we estimate thagXpected to fail, however, is exponentially small in the
H,/FHy =~ T/(100 K), so that the conditiodHy > H, inverse of the disorder strength. Thus, for weak disorder,
may be well satisfied at temperatures as high as 20 K. the scaling should hold at temperatures high compared
We now apply a magnetic fiel## perpendicular to the to this exponentially small scale. For more general

plane of the sample to create a vortex lattice such thdyPes of disorder with a nonzero correlation length, the
the phase ofA, twists by 27 as we go around each temperature scale below which scaling is broken can

vortex. Since the screening length is very long, we carP€come somewhat larger. We also note that since there is
assume is homogeneous. The distance between vortice§© Anderson's theorem [2] fod-wave superconductors,

is proportional to the magnetic length ~ H~'/2. We disorder will reduce the overall value of the gap and
now claim that forT < 7. and H < H,.,, to a very thereby reduce the maximum temperature at which the

good approximation, the Hamiltoniafif, has a simple ~condition 3, > 3, is satisfied.

scaling form that we write (in a slight abuse of notation) as. AS With adding a magnetic field to free electrons,

f{H(r) — [H/H. ]1 ﬂHo(r[H/H ]1) In other words. if the freek states are no longer good eigenstates for the
0 - 012 0 ! 01%)- )

we can find the eigenvectof’(r) and eigenenergies system, but in a semiclassical approximation the particle

o o ) . can be thought of as having dynamics in bathspace
of the Hamiltonian#, in field Hy, then the eigenenergies and real space. Thus, the particle equally samples each
and eigenvectors in fielff can be written as

direction of the anisotropic Dirac cone and the effective

that #, is just the Dirac Hamiltonian for massless fermi-
ons in two dimensions, and thus has a conical line
ar spectrum of quasiparticles  with e, =

g r) = tZ,’f“(r[H/Ho]%), (4)  Vvelocity becomes the geometric average of the two Fermi
l velocitiesvr andA,_ /pr. Itis then convenient to define
el = [H/H,]z o (5) -1 hich ic fhi ;
n 0470 - a”' = /A4, /m, which is this average velocity.

The first of these equations is the statement that the func- Neglecting disorderd, andA can both be considered
tional form of the eigenvector scales as the vortex latticeto be periodic functions with the periodicity of the vor-
whereas the second is a reflection of the Hamiltonian beingex lattice [6]. Due to this periodicity, the eigenstates can
linear in momentum. To show that these scaling propertiebe divided into Brillouin zones with one band of excita-
hold, we consider each term H,, individually. Itiseasy tions per zone. The first zone should then have a maxi-
to show that the vector potential in fielfican be writtenin  mum & vector of approximatelyk x| = l,}l, with Iy
a scaling formAg(r) = [H/HOJ%AHO(I'[H/HOJ%)- Simi- the magnetic length. The number of different zones with
larly, p must scale as the inverse of the magnetic leigth momentum less than sorieis roughly (k/kmax)*. The
sop” = [H/Ho]%pHO. Thus we need only examirte, typical energy scale of an excitation of wavevectois
andV. v thenka™'. Thus, the typical energg, of the nth band

We first consider the scaling oh, . In order to IS given roughly byE, ~ /n kmax or E; =~ na*H. Fi-

*“ nally, it will be useful to define the dimensionless param-

o , eterx = aT/H'/? which is roughly the number squared
Ay, (r[H/Ho]>). This is simply the statement that, like of bands that are considerably occupied at temperdture
the wave functiony, the functional dependence oy, For YBCO,a = 0.05T!/2/K.

have the desired scaling d?[o, we must have&fiy (r) =
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Using the above described scaling laws, we can extracte Haas—van Alphen oscillations. However, there may
a number of important statements about physical quantbe oscillatory contributions to the susceptibility from the
ties. As a first example we examine the specific heat. Weondensed fraction and the normal vortex cores that we

write the energy as do not consider here [14].
We now turn to consider electrical and thermal
_ H H
U= el fle]l/T) transport properties. We first define [15] the charge

; : i W = i[5 d the thermal
— [H/H. /2 Ho £ (eHol g /H-15 /T 6 velocity operator v i[H,ro,] an
LH/Ho) ;6” e tH/HE/T). () velocity operatorv® = i[H ,{#,r}]. Operating on a

where f is the Fermi function. The volume of the State¥ = e’ near the node apr, 0), we find
system here scales & ~ 1/H so thaty = vo[Ho/H]. vDeikex gy — pikex[ 10 vyl + smaller terms,  (8)
Thus, the energy density can be written &5y =

H¥?Fy(aT/H'/?) where Fy is some scaling function  y@ ik — ks[4, {F, r}]d + smaller terms
that we can write down in terms of eigenenergies, but T

cannot evaluate without fully diagonalizing{y,. Here ©)

we have used the fact that the sum in Eq. (6) is Or“MNbere~ the smaller terms are typically smaller by order

. . . oy 1/2 ) .
a funﬁtlﬁn of the dlmerr]15|orr]1less qugnélty f‘LT/H q H,/H,. Itis then easy to see from this form that the
Recall thatT <« T, so that the magnitude of the gap Oesoperatorv(z) scales ag®/!”2 whereasy! scales ag/”.

nlot change mu'(f:.h \r/]ViﬂT' Differer|1tiating tof_ot()jtain the We now use the Kubo formula to write the generalized
electronic specific heat per unit volume, we fin response function at frequenayas [15]

C, = TH*Fe(aT/H?), D T i i T. e T)

where Fc is again some unknown scaling func- “Y 3 4 (e, — €, — @ — i0%) (e, — €, + i0)
tion. Note that Eq. (7) does not include contributions
to the specific heat from electrons in the vortexwheref is the thermal occupation factar,is the volume
cores. These contributions, however, are thought to bef the system, the indicesand; take the valueg andy,
small [10]. and the indiceg andb take the value$ and2 (for charge
Experimental measurements of electronic specific headnd heat transport, respectively). Noting that the volume
are quite difficult being that there are many nonelectroniof the system scales & ! and the energies all scale as
contributions such as phonons. The easiest way to exper'/2, we immediately obtain the two parameter scaling
mentally test Eq. (7) is to compare the specific heat inaw ij!ﬂ ~ T“+b‘1F§’jb(aT/H1/2,aw/Hl/z), Wherep;zjb
magnetic field perpendicular to the axis to that in s again some scaling function that we will not evaluate.
field parallel to thec axis. Assuming isotropic magnetic The real part of the optical conductivity tensor is defined
field dependence of all other contributions to the specifiggg Re[o;;] = %Re[L},-l] which immediately yields a two

heat (including Schottky anomaly), the difference in theseyarameter scaling law for the optical conductivity.
specific heats should also follow Eqg. (7). This is indee

found to be true in the data of Ref. [8], but for the data of Re[o;] ~ Fi%il(aT/Hl/z’ aw/H'?). (10)
Ref. [9] the scaling form holds well only at high fields. |t should be noted that in this Kubo formula calculation
A semiclassical approximation by Volovik [10], as well the response of the superfluid fraction has been neglected.
as later work of Won and Maki [11], predicts the low Thjs then does not include, for example, the response of
temperature fornC, ~ T+/H (equivalent toFc being a  the system due to the motion of vortices [16].
constant for small argument). This term in the electronic we now turn our attention to the des(= 0) thermal
specific heat has been measured by several groups [1Zenductivity tensorx, defined as the matrix that relates
Kopnin and Volovik [13] also calculated the form of the the heat Currenjq to the tempera‘[ure gradient V:B =
scaling functionF¢ at large argument, with a crossover xV7. We note that experimentally, a large part of the
between the two forms predicted fby H'/? =~ vg, which  giagonal components of this tensor is due to phonon
is roughly the same scale as our predicted crossover scaf@nsport of heat. However, the Hall (off diagonal)

T/H'Y? =~ a™! = vp, /Ay, /Er = 20 K/TV2. component of this tensor should be completely electronic
Similar to the discussion above, the free energy denin origin [17]. Note, that when calculating, one must
sity, F/v = (U — TS)/v with S =Y ,[ f.Inf, + (1 —  usually take into account the effect of the thermoelectric

folIn(l — £,)] and f, = f(e,/T), can be written in coefficient L'>. However, here we can neglect that
the scaling form F/v = H¥2F(T/H'?). We then contribution, since there is never any voltage in the

conclude that the quasiparticle magnetic susceptibilitsuperconducting state. Thus, we haye = 7L??, and
per unit volume [11] scales ay = d*(F/v)/dM> =  we obtain the naive scaling law;; ~ TF?*(aT/H"/?).

%FX(aT/HE) with F, an unknown scaling function. Although this is indeed the correct scaling form for the
Since there is no crossing of states through the Ferm(electronic part of the) diagonal component of the tensor,

level as we change magnetic field, we do not predict anyt is not correct for the Hall component. It can, in fact,
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be shown that the scaling functio‘?ﬁy2 here is precisely Including these first-order corrections into the Kubo
zero due to the particle-hole symmetry inherent in theformula and expanding, we find these correction terms
linearized Hamiltonian,. This result is very easy to give a leading contribution to the thermal Hall conduc-
understand. Imposing a heat source on one side of tHévity that scales as

system excites many particles and holes. Both particles

and holes diffuse in the direction of the heat sink. In a
magnetic field, the particles curve one way and the hole ith F
curve the other way. Thus, when there is particle-hol
symmetry, there is no net Hall transport of heat.

The proof [6] that the linearized Hamiltonian yields
Ky, = 0is a little bit involved. The particle-hole symme-
try is expressed mathematically by saying that given al
eigenpaire,, i, satisfying, = €,i,, it can be shown
that there exists another eigenvecigr = o, with the

X i e A is in good agreement with experiment.
same eigenvalue also satistyitdods, = €4, whereo, In conclusion, we have found that the scaling properties
is the usual Pauli spin matrix. Using this symmetry and

. M of the quasiparticle spectrum wrwave superconductors
adding up the contributions te,, from all four nodes on  yiges a very general and powerful tool for analyzing
the Fermi surface, it can be shown that, vanishes. It

; various physical quantities.
should be noted that,, remains zero even when we in-
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Lowest order perturbation theory then yields

Ky ~ T?Fy (aT/H'?) (11)

«, again some scaling function. As shown in
eFig. 1, experimental results of Ref. [18] do indeed show
this scaling form at temperatures below 30 K. (for tech-
nical reasons data have not yet been taken at temperatures
below 20 K). The characteristic scale for features in the
Bunction Fr, (i.e., where the curve becomes nonlinear) is

predicted to bec = 1 or H'/2/T = 0.05 T'/2/K, which
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