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Coexistence Curve Singularities at Critical End Points
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We report an extensive Monte Carlo study of critical end point behavior in a symmetrical binary fluid
mixture. On the basis of general scaling arguments, singular behavior is predicted in the diameter of
liquid-gas coexistence curve as the critical end point is approached. The simulation results show cl
evidence for this singularity, as well as confirming a previously predicted singularity in the coexistenc
chemical potential. Both singularities should be detectable experimentally. [S0031-9007(97)02515-

PACS numbers: 64.60.Fr, 05.70.Jk, 64.70.Fx, 64.70.Ja
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A critical end point occurs when a line of second
order phase transitions intersects and is truncated by
first order phase boundary delimiting a new noncritica
phase. Critical end points are common features in t
phase diagrams of a diverse range of physical system
notably binary fluid mixtures, superfluids, binary alloys
liquid crystals, certain ferromagnets, and ferroelectric
etc. Perhaps the simplest of these is the binary flu
mixture, for which the phase diagram is spanned b
three thermodynamic fields (T , m, h), where T is the
temperature,m is a chemical potential, andh is an
ordering field coupling to the relative concentrations o
the two fluid components. In the regionh ­ 0, two fluid
phasesb and g coexist. By tuningT and m, however,
one finds a critical “l line,” Tcsmd, where both phases
merge into a singlebg phase. Thisl line meets the
first order line of liquid-gas transitionsmssTd at a critical
end point (Te, me); see Fig. 1. ForT , Te, the phase
boundarymssTd constitutes a triple line along which the
fluid phasesb andg coexist with the gas phasea, while
for T . Te, mssT d defines the region where thebg and
a phases coexist. Precisely at the critical end point t
critical mixture of b and g phases coexists with the gas
phase. Since the gas phase is noncritical, it is common
referred to as a “spectator” phase.

Despite their ubiquity, it has only quite recently bee
pointed out that critical end points should exhibit nove
properties beyond those observable on the critical lin
Using phenomenological scaling and thermodynamic a
guments, Fisher and co-workers [1] predicted that the s
gular behavior at the critical end point also engenders n
singularities in the first order phase boundary itself. Ad
ditionally, new universal amplitude ratios were propose
for the shape of this boundary, as well as for the noncri
cal surface tensions near the critical end point [2]. The
predictions were subsequently corroborated by analytic
calculations on extended spherical models [3]. To da
however, empirical support from physically realistic sys
tems has been scarce. While some experimental work
surface amplitude ratios has been reported [4], no atte
tion seems to have been given to the bulk coexisten
properties and the question of the predicted singularity
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the spectator phase boundary. There is a similar dea
of simulation work on the subject, and we know of no
detailed numerical studies of critical end point behavio
either in lattice or continuum models.

In this Letter we move to remedy this situation by pro
viding the first simulation evidence for singular behavio
in the first order phase boundary close to a critical en
point. The key features of our study are as follows. W
consider a classical binary fluid within the grand canon
cal ensemble. We review the scaling arguments of Fish
and co-workers [1] and show that in addition to the pre
viously predicted singularity inmssT d, they also imply
singular behavior in the diameter of the liquid-gas co
existence curve at the critical end point. We test thes
predictions using extensive Monte Carlo simulations of
symmetrical Lennard-Jones binary mixture, making fu
use of modern sampling methods, histogram extrapolati
techniques, and finite-size scaling analyses. The resu
provide remarkably clear signatures of divergences
the appropriate temperature derivatives of the coexisten
diameter and the phase boundary chemical potential.

FIG. 1. Schematic phase diagram of a binary fluid in th
coexistence surfaceh ­ 0. The broken linemssT d is the
first order liquid-gas phase boundary terminating at the critic
point (cross). The full line is the critical line of second order
transitionsTcsmd separating the demixed phasesb 1 g, from
the mixed phasebg. The two lines intersect at the critical
end point.
© 1997 The American Physical Society
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We shall focus attention on the liquid-gas coexisten
region in the vicinity of a critical end point. Follow-
ing Fisher and Barbosa [1], coexistence is prescribed
the equality of the Gibbs free energyG ­ 2kBT ln Z
in the gas and liquid phases, i.e.,GgsssmssT d, T , hddd ­
GlsssmssT d, T , hddd. Since the gas spectator phase is no
critical, its free energy is analytic at the end point an
thus may be expanded as

Ggsm, T , hd ­ Ge 1 G
g
1 Dm 1 G

g
2 t 1 G

g
3 h 1 G

g
4 Dm2

1 · · · , (1)

wheret ; sT 2 TedyTe, Dm ; m 2 me , 0. The liq-
uid phase on the other hand is critical and therefo
contains both an analytic (background) and a singu
contribution to the free energy

Glsm, T , hd ­ G0sm, T , hd 2 jtj22aG6sĥjtj2Dd , (2)

where G0 is the analytic part, whileG6syd is a univer-
sal scaling function whose two branches6 must sat-
isfy matching conditions asy ! 6`. The quantities
tsm, T , hd andĥsm, T , hd are both scaling fields that mea
sure deviations from criticality, and comprise linear com
binations ofDm, t andh. a andD are, respectively, the
specific heat and gap exponents associated with thel line.

Expanding the critical free energy inDm, t andh, and
setting GgsssmssT d, T , hddd ­ GlsssmssTd, T , hddd, then yields
[1] in the regionh ­ 0

mssTd 2 mosT d ø 2X6jtj22a , T ! Te6 , (3)

with mosT d ­ me 1 g1t 1 · · ·, analytic, X6 . 0. If
a . 0, this in turn implies a divergence in thecurvature
of the spectator phase boundary

d2ms

dT 2
ø 2X̃6jtj2a , (4)

where the amplitude ratiõX1yX̃2 is expected to be
universal [1].

Let us now consider the behavior of the coexisten
density in the neighborhood of the critical end poin
Specifically, we shall examine the temperature depe
dence of the coexistence diameter in the symmetry pla
h ­ 0, defined by

rdsT d ; 1
2 frgsssmssT dddd 1 rlsssmssT ddddg , (5)

which is simply obtained from the coexistence free ener
as

rdsTd ­ 2
1
V

√
≠GsmssT d, T

≠m

!
, (6)

whereGsssmssTd, Tddd ­ fGgsssmssTd, Tddd 1 GlsssmssT d, T dddgy
2. Appealing to Eqs. (1) and (2), one then finds

rdsT d ­ 2U6jtj12a 2 V6jtjb

1 terms analytic atTe . (7)

This singularity is of the same form as the overa
density singularity [5] on the critical lineTcsmd, which for
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binary fluids with short ranged interactions is expected
be Ising-like. For the symmetrical binary fluid studied i
the present work, one finds that the amplitudeV6 ­ 0 in
Eq. (7). The diameter derivative then exhibits a speci
heatlike divergence

drdsT d
dT

ø 2Ũ6jtj2a , (8)

where we have usedjtj ­ jtj f1 1 Osjtj12adg along the
coexistence curve. Since this divergence occurs in
first derivative ofrdsT d, it is in principle more readily
visible than that in the second derivative ofmssTd;
cf. Eq. (4). As we shall now show, however, clea
signatures of both divergences are readily demonstra
by Monte Carlo simulation [6].

The simulations described here were performed f
a symmetrical binary fluid model using a Metropoli
algorithm within the grand-canonical ensemble (GCE
[7]. The fluid is assumed to be contained in (periodi
volumeV ­ L3, with grand-canonical partition function

ZL ­
X̀

N1­0

X̀
N2­0

NY
i­1

ΩZ
d $ri

æ
efmN2Fsh$rjd1hsN12N2dg, (9)

where F ­
P

i,j fsrijd is the total configurational en-
ergy, m is the chemical potential, andh is the ordering
field (all in units of kBT ). N ­ N1 1 N2 is the total
number of particles of types1 and2. The interaction po-
tential between particlesi andj was assigned the familiar
Lennard-Jones (LJ) form

fsrijd ­ 4emnfssyrijd12 2 ssyrijd6g , (10)

wheres is a parameter which serves to set the interacti
range, whileemn measures the well depth for interaction
between particles of typesm andn. In common with most
other simulations of LJ systems, the potential was cut o
at a radiusrc ­ 2.5s to reduce the computational effort.

An Ising model type symmetry was imposed on th
model by choosinge11 ­ e22 ­ e . 0. This choice en-
dows the system with energetic invariance underh ! 2h
and ensures that the critical end point lies in the sym
metry planeh ­ 0. A further parametere12 ­ d was
used to control interactions between unlike particles. T
phase diagram of the model in the surfaceh ­ 0 is then
uniquely parametrized by the ratiodye. Choosingdye &

1 yields a phase diagram having a critical end point tem
peratureTe ø T

lg
c and densityre ¿ r

lg
c , whereT

lg
c and

r
lg
c are the liquid-gas critical temperature and densit

respectively. Choosing a smaller value ofdye, how-
ever, moves the end point towards the liquid-gas cri
cal point, into which it merges for a certain sufficientl
smalldye, forming a tricritical point. Empirically we find
that the phase diagram is rather sensitive to the cho
of dye. Thus fordye ø 0.6, we find a tricritical point,
while for dye ­ 0.75 there is a critical end point having
re ø 2.3r

lg
c . In the present work, all simulations were
1489
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performed withdye ­ 0.7, which yields critical end point
parametersTe ø 0.93T

lg
c , re ø 1.75r

lg
c . This tempera-

ture is sufficiently small compared toT
lg
c that critical den-

sity fluctuations (which might otherwise obscure the e
point behavior) may safely be neglected, while at the sa
time re is not so large as to hinder particle insertions.

Although use of conventional GCE simulations to stu
liquid-gas phase coexistence presents no great pra
cal difficulties whenT & T

lg
c [8], investigations of the

strongly first order regimeT ø T
lg
c are rendered ex-

tremely problematic by the large free energy barr
separating the coexisting phases. This leads to meta
bility effects and protracted correlation times. To c
cumvent this difficulty we employed the multicanonic
preweighting method [9], which encourages the simu
tion to sample the interfacial configurations of intrins
cally low probability. This is achieved by incorporatin
a suitably chosen weight function in the Monte Carlo u
date probabilities. The weights are subsequently fold
out from the sampled distributions to yield the corre
Boltzmann distributed quantities. Further details of t
implementation of this technique as well as a method
determining a suitable preweighting function are giv
elsewhere [6,8].

In the course of the simulations, three systems size
volumeV ­ s7.5sd3, s10sd3, ands12.5sd3 were studied,
corresponding to average particle numbers ofN ø 250,
600, and 1200, respectively, at the critical end poin
(whose location we discuss below). Following equilibr
tion, runs comprising up to6 3 109 MCS (Monte Carlo
step) [10] were performed and the densityr ­ NyV , en-
ergy densityu ­ FyV , and number difference order pa
rameterm ­ sN1 2 N2dyV were sampled approximatel
every104 MCS. Attention was focused on the finite-siz
distributionspLsrd and pLsmd. Precisely on the liquid-
gas coexistence curve, the density distributionpLsrd is
(to within corrections exponentially small inL) double
peaked with equal weight in both peaks [11]. For a giv
simulation temperature, this “equal weight” criterion ca
be used to determine the coexistence chemical potenti
high accuracy. Simulations were carried out for eachL at
several (typically five) temperatures along the coexiste
curve, and histogram reweighting [12] was used to int
polate between simulation points and to aid the prec
location of the coexistence chemical potential [8]. T
position of the critical end point itself was estimated u
ing finite-size scaling techniques in the standard man
[13], by studying the scaling of the fourth order cum
lant ratio UL ­ 1 2 3km4lykm2l2 for pLsmd as a func-
tion of T andL along the liquid branch of the coexistenc
curve. A cumulant intersection [6] implying critical sca
invariance was obtained atT̃e ­ 0.958s2d, re ­ 0.587s5d,
where T̃ ­ kBTye. Further points on thel line away
from the critical end point were also determined u
ing the same method. Related finite-size scaling te
niques, this time focusing on the densitylike orderi
1490
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operator [8,14] were utilized to locate the liquid-gas cri
ical point. This yielded the estimates̃T

lg
c ­ 1.024s2d,

r
lg
c ­ 0.327s2d.
Figure 2 shows the estimated coexistence liquid a

gas densities as a function of temperature, determin
as the peak densities ofpLsrd. Also shown is the
measured locus of thel line and the position of the
liquid-gas critical point. Clearly a pronounced “kink”
is discernible in the liquid-branch density in the vicinity
of the critical end point. The gas branch, on the oth
hand, displays no such kink due to the analyticity o
Ggsm, Td at Te. To probe more closely the behavio
of the coexistence density, we plot in Fig. 3(a) th
diameter derivative2drdydT , for the three system sizes
studied. The data exhibit a clear peak close toTe,
which grows with increasing system size. Very simila
behavior is also observed in the curvature of the specta
phase boundary2d2msydT 2; see Fig. 3(b). These peaks
constitute, we believe, the finite-size-rounded forms
the divergences Eqs. (8) and (4). On the basis of fini
size scaling theory [13], the peaks are expected
grow in height likeLayn, with n the correlation length
exponent. Unfortunately it is not generally feasible t
extract estimates ofayn in this way (even for simulations
of lattice Ising models), because to do so necessita
an accurate measurement of the analytic backgrou
for which the present system sizes are much too sm
Nevertheless, the correspondence of the peak posit
with the independently estimated value ofT̃e, as well
as the growth of the peak with increasingL, constitutes
strong evidence supporting the existence of the predic
singularities.

In summary we have employed advanced Monte Ca
simulation techniques to study the first order pha
boundary near the critical end point of a continuum
binary fluid model. The results provide the first empirica
evidence for singularities in the phase boundary a

FIG. 2. The peak densities corresponding to the coexisten
form of pLsrd for the three systems sizes studied, plotted as
function of the temperature. Also shown is the estimated loc
of the l line (circles) and the liquid-gas critical point (cross)
Statistical errors do not exceed the symbol sizes.
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FIG. 3. (a) The numerical temperature derivative of th
measured coexistence diameter2drdydT in the vicinity of the
critical end point temperature. (b) The measured curvature
the phase boundary,2d2msydT 2, in the vicinity of the critical
end point temperature.

the coexistence curve diameter. We expect that simi
effects should be experimentally observable (not only
binary fluids), and that due to the absence of finite-si
rounding they should be even more marked than observ
e

of

lar
in
ze
ed

here. Moreover, as we have shown, for asymmetric
systems such as real binary mixtures, the coexiste
diameter is expected to exhibit a much stronger singular
than occurs in the present symmetrical model. Th
should therefore be particularly conspicuous.
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