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Coexistence Curve Singularities at Critical End Points
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We report an extensive Monte Carlo study of critical end point behavior in a symmetrical binary fluid
mixture. On the basis of general scaling arguments, singular behavior is predicted in the diameter of the
liquid-gas coexistence curve as the critical end point is approached. The simulation results show clear
evidence for this singularity, as well as confirming a previously predicted singularity in the coexistence
chemical potential. Both singularities should be detectable experimentally. [S0031-9007(97)02515-5]

PACS numbers: 64.60.Fr, 05.70.Jk, 64.70.Fx, 64.70.Ja

A critical end point occurs when a line of secondthe spectator phase boundary. There is a similar dearth
order phase transitions intersects and is truncated by @& simulation work on the subject, and we know of no
first order phase boundary delimiting a new noncriticaldetailed numerical studies of critical end point behavior,
phase. Critical end points are common features in theither in lattice or continuum models.
phase diagrams of a diverse range of physical systems, In this Letter we move to remedy this situation by pro-
notably binary fluid mixtures, superfluids, binary alloys, viding the first simulation evidence for singular behavior
liquid crystals, certain ferromagnets, and ferroelectricsin the first order phase boundary close to a critical end
etc. Perhaps the simplest of these is the binary fluighoint. The key features of our study are as follows. We
mixture, for which the phase diagram is spanned byconsider a classical binary fluid within the grand canoni-
three thermodynamic fieldsT(w, k), where T is the cal ensemble. We review the scaling arguments of Fisher
temperature,u is a chemical potential, and is an and co-workers [1] and show that in addition to the pre-
ordering field coupling to the relative concentrations ofviously predicted singularity inu,(T), they also imply
the two fluid components. In the regién= 0, two fluid  singular behavior in the diameter of the liquid-gas co-
phasesB andy coexist. By tuningl’ and w, however, existence curve at the critical end point. We test these
one finds a critical A line,” T.(u), where both phases predictions using extensive Monte Carlo simulations of a
merge into a single3y phase. ThisA line meets the symmetrical Lennard-Jones binary mixture, making full
first order line of liquid-gas transitions, (T') at a critical use of modern sampling methods, histogram extrapolation
end point (., u.); see Fig. 1. FoIT < T,, the phase techniques, and finite-size scaling analyses. The results
boundaryu(T) constitutes a triple line along which the provide remarkably clear signatures of divergences in
fluid phasesB andy coexist with the gas phase, while  the appropriate temperature derivatives of the coexistence
for T > T,, u,(T) defines the region where th®y and diameter and the phase boundary chemical potential.

a phases coexist. Precisely at the critical end point the
critical mixture of 8 and y phases coexists with the gas

phase. Since the gas phase is noncritical, it is commonly nt T(K

referred to as a “spectator” phase. liquid phase By
Despite their ubiquity, it has only quite recently been liquid phase B+y/ (disordered)

pointed out that critical end points should exhibit novel (ordered) e

properties beyond those observable on the critical line. L

Using phenomenological scaling and thermodynamic ar- L Ho(T)

guments, Fisher and co-workers [1] predicted that the sin- 8 e -

gular behavior at the critical end point also engenders new ’,/' gas phase o

singularities in the first order phase boundary itself. Ad- /,/ (noncritical)

ditionally, new universal amplitude ratios were proposed -

for the shape of this boundary, as well as for the noncriti-

cal surface tensions near the critical end point [2]. These T
- - T
predictions were subsequently corroborated by analytical e
calculations on extended spherical models [3]. To datefIG. 1. Schematic phase diagram of a binary fluid in the
however, empirical support from physically realistic sys-coexistence surfacé = 0. The broken lineu,(T) is the
tems has been scarce. While some experimental work dffSt order liquid-gas phase boundary terminating at the critical
f litud tios has b ted [4 tt ri)omt (cross). The full line is the critical line of second order
surface amplitude ralios has been reporte [4], no atte ransitions7.(u) separating the demixed phas@s+ vy, from
tion seems to have been given to the bulk coexistencge mixed phasedy. The two lines intersect at the critical

properties and the question of the predicted singularity irend point.
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We shall focus attention on the liquid-gas coexistencevinary fluids with short ranged interactions is expected to
region in the vicinity of a critical end point. Follow- be Ising-like. For the symmetrical binary fluid studied in
ing Fisher and Barbosa [1], coexistence is prescribed bthe present work, one finds that the amplitude = 0 in
the equality of the Gibbs free energy = —kgTIn Z Eq. (7). The diameter derivative then exhibits a specific
in the gas and liquid phases, i.€G,(u(T),T,h) = heatlike divergence
G/(us(T),T,h). Since the gas spectator phase is non- dpy(T)
critical, its free energy is analytic at the end point and pd
thus may be expanded as dT
Go(u.T.h) = G, + GiAu + G5t + G + GSA W Wherg we have usebl-l.z |z|[1' + _O(Itll‘“)] along thg

coexistence curve. Since this divergence occurs in the
’ (1) first derivative of py(T), it is in principle more readily
wheret = (T — T,)/T,, Aw = u — p. < 0. The lig- visible than that in the second derivative of,(T);
uid phase on the other hand is critical and thereforef. Eq. (4). As we shall now show, however, clear
contains both an analytic (background) and a singulasignatures of both divergences are readily demonstrable
contribution to the free energy by Monte Carlo simulation [6].
. r—w ACZA The simulations described here were performed for

Gi(p. T.h) = Go(p.T. ) = |77 G=(hl7I %), (2) a symmetrical binary fluid model using g Metropolis
where Gy is the analytic part, whilegg+(y) is a univer- algorithm within the grand-canonical ensemble (GCE)
sal scaling function whose two branches must sat- [7]. The fluid is assumed to be contained in (periodic)
isfy matching conditions ag — *=o. The quantities volumeV = L3, with grand-canonical partition function
m(w, T, h) andh(w, T, h) are both scaling fields that mea- o
sure deviations from criticality, and comprise linear com- z, = Z Z l_[{f da}e[#/\’—‘l’({?})”(f\’l—Nz)], (9)
binations ofAu,r andh. « andA are, respectively, the =0 N,=0 i=1
specific heat and gap exponents associated with three.

Expanding the critical free energy ihu, r and i, and
setting G, (uq(T),T,h) = Gi(us(T), T, h), then yields
[1] in the regionh = 0

~ —U.|t|™, (8)

+ ...

where ® = ;. ¢(r;;) is the total configurational en-
ergy, u is the chemical potential, antl is the ordering
field (all in units of kgT). N = N; + N, is the total
number of particles of typesand2. The interaction po-
po(T) = wo(T) = —X=|t*77, T—T.*, (3) tential between particlesand;j was assigned the familiar

with w,(T) = w. + g1t + ---, analytic, X. > 0. If Lennard-Jones (LJ) form
a > 0, this in turn implies a divergence in tleirvature b (rij) = demnl(a/ri)* — (o /ri))°], (10)

of the spectator phase boundar . . . .
P P y whereo is a parameter which serves to set the interaction

range, whilee,,, measures the well depth for interactions
between particles of types andn. In common with most
other simulations of LJ systems, the potential was cut off
universal [1]. at a radi.usrc = 2.50 to reduce the compgtational effort.
Let us now consider the behavior of the coexistence An Ising model type symmetry was imposed on the
density in the neighborhood of the critical end point. MOdel by choosing; = € = € > 0. This choice en-

Specifically, we shall examine the temperature depe d0\(/jvs the systtterr]ntwtl;h enetrgeltlc n:jvarlantc? ”ﬂde‘ih h
dence of the coexistence diameter in the symmetry plan@n ensures that the critical end point lies in the Sym-

d’ e
dT?
where the amplitude ratiot,/X_ is expected to be

~ —X:|r]7%, 4)

h = 0, defined by metry planes = 0. A further parametere,, = 6 was
’ | used to control interactions between unlike particles. The

pa(T) = 5Lpg(pa(T)) + pi(ps(T))], (5)  phase diagram of the model in the surfdce= 0 is then

which is simply obtained from the coexistence free energ)l‘m'que'y parametrized by the ratiy’e. Choosings/e <
as 1 yields a phase diagram having a cr|t|cal end pomt tem-

peraturel, < 7 and densityp, > pc ,WhereTc and

1{0G(ue(T), T o . :

pa(T) = _7<%>’ (6) pég are the liquid-gas critical temperature and density,

K respectively. Choosing a smaller value 8fe, how-

whereG(uy(T),T) = [Go(ue(T), T) + Gi(o(T),T)]/  ever, moves the end point towards the liquid-gas criti-
2. Appealing to Egs. (1) and (2), one then finds cal point, into which it merges for a certain sufficiently
— — Uil — V. lrlB small§ /e, forming a tricritical point. Empirically we find
pa(T) Uslrl Velrl that the phase diagram is rather sensitive to the choice

+ terms analytic ar . (7)  of §/e. Thus fors/e ~ 0.6, we find a tricritical point,
This singularity is of the same form as the overaIIWh”e for 5/6 = 0.75 there is a critical end point having
density singularity [5] on the critical lin&.(u), which for = 2. 3pc . In the present work, all simulations were
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performed withs /e = (.7, which yields critical end point operator [8,14] were utilized to locate the liquid-gas crit-

l I . ~
parameters, ~ 0.937¢°, p, =~ 1.75plcj- This tempera- ical point. This yielded the estimate&® = 1.024(2),
ture is sufficiently small compared ®@" that critical den- ls _ 0.327(2).
sity fluctuat!ons (which might otherwise obs_cure the endo Figure 2 shows the estimated coexistence liquid and
point behavior) may safely be neglected, while at the samgag “densities as a function of temperature, determined

time p, is not so large as to hinder particle insertions.  o¢ e peak densities of(p). Also shown is the
Although use of conventional GCE simulations to studymeasured locus of tha line and the position of the

liquid-gas phase coexistence presents no great pracijy,ig-gas critical point. Clearly a pronounced “kink”
cal difficulties whenT =< T." [8], investigations of the s giscernible in the liquid-branch density in the vicinity
strongly first order regimel’ < 7. are rendered ex- ot the critical end point. The gas branch, on the other

tremely problematic by the large free energy barrierhand, displays no such kink due to the analyticity of
separating the coexisting phases. This leads to metastg-

<l ! - G, (u,T) at T,. To probe more closely the behavior
bility effects and protracted correlation times. To Cir- of the coexistence density, we plot in Fig. 3(a) the

cumvent this difficulty we employed the multicanonical giameter derivative-dp,/dT, for the three system sizes
preweighting method [9], which encourages the simulaxydgied. The data exhibit a clear peak close Tig
tion to sample the interfacial configurations of intrinsi- \\hich grows with increasing system size. Very similar

cally low probability. This is achieved by incorporating penpavior is also observed in the curvature of the spectator
a suitably chosen weight function in the Monte Carlo UP-phase boundary 2, /dT?; see Fig. 3(b). These peaks

date probabilities. The weights are subsequently folded,nstityte, we believe, the finite-size-rounded forms of

out from the sampled distributions to yield the correcti,q divergences Egs. (8) and (4). On the basis of finite-

Boltzmann distributed quantities. Further details of theg;,¢ scaling theory [13], the peaks are expected to

implementation of this technique as well as a method fobrow in height likeL*/*, with » the correlation length
determining a suitable preweighting function are givengynhonent, Unfortunately it is not generally feasible to

elsewhere [6,8]. extract estimates af /v in this way (even for simulations

In the course ofsthe siméjlations, thres Systems sizes Qft |attice Ising models), because to do so necessitates
volumeV = (7.507)", (100)", and(12.50)" were studied, g accurate measurement of the analytic background,
corresponding to average particle numbers\ofs 250, o which the present system sizes are much too small.

600, and 1200, respectively, at the critical end point \eyertheless, the correspondence of the peak position
(yvhose location we discuss belovgv). Following equilibra- yith the independently estimated value &f, as well
tion, runs comprising up 6 X 10° MCS (Monte Carlo 55 the growth of the peak with increasiiig constitutes
step) [10] were performed and the densjty= N/V, en-  giong evidence supporting the existence of the predicted
ergy densityu = ®/V, and number difference order pa- singularities.

rametermn = (N1 — N»)/V were sampled approximately 1, summary we have employed advanced Monte Carlo
every10® MCS. Attention was focused on the finite-size gjmulation techniques to study the first order phase

distributions p..(p) and p..(m). Precisely on the liquid- o ndary near the critical end point of a continuum

gas coexistence curve, the density distributiar(p) IS pinary fluid model. The results provide the first empirical

(to within_corrections_exp_onentially small ih) double_ evidence for singularities in the phase boundary and
peaked with equal weight in both peaks [11]. For a given

simulation temperature, this “equal weight” criterion can
be used to determine the coexistence chemical potential to R
high accuracy. Simulations were carried out for eAchkt o V=(100)"
several (typically five) temperatures along the coexistence 1.05 | ° V=250
curve, and histogram reweighting [12] was used to inter- S
polate between simulation points and to aid the precise
location of the coexistence chemical potential [8]. The =100 1
position of the critical end point itself was estimated us-
ing finite-size scaling techniques in the standard manner 095 |
[13], by studying the scaling of the fourth order cumu-
lant ratio Uy = 1 — 3(m*)/(m?)* for p;(m) as a func-
tion of T andL along the Ilqu_ld bran.ch of_the coexistence 09040 02 o2 0.6 08
curve. A cumulant intersection [6] implying critical scale p

invariance was obtained & = 0.958(2), p. = 0.587(5), N ) )
where 7 = kzT/e. Further points on the\ line away FIG. 2. The peak densities corresponding to the coexistence

f th tical d int I det ined form of p.(p) for the three systems sizes studied, plotted as a
rom the criucal end point were also determined US-gnction of the temperature. Also shown is the estimated locus

ing the same method. Related finite-size scaling techof the A line (circles) and the liquid-gas critical point (cross).
niques, this time focusing on the densitylike orderingStatistical errors do not exceed the symbol sizes.

1.10

A-line |

critical end pt.
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1.4 y ' r here. Moreover, as we have shown, for asymmetrical
(@ o 0 V=(7.50)" systems such as real binary mixtures, the coexistence
12 ¢ % a V=(100)’ | diameter is expected to exhibit a much stronger singularity
1ol &, ¢ V=(1250)" | than occurs in the present symmetrical model. This
2 o should therefore be particularly conspicuous.
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