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We show that the infinite percolating cluster (with dengtty) of central-force networks is composed
of a fractal stress-bearing backbor®g;) and rigid but unstressed “isostatic ends” which occupy a finite
volume fraction of the latticeR;). Near the rigidity thresholgh.. there is then dirst-order transition
in P.. = P; + Pg, while Py is second ordemwith exponentB’. A new mean-field theory suggests
Bhs = 1/2, while simulations of triangular lattices giv&/ = 0.25 + 0.03. [S0031-9007(97)02383-1]

PACS numbers: 61.43.Bn, 05.70.Fh, 46.30.Cn

The connectivity-percolation geometry has become a Consider a triangular lattice composed of nodes con-
paradigm in the study of disordered systems [1], esperected by Hookian springs. Consider attaching rigid “bus
cially close to the percolation critical point. However, in bars” on two sides of the lattice, and then removing p
many problems involving mechanical properties, such asf the sites (or bonds) from the lattice. Upon application
the mechanical properties of granular media [2], glassesf an external stress (e.g., a tensile stress) to the lattice,
[3], and gels [4], the connectivity-percolation geometrywe find results such as that presented in Fig. 1(a). In
does not apply. In systems such as these, in whaat  this figure, theblack bonds carry stress, while trgreen
tral forces are of primary importance, the infinite clus- bonds are rigid but do not carry stress. Tieel bonds
ter must bemultiply connectedn order to transmit stress carry stress and are critical in the sense that if any one
and hence to support any mechanical property. Here wef them is removed, the lattice can no longer support the
present a comprehensive analysis of the geometry of thapplied stress (they are “cutting” bonds) [12]. When one
infinite cluster in this “rigidity-percolation” problem. of the “red” bonds is removed, the infinite rigid cluster

Early work on the stress-bearing paths in centralcollapses like a “house of cards” into a large number of
force systems relied on a direct solution to the forcesmaller rigid clusters. This is the basic reason why the
equations for model systems [5—8], such as lattices ofigidity transition is first order. Figure 1(a) was found
Hookian springs. More recently, a more accurate methodsing a new “graph-theory” method [13] which enables
which finds the backbone [9] and infinite-cluster [10] us to find the rigidity-percolation geometry exactly and
geometry directly has been developed. There has alsehich has been described elsewhere [9,10]. We plot the
been progress in the development of mean-field theoriesplume fraction of backbone (red plus black), isostatic
using both continuum [11] and Cayley-tree models, andends (green), and infinite-cluster bonds (red plus black
we report on the latter here. Using a combination of thesglus green) as a function of sample size in Fig. 1(b)
new techniques a novel picture of rigidity percolationfor both site- and bond-diluted networks. It is seen in
has emerged. In particular, we show that the infinitethis figure that, although the volume fraction of “iso-
cluster is composed of a stress-carrying backbone anstatic” bonds is rather small (roughty1), it is constant,
rigid (but unstressed) “isostatic ends” [see Fig. 1(a)]. Thendicating that the infinite-cluster probability undergoes
backbone idractal, and this is the reason that tleéastic  a first-order jump (or has an exceedingly small expo-
constants undergo a second-order transitmm approach nent) at the rigidity threshold. The stressed backbone,
to the rigidity transition [5—9]. However, the isostatic however, shows a nontrivial scaling, so thgt ~ LP#,
ends occupy a finite volume fraction of the lattice, andwith Dg = 1.78 £ 0.02 as found previously [9,10]. Note
for this reason there is first-order transition inP.. at  that a fit to the infinite-cluster data of Fig. 1(b) suggests
p+«, because of the fractal backbone, there is a lengtlthat the infinite cluster is fractal, as claimed by Jacobs
which diverges with a nontrivial exponeng;, at the and Thorpe [10]. However, by separating the isostatic
rigidity threshold. This exponent is different than the ends from the backbone bonds as shown in Fig. 1(b), the
connectivity-percolation correlation-length exponent. Theweakly first-order character dt.. is evident. Thus in the
number of “red” or cutting bonds scales with exponentthermodynamic limit, we predict

1/v at the rigidity threshold. )
Pr=a + b(p — pu)P, (D)
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objectsor bodiesinstead of being pointlike “joints,” then
each node would have an additional rotational degree of
freedom. Cases of physical interest are then

g = 1 for connectivity percolation (2
g = d forajoint, 3)
g=d+ @ for a body ()]

where d is the dimensionality of the embedding space.
Knowledge ofg andz is enough to write down the sim-
plest constraint-counting mean-field theory [3]. Consider
bond dilution with probabilityp that a bond is present.
Present bonds restrict the motion of the nodes, and hence
1.00 . ‘ , they impose “constraints” on the degrees of freedom of
the lattice. We assume that all of the constraints are “in-
dependent” (a “dependent” bond can be removed without
causing any reduction in the size of the rigid clusters),
then the number of degrees of freedom that remain uncon-
strained (the “floppy” modes per siff is approximated

by

f=g—pz/2 forp <p.=2g/z. (5)
0.10 |
For p > p., f = 0 in this approximation. This mean-
field theory has been useful in the study of glasses [3],
but has yielded little information abouP., Pg, and
P;. More recently, a continuum mean-field theory has
10 100 1000 been developed [11], which focuses Bn. That theory

L indicates that the infinite-cluster probability undergoes

FIG. 1. The geometry of the infinite rigid cluster (a) (color) a first-order transition at the rigidity threshold, but the
An infinite rigid cluster at the rigidity threshold of a site-diluted connection with the key parametegsand z is unclear.

triangular lattice of sizd. = 128. Backbone (stressed) bonds In addition, in that work a pathological lattice model (a
are black, isostatic ends (rigid but unstressed bonds) are greesguare lattice with random diagonals) was suggested as a

and cutting bonds (if one of them is removed the backbongyaradigm for the rigidity transition. We show later why
collapses) are red. (bp. (long dashes),Ps (solid lines),  that model is anomalous.

and P; (short dashes) for site- (plusses) and bond- (circles) -
diluted triangular lattices. The calculations were done at the /& NOW present our Cayley-tree model for rigidity

percolation point for each lattice size and are averaged ovd?erC()l?tiOn: which provides a complete m_ear!-field model
roughly 103 /L? configurations. for arbitraryg andz. The trees have coordination number

z but, as usual in tree models, the key results come

from consideration of one branch of a tree [see Fig. 2(a)].
where for the triangular lattice, the backbone exponenConsider site-diluted trees which are grown from a rigid
B/ = 0.25 = 0.03. Here we have used the resutt,—  boundary at infinity. Building inward from this boundary,
B'/v = Dp, with » = 1.16 = 0.03 from our previous we keep track of the number of degrees of freedom of a
calculations [9,10]. For the site-diluted triangular lattice node with respect to the boundary. Rigidity can only be
the first-order jump inP., al;, = 0.086 * 0.005, while  transmitted to higher levels of the tree if there are enough
for the case of bond dilution,; = 0.11 + 0.02 [see rigid bonds present to offset thedegrees of freedom of a
Fig. 1(b)]. Our mean-field theory uses exact “constrainnewly added node. For connectivity percolation only one
counting”(see below) on trees. We assign each node of laond is needed. If a node is added tg & 2 tree, two
lattice g degrees of freedom and coordination On the  bonds are needed to offset the two degrees of freedom of
triangular lattice treated in the previous paragraph, eacthe added node. In general, if the nodes of the tree pave
node has two degrees of freedom ane: 6 for the pure  degrees of freedom, rigidity is transmitted to the next level
lattice. If the nodes of a triangular lattice wesgtended of the tree provided the node is occupied, and provided at
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FIG. 2. (a) One branch of a= 4 Cayley tree. The lowest-

level branches of the tree are attached to a rigid border.P£b)
for site-diluted trees witly = 2 and, starting with the rightmost
curve,z = 4,6,9,13.

leastg of the lower-level nodes are rigid. This gives the

recurrence relation

z—1
z—1 1
p3 (7 ava - @
k=g
where T. is the probability that a site which is levels
from the rigid border (which is level 0) is rigid with
respect to the border. Faf = 1 this reproduces the

T =

familiar model for connectivity percolation [14], while
for ¢ > 1 it is mathematically equivalent to so-called 440 |
“bootstrap” percolation [15] (note that for lattices with

internal loops this equivalence does not usually apply).
we take the thermodynamic limit (very lardg Eq. (6)
iterates to a steady-state solution, which we call
Finally we find P, from

po=p S (3 ra - Tt 7
p3(;)mta -7 )

The results forT,, for several values ofg and z are
presented in Fig. 2(b).
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If

for ¢ = 2, the rigidity transition is first order; we show
elsewhere that this conclusion holds for all> 1 [16].
An exact solution is straightforward for the case= 4,
g = 2, where [from Eqg. (6)]

T.. = p[T3 + 3T2(1 — T.)], (8)

which has the trivial solutiof, = 0 and the nontrivial
solutions

In order to ensure thal., = 1, when p = 1, take the
positive solution in Eq. (9). The square root in Eqg. (9)
becomes imaginary ap. = 8/9. As p — p., Eq. (9)
yields

T, = % + clp — p)'2 (10)

The key feature of this equation is th&t is first order,
andthere is asquare-root singularitysuperimposed upon
the first-order transition. We find a similar behavior for
all g andz, and so we write in general

P.=a+b(p — p.)'/? (11)

wherea, b, and p.. are dependent og and z. Notice
that this is of the same form as Eq. (1) for the triangular
lattice. We thus argue that in general the form Eq. (1) is
correct, with the mean-field backbone-expongfyt = %
Full details of the Cayley-tree result will be published
elsewhere [16].

Because of the fractal backbone, there is a diverging
length, and the scaling properties are controlled by this
diverging length. As shown in previous calculations this
“correlation” length diverges with exponemnt= 1.16 =
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FIG. 3. The volume fraction of red bond3. at the rigidity

threshold for the triangular lattice with site dilution (inverted
triangles) and bond dilution (triangles); the “random diagonal”
model (see text) withy = 0 (squares—this is the anomalous

It is seen from this figure thatmodel of Fig. 4),g = 0.1 (circles) andg = 0.4 (diamonds).
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] triangular lattice. We find that even for a small amount
of dilution, e.g.,q = 0.10, the rigidity transition returns
to the behavior characteristic of the isotropic triangular
case (see Fig. 3). We find that for sufficiently large lattice
sizes, the universal behavior Eq. (1) holds for any finite
g < 0.5, and that the “fully first-order” transition (i.e., a
first-order backbone) only occurs in the special case of a
perfect square lattice (or other “marginal” regular lattices)
with randomly added diagonals. We have found similar
pathological cases on Cayley trees.
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FIG. 4. The square lattice with random diagonals and no
removed horizontal or vertical bonds, go= 0 (see text).
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