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Infinite-Cluster Geometry in Central-Force Networks
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We show that the infinite percolating cluster (with densityP`) of central-force networks is composed
of a fractal stress-bearing backbone (PB) and rigid but unstressed “isostatic ends” which occupy a finite
volume fraction of the lattice (PI ). Near the rigidity thresholdpp there is then afirst-order transition
in P` ­ PI 1 PB, while PB is second orderwith exponentb0. A new mean-field theory suggests
b

0
mf ­ 1y2, while simulations of triangular lattices giveb0

t ­ 0.25 6 0.03. [S0031-9007(97)02383-1]

PACS numbers: 61.43.Bn, 05.70.Fh, 46.30.Cn
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The connectivity-percolation geometry has become
paradigm in the study of disordered systems [1], es
cially close to the percolation critical point. However,
many problems involving mechanical properties, such
the mechanical properties of granular media [2], glas
[3], and gels [4], the connectivity-percolation geome
does not apply. In systems such as these, in whichcen-
tral forces are of primary importance, the infinite clus
ter must bemultiply connectedin order to transmit stres
and hence to support any mechanical property. Here
present a comprehensive analysis of the geometry of
infinite cluster in this “rigidity-percolation” problem.

Early work on the stress-bearing paths in centr
force systems relied on a direct solution to the for
equations for model systems [5–8], such as lattices
Hookian springs. More recently, a more accurate met
which finds the backbone [9] and infinite-cluster [1
geometry directly has been developed. There has
been progress in the development of mean-field theo
using both continuum [11] and Cayley-tree models, a
we report on the latter here. Using a combination of th
new techniques a novel picture of rigidity percolatio
has emerged. In particular, we show that the infin
cluster is composed of a stress-carrying backbone
rigid (but unstressed) “isostatic ends” [see Fig. 1(a)]. T
backbone isfractal, and this is the reason that theelastic
constants undergo a second-order transitionon approach
to the rigidity transition [5–9]. However, the isostat
ends occupy a finite volume fraction of the lattice, a
for this reason there is afirst-order transition inP` at
pp; because of the fractal backbone, there is a len
which diverges with a nontrivial exponent,n, at the
rigidity threshold. This exponent is different than th
connectivity-percolation correlation-length exponent. T
number of “red” or cutting bonds scales with expone
1yn at the rigidity threshold.
0031-9007y97y78(8)y1480(4)$10.00
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Consider a triangular lattice composed of nodes co
nected by Hookian springs. Consider attaching rigid “b
bars” on two sides of the lattice, and then removing1 2 p
of the sites (or bonds) from the lattice. Upon applicatio
of an external stress (e.g., a tensile stress) to the latt
we find results such as that presented in Fig. 1(a).
this figure, theblack bonds carry stress, while thegreen
bonds are rigid but do not carry stress. Thered bonds
carry stress and are critical in the sense that if any o
of them is removed, the lattice can no longer support
applied stress (they are “cutting” bonds) [12]. When o
of the “red” bonds is removed, the infinite rigid cluste
collapses like a “house of cards” into a large number
smaller rigid clusters. This is the basic reason why t
rigidity transition is first order. Figure 1(a) was foun
using a new “graph-theory” method [13] which enabl
us to find the rigidity-percolation geometry exactly an
which has been described elsewhere [9,10]. We plot
volume fraction of backbone (red plus black), isosta
ends (green), and infinite-cluster bonds (red plus bla
plus green) as a function of sample size in Fig. 1(
for both site- and bond-diluted networks. It is seen
this figure that, although the volume fraction of “iso
static” bonds is rather small (roughly0.1), it is constant,
indicating that the infinite-cluster probability undergoe
a first-order jump (or has an exceedingly small exp
nent) at the rigidity threshold. The stressed backbo
however, shows a nontrivial scaling, so thatnB , LDB ,
with DB ­ 1.78 6 0.02 as found previously [9,10]. Note
that a fit to the infinite-cluster data of Fig. 1(b) sugges
that the infinite cluster is fractal, as claimed by Jaco
and Thorpe [10]. However, by separating the isosta
ends from the backbone bonds as shown in Fig. 1(b),
weakly first-order character ofP` is evident. Thus in the
thermodynamic limit, we predict

P` ­ a 1 bsp 2 ppdb0

, (1)
© 1997 The American Physical Society
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FIG. 1. The geometry of the infinite rigid cluster (a) (color
An infinite rigid cluster at the rigidity threshold of a site-diluted
triangular lattice of sizeL ­ 128. Backbone (stressed) bonds
are black, isostatic ends (rigid but unstressed bonds) are gre
and cutting bonds (if one of them is removed the backbo
collapses) are red. (b)P` (long dashes);PB (solid lines),
and PI (short dashes) for site- (plusses) and bond- (circle
diluted triangular lattices. The calculations were done at t
percolation point for each lattice size and are averaged o
roughly 108yL2 configurations.

where for the triangular lattice, the backbone expone
b0

t ­ 0.25 6 0.03. Here we have used the result,2 2

b0yn ­ DB, with n ­ 1.16 6 0.03 from our previous
calculations [9,10]. For the site-diluted triangular lattic
the first-order jump inP`, at

sd ­ 0.086 6 0.005, while
for the case of bond dilutionat

bd ­ 0.11 6 0.02 [see
Fig. 1(b)]. Our mean-field theory uses exact “constrai
counting”(see below) on trees. We assign each node o
lattice g degrees of freedom and coordinationz. On the
triangular lattice treated in the previous paragraph, ea
node has two degrees of freedom andz ­ 6 for the pure
lattice. If the nodes of a triangular lattice wereextended
en,
e

s)
e
er

nt
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objectsor bodiesinstead of being pointlike “joints,” then
each node would have an additional rotational degree
freedom. Cases of physical interest are then

g ­ 1 for connectivity percolation, (2)

g ­ d for a joint, (3)

g ­ d 1
dsd 2 1d

2
for a body, (4)

where d is the dimensionality of the embedding space
Knowledge ofg and z is enough to write down the sim-
plest constraint-counting mean-field theory [3]. Conside
bond dilution with probabilityp that a bond is present.
Present bonds restrict the motion of the nodes, and hen
they impose “constraints” on the degrees of freedom
the lattice. We assume that all of the constraints are “i
dependent” (a “dependent” bond can be removed witho
causing any reduction in the size of the rigid clusters
then the number of degrees of freedom that remain unco
strained (the “floppy” modes per sitef) is approximated
by

f ­ g 2 pzy2 for p , pp ­ 2gyz . (5)

For p . pp, f ­ 0 in this approximation. This mean-
field theory has been useful in the study of glasses [3
but has yielded little information aboutP`, PB, and
PI . More recently, a continuum mean-field theory ha
been developed [11], which focuses onP`. That theory
indicates that the infinite-cluster probability undergoe
a first-order transition at the rigidity threshold, but the
connection with the key parametersg and z is unclear.
In addition, in that work a pathological lattice model (a
square lattice with random diagonals) was suggested a
paradigm for the rigidity transition. We show later why
that model is anomalous.

We now present our Cayley-tree model for rigidity
percolation, which provides a complete mean-field mod
for arbitraryg andz. The trees have coordination numbe
z but, as usual in tree models, the key results com
from consideration of one branch of a tree [see Fig. 2(a
Consider site-diluted trees which are grown from a rigi
boundary at infinity. Building inward from this boundary,
we keep track of the number of degrees of freedom of
node with respect to the boundary. Rigidity can only b
transmitted to higher levels of the tree if there are enoug
rigid bonds present to offset theg degrees of freedom of a
newly added node. For connectivity percolation only on
bond is needed. If a node is added to ag ­ 2 tree, two
bonds are needed to offset the two degrees of freedom
the added node. In general, if the nodes of the tree haveg
degrees of freedom, rigidity is transmitted to the next lev
of the tree provided the node is occupied, and provided
1481
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FIG. 2. (a) One branch of az ­ 4 Cayley tree. The lowest-
level branches of the tree are attached to a rigid border. (b)P`

for site-diluted trees withg ­ 2 and, starting with the rightmos
curve,z ­ 4, 6, 9, 13.

leastg of the lower-level nodes are rigid. This gives th
recurrence relation

Tl11
` ­ p

z21X
k­g

µ
z 2 1

k

∂
sTl

`dk s1 2 Tl
`dz212k , (6)

where Tl
` is the probability that a site which isl levels

from the rigid border (which is level 0) is rigid with
respect to the border. Forg ­ 1 this reproduces the
familiar model for connectivity percolation [14], while
for g . 1 it is mathematically equivalent to so-calle
“bootstrap” percolation [15] (note that for lattices wit
internal loops this equivalence does not usually apply).
we take the thermodynamic limit (very largel), Eq. (6)
iterates to a steady-state solution, which we callT`.
Finally we findP` from

P` ­ p
zX

k­g

µ
z
k

∂
sT`dks1 2 T`dz2k . (7)

The results forT` for several values ofg and z are
presented in Fig. 2(b). It is seen from this figure th
1482
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for g ­ 2, the rigidity transition is first order; we show
elsewhere that this conclusion holds for allg . 1 [16].
An exact solution is straightforward for the casez ­ 4,
g ­ 2, where [from Eq. (6)]

T` ­ pfT3
` 1 3T2

`s1 2 T`dg, (8)

which has the trivial solutionT` ­ 0 and the nontrivial
solutions

T` ­
3 6

p
s9 2 8ypd

4
. (9)

In order to ensure thatT` ­ 1, when p ­ 1, take the
positive solution in Eq. (9). The square root in Eq. (9
becomes imaginary atpp ­ 8y9. As p ! pp, Eq. (9)
yields

T` ­
3
4 1 csp 2 ppd1y2. (10)

The key feature of this equation is thatT` is first order,
and there is asquare-root singularitysuperimposed upon
the first-order transition. We find a similar behavior fo
all g andz, and so we write in general

P` ­ a 1 bsp 2 ppd1y2, (11)

where a, b, and pp are dependent ong and z. Notice
that this is of the same form as Eq. (1) for the triangul
lattice. We thus argue that in general the form Eq. (1)
correct, with the mean-field backbone-exponentb

0
mf ­

1
2 .

Full details of the Cayley-tree result will be publishe
elsewhere [16].

Because of the fractal backbone, there is a divergi
length, and the scaling properties are controlled by th
diverging length. As shown in previous calculations th
“correlation” length diverges with exponentn ­ 1.16 6

FIG. 3. The volume fraction of red bondsPr at the rigidity
threshold for the triangular lattice with site dilution (inverte
triangles) and bond dilution (triangles); the “random diagona
model (see text) withq ­ 0 (squares—this is the anomalou
model of Fig. 4),q ­ 0.1 (circles) andq ­ 0.4 (diamonds).
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FIG. 4. The square lattice with random diagonals and n
removed horizontal or vertical bonds, soq ­ 0 (see text).

0.03 [9,10] at the rigidity threshold in two dimensions.
Coniglio’s relation then applies to this problem [12], so
that we expectnr , the number of red or “cutting” bonds,
to diverge asL1yn at the rigidity threshold. We find
that to be the case for both the site- and bond- dilute
triangular lattices (see Fig. 3), from which we findPr ,
nr yL2 , Lx22, with x ­ 0.86 6 0.02 ­ 1yn confirming
our previous result [9].

Finally, we analyze and extend a simple model for gel
which has been developed by Obukhov [11] to provide a
illustration of a first-order rigidity transition (see Fig. 4—
the boundary conditions do not change the conclusion
The random diagonals are present with probabilitypd , and
all that is required to make the lattice rigid is one diagon
present in every row of the square lattice. The probabili
that an infinite-cluster exists is thenP1 ­ f1 2 s1 2

pddLgL, from which we find pdp , ln LyL. However,
the resulting infinite cluster contains the whole lattice
the rigid backbone is extensive, and so is the number
cutting bonds (see Fig. 3 for a calculation of the cuttin
bonds). This is inconsistent with the result Eq. (1) an
also with the presence of a diverging length at the rigidit
transition. However, the model of Fig. 4 is atypical
as can be seen by considering a generalized model
which we randomly add the diagonals (with probability
pd) to a square lattice whose bonds have been dilut
with probability q (Obukov’s model isq ­ 0), while if
q ­ 1 2 pd this model is equivalent to the bond-diluted
o
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n
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triangular lattice. We find that even for a small amoun
of dilution, e.g.,q ­ 0.10, the rigidity transition returns
to the behavior characteristic of the isotropic triangula
case (see Fig. 3). We find that for sufficiently large lattic
sizes, the universal behavior Eq. (1) holds for any finit
q , 0.5, and that the “fully first-order” transition (i.e., a
first-order backbone) only occurs in the special case of
perfect square lattice (or other “marginal” regular lattices
with randomly added diagonals. We have found simila
pathological cases on Cayley trees.
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