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Microscopic Origin of Cholesteric Pitch
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(Received 12 July 1996)

We present a microscopic analysis of the instability of the nematic phase to chirality when molecula
chirality is introduced perturbatively. We show that for central-force interactions the previously
neglected short–range biaxial correlations play a crucial role in determining the cholesteric pitch. W
propose a pseudoscalar strength which quantifies the chirality of a molecule. [S0031-9007(97)02460-

PACS numbers: 61.30.Cz
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Chirality in molecules leads to a myriad of macroscop
chiral structures, including life itself [1]. A molecule is
chiral if its mirror image cannot be rotated to replicat
itself [2]. Equivalently it is chiral if its symmetry group
does not contain the elementSn —a rotation around
an Sn axis by 2pyn followed by a mirror through
a plane perpendicular to that axis. A chiral molecu
cannot be uniaxial: the only infinite point groups ar
C`y and D`h [3] which both contain S1. Thus if
the molecular orientations are averaged independen
(even if the distribution is uniaxial about a commo
molecular axis), the interactions will be identical to thos
of molecules with aC` axis and will therefore not be
chiral. Figure 1 shows a schematic representation of t
interacting chiral molecules whose degree of chirality ca
be varied continuously as we will discuss below.

Molecular chirality induces chiral interactions that pro
duce intermolecular torques of a given sign and can gi
rise to equilibrium chiral structures such as the choleste
phase of liquid crystals. There are two common analys
of this effect. The first is purely classical [4–8], while
the second invokes a generalized chiral dispersion fo
whose origin is quantum mechanical [6]. One can a
gue that there are systems for which the dominant
teraction is a classical one, involving two-point, centr
forces between atoms or interaction centers on molecu
and accordingly in this paper we consider only this cla
sical mechanism. In a more detailed paper [9], we w
consider the quantum interaction and compare its stren
with the classical one studied here. Our primary foc
will be the calculation of cholesteric pitch from these in
teractions. The usual classical picture of the origin of i
termolecular twist considers two screwlike molecules wi
excluded-volume interactions [4,5]. In order for the vane
of the screws to interleave, the molecules must have
nonzero angle between their screw axes. A similar p
ture arises via the tangent-tangent interactions of chi
molecules [6,7] or via surface-nematic interactions of ch
ral dopants [8].

The above mechanism produces a preferred nonz
rotation angle between long axes of neighboring chir
molecules (such as two screws) only if there is correlati
between the directions of their short axes, e.g., betwe
0031-9007y97y78(8)y1476(4)$10.00
ic

e

le
e

tly
n
e

wo
n

-
ve
ric
es

rce
r-

in-
al
les,
s-
ill
gth
us
-

n-
th
s
a

ic-
ral
i-

ero
al
on
en

fA and fB in Fig. 1. To our knowledge, no previous
attempt to calculate the cholesteric pitch has treated
this properly. If neighboring molecules are spun freely
about their long axes, they become effectively nonchiral,
and interactions favoring twist are washed out [10].
Thus, the pitch of a cholesteric depends critically on
the degree of intermolecular correlation of short-axes
directions: a vanishing correlation leads to an infinite
pitch, and complete correlation, as would be produced
by long-range biaxial order, leads to the shortest pitch
In a uniaxial phase, mean-field theory does not trea
these short-axes correlations and cannot predict a finit
cholesteric pitch from molecular shape. Thus it will
either lead to a phase with long-range order in the short
axes directions (a biaxial phase) or to a uniaxial phase
without chirality [11]. Although the results presented here
are only methodological, they have crucial implications
for numerical simulations [12] since such calculations
are often based on excluded-volume hard-core or othe

FIG. 1. Schematic representation of two chiral molecules.
The atoms are represented by both the filled and unfilled circles
while the lines serve only as a guide to the eye. Each line on
each molecule lies in anxz plane parallel to the page. The
arms and atoms in the plane aty ­ Ly2 are black, and those
in the plane aty ­ 2Ly2 are grey. The angleg between the
projection of the two arms onto the samexz plane determines
the degree of chirality. As examples, we consider two versions
of this molecule. In the first, all atoms are identical, while in
the second, the atoms with a hollow center carry a negative
charge and those with a filled center carry a positive charge. In
the nematic phase, the molecules spin freely about the nemat
axis normal to the page so thatksinfX l ­ kcosfXl ­ 0.
There are, however, orientational correlations betweenfA and
fB.
© 1997 The American Physical Society
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central classical interactions of the type we consider.
what follows, we will focus on molecules with biaxia
symmetry and biaxial correlations, though our resu
can be generalized to molecules withn-axial symmetry.
Cholesteric phases are, of course, biaxial. We are
discussing the higher order effect due to the biaxial or
induced by the cholesteric pitch axis, but rather, t
reverse mechanism in which biaxial order is needed
produce chiral phases.

The physics of many chiral liquid crystalline phases c
be captured via the phenomenological Frank free ene
density for the unit vectorn,

f ­ 1
2 K1f= ? ng2 1

1
2 K2fn ? s= 3 ndg2

1
1
2 K3fn 3 s= 3 ndg2 1 hn ? s= 3 nd , (1)

where K1, K2, and K3 are the Frank elastic constan
for splay, twist, and bend, respectively, andh is a
chiral parameter. This free energy is invariant under
inversionn ! 2n, consistent with the symmetry of th
nematic phase. The calculation ofh is the focus of this
paper.

The most common manifestation of the preferred pa
ing angle of chiral molecules is the cholesteric liquid cry
tal phase in which a particular axis of each molecule l
along the nematic directorn ­ fcoskz, sinkz, 0g. The ẑ
axis is the pitch axis, and the pitch isP ­ 2pyk, the
distance over which the nematic director rotates by2p.
In this uniform twisted staten ? = 3 n ­ 2k, and the
Frank free energy density reduces tof ­

1
2 K2k2 2 hk

so thath ­ 2≠fy≠kjk­0. The equilibrium value ofk is
k0 ­ hyK2. Using standard statistical mechanical proc
dures, the chiral parameter can be expressed as

h ­ 2
≠f
≠k

É
k­0

­ 2
1
Y

*
≠U
≠k

+ É
k­0

, (2)

where the brackets denote a thermodynamic average
nematic state in which there is a spatially uniform direc
n, Y is the sample volume, andU is the total potential
energy. We denote the center-of-mass coordinate
moleculeA by RA and the coordinate relative to the cent
of mass of particlea in moleculeA by rAa . In general,
a should run over all interaction centers (usually atom
and nuclei) in moleculeA. The potential energyU is
a function of all the coordinates. To determineh, we
introduce an infinitesimal twist in a nematic state in whi
the molecules are aligned along a uniform directorn.
Under such a twist, atomic coordinates within molecu
A will undergo a rotationdri

Aa ­ eijkdv
j
Ark

Aa where
dv

j
A ­ kejse ? RAd is a rotation angle about an arbitrar

unit vectore perpendicular ton. The magnitude ofdvA

increases linearly with the projection of the center-o
mass positionRA alonge. Using (2) and the invariance
of the system with respect to arbitrary rotations about
n axis, we obtainh ­ 2

1
4 Y21

P
BA TBA, where TBA ­
In
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kR'tBAl is the projected torque,tBA is the torque exerted
on moleculeB by moleculeA, R ­ RB 2 RA, andR'

is the projection ofR onto the plane perpendicular ton.
The chiral parameterh must be zero in achi-

ral systems that have an equilibrium nematic
phase. To see that our formulation leads to thi
result, consider evaluating

P
A TBA for a system

in which all molecules are achiral. The thermo-
dynamic average is carried out over all configu-
rationsV of the molecules consistent with the assumed
nematic order. If, and only if, the molecules are achiral
the average may equivalently be carried out over a
configurations V, where V is obtained from V by
a reflection through a plane perpendicular ton. But
R' ? tBA in V is the negative ofR' ? tBA in V, so
h ­ 2h ­ 0.

Our expression forh is perfectly general: it applies to
quantum as well as classical systems. Note that hard-co
interactions can be viewed as the limiting case of centra
forces between atoms of a single kind that mutually
interact via central forces, and thus we begin our analys
for such systems. The projected torque is then

TBA ­

*X
ba

eijkRi
'r

j
b≠kV sR 1 rb 2 rad

+
, (3)

where ra ­ rAa and rb ­ rBb are, respectively, the
coordinates of atomsa andb in moleculesA andB. To
facilitate our analysis, we will now consider an expansion
of TBA in powers of relative atomic distance over center
of-mass separation, i.e., inrb,ayR. We expect, however,
that the conclusions we draw from this analysis are mor
generally valid and apply, in particular, to hard-core
interactions. In such an expansion, only terms that ar
odd in the atomic coordinatesra and rb are sensitive
to reflections and thus to chirality. Furthermore, terms
that are even inra and rb are necessarily odd inR and
will, therefore, not survive the average over the nemati
distribution function. Thus, if we assume an achira
distribution characteristic of a nematic phase, we ca
restrict our attention to terms odd inra andrb. (We will,
however, reconsider this point later.) Sincerb measures
the position relative to the center of mass,

P
b rb ­ 0,

and thus the linear and third order terms vanish. The firs
nonvanishing chiral term is the fifth order term

T 5
BA ­

1
4!

* X
ba

eijkRi
'r

j
brl

barm
bar

p
bars

ba≠k≠l≠m≠p≠sV sRd

+
,

(4)

whererba ­ rb 2 ra . This quantity can be reexpressed
in terms of the second and third rank mass momen
tensors on moleculesX ­ A, B, M

jl
X ­

P
x[X srj

xrl
x 2

1
3 r2

xdjld, and S
jlm
X ­

P
x[X r

j
xrl

xrm
x . Mjl is the usual
1477



VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997

l

-

-
ill
n-

-
e-

e

an
ion

].

s-
ell
c
x-
nd-

i-

h
,
ree

t
is
.

quadrupole tensor describing nematic order, which c
be decomposed into a uniaxial and a biaxial part.
we assume that there is perfect alignment of the long
principal axis along the nematic direction, thenMjl ­
M1snjnl 2

1
3 djld 1 Bjl, where Bjl is the symmetric

traceless biaxial tensor with no components alongn. The
third rank tensorSijk is symmetric. In general, there
are correlations between the direction of the vectorR
connecting two molecules and the respective orientatio
of these molecules. The important effects we consider
present even if these correlations are absent, and we
ignore them. This permits us to evaluate the orientation
average of products ofRi with respect to a distribution
that is isotropic in the plane perpendicular ton. For
example,kRiRjl ­ R2

jjn
inj 1

1
2 R2

'sdij 2 ninjd. Setting
V sRd ­ gsR2y2d, expanding the derivatives ofV , and
performing the above average, we obtain

T5
BA ­

1
2 eijkQipksBjl

B S
kpl
A 1 B

jl
A S

kpl
B dKsRdl , (5)

whereQip ­ ninp 2
1
3 dip and

KsRd ­ R2
'hgs3d 1 R2

jjg
s4d 1

1
4 R2

'fgs4d 1 R2
jjg

s5dgj , (6)

wheregsndsxd ­ dngsxdydxn. We see then, that only the
traceless part ofSkpl contributes toT 5, and so we may
take it to be traceless.

As we have already discussed,TBA is nonzero only if
the molecules are chiral. How is this fact manifested
(5)? Since bothQip and Bjl can be nonzero for achira
molecules, it would seem that the tensorSkpl is a measure
of chirality. This is not true, however, becauseSkpl also
has components that can be nonzero for achiral molecu
Though there are many possible definitions of amolecu-
lar chiral strength, when a molecule has a unique lo
axis we propose the pseudoscalarc ­ SklmeijkQilBjm as
a measure of the chiral strength of a molecule. This de
nition is useful because, as we shall see,h is proportional
to c. If the molecule is not biaxial (i.e.,Bkm ­ 0), c will
vanish. In addition, sincec is a rotational invariantodd
in r, it will also vanish if the molecule is achiral. It is pos
sible that even for a chiral molecule,c vanishes. If this
were the case, however, there would still be nonvanis
ing contributions to (3) at higher order in the expansion
powers ofryR. Indeed, a complete description of chira
interactions requires the knowledge ofall the chiral mo-
ments of the molecules. In the basis of the principal ax
of the molecule withn along ẑ, c ­ SxyzsBxx 2 Byyd.
Only the components ofSkpl with three different indices
in this basis contribute toc . We can, therefore, replace
Skpl in (5) with the tensorSkpl whose only nonvanishing
component in the principal axis basis isSxyz .

The projected torqueT 5
BA is an average over fluctua

tions in the aligned nematic phase. It will be zero unle
biaxial directions on pairs of molecules are correlated.
we were to spin the molecules independently, thenkBkml
1478
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would be zero, and both terms in (5) would vanish. How
ever, when there are biaxial correlations, this term w
not vanish. To see this explicitly, we can use the ide
tity Skpl

A ­ 2cAeprsBkr
A Qsly2B21 (5 symmetric permu-

tations), whereB2 ­ TrsB2d. Inserting this into (5), we
come to (assuming identical molecules)

TBA ­
c

B2
kKsRdBij

A B
ij
B l ; ckKsRdGbsRdl , (7)

whereGbsRd ~ kcosf2sfB 2 fAdgl is the biaxial correla-
tion function for two molecules separated by a distanceR.
We would expect in a uniaxial phase thatGbsRd ~ e2Ryj

where j is the biaxial correlation length. Naively, one
would expectj to be of the order of the molecular spac
ing. Thus we conclude that at the very least chirality r
quires biaxial correlations among the nematogens. W
tabulatec for a number of chiral molecules in Table I.

Equation (7) gives the dominant contribution toTBA

to linear order inc in the nematic phase. There is
an additional contribution linear inc arising from the
chiral part of the equilibrium probability distribution
(e2UykBT yZ whereZ is the partition function) and those
terms with even powers ofr arising in r

j
b≠kV that are

averaged in (3). In the isotropic phase, our analysis c
be extended to show that this term cancels the contribut
to TBA from (4) and (5) to produceh ­ 0 as required.
In the ordered phase, this other term ishigher order in
correlation functions and is subdominant to our result [9

We have shown that the projected torqueTBA and hence
K2k0 will be proportional to the molecular chiral strength
c . We note that there are a number of chiral liquid cry
tals, such as solutions of the viruses FD and TMV as w
as of DNA, that show very small, if any, macroscopi
chirality [13,14]. We believe the ideas presented here e
plain these observations, although a complete understa
ing will require a thorough investigation of the quantum
dispersion force. Helical molecules have very small b
axiality and hence small values ofc (see Table I). The
chiral contribution toc comes fromSkpl and is inversely
proportional to the number of turns per unit length, whic
is consistent with one’s geometric intuition. In addition
since the molecular chiral strength depends on the deg
of molecular biaxiality, we see that forfixed turn den-
sity (or equivalently, fixedSkpl) c falls off as the total

TABLE I. Value of c for molecules made of atoms located a
the coordinates given in the first column. The first molecule
shown in Fig. 1, and the second is a helix of uniform density

Atomic coordinates c

L . 2w : hs6w, 0, 2Ly2d,
s6w cosg, 6w sing, Ly2dj

2w4L sins2gd

L ¿ r, n [ Z : hs [ f21y2, 1y2g
sr coss2pnsd, r sins2pnsd, Lsdj, , 2

3r4L
s2pnd3

h
1 2

24
spnd2

i
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length squared. In addition, these molecules can easil
rotate independently and are far apart (tens of angstrom
Hence we believe the biaxial correlation lengthj will be
small compared to the intermolecular spacing. Our cla
sical analysis should be valid especially for FD and TM
since these molecules are thought to interact sterica
Alternatively, short-molecule, thermotropic liquid crystal
show very strong chirality, with pitches on the order o
5000 Å. These molecules are generally quite flat a
thus quite biaxial. Typical molecular densities would no
allow the molecules to rotate independently of each oth
and thus we expect the biaxial correlations at the molec
lar separation to be reasonably large. The combined eff
of a large biaxial component toc and of a largej should
lead to relatively short pitches. In both cases we note th
naively one would expect on dimensional grounds th
k0 would be on the order ofpya where a is the inter-
molecular spacing, which is certainly not a typical invers
pitch. Pitches are typically on the scale ofmicrons,not
angstroms. Our expression (7) for the leading term o
TBA is consistent with all of the above observations. W
also note that in all but the most dilute solutions we d
not expect any universal dependence of pitch on conc
tration or temperature: the details of the interactions a
correlations should be different from system to system.

We briefly mention a number of generalizations to b
discussed later [9]. We have considered here only t
interactions between a pair of perfectly aligned, identic
molecules. In the nematic state, the molecules are
perfectly aligned and the Maier-Saupe order parame
S is less than1. We can incorporate these fluctuation
into the calculation ofTBA. Indeed, we find, as discusse
above, that when there is no nematic order there is
net torque. Since (5) involves the product ofSkpl on
one molecule andBjl on the other, our results easily
generalize to chiral molecules interacting with achira
biaxial molecules. More generally, we find that includin
correlations between the intermolecular direction and t
molecular orientation leads to chiral interactions betwe
chiral molecules and uniaxial molecules.

Additionally, we note that atomic identity may be
relaxed. In this case, there is an interactionVc be-
tween pairs of atoms leading to a potential energ
U ­

1
2

P
qaqbVcsR 1 rBb 2 rAad, where qa and qb

are the “charges” of atomsa and b. A chiral mole-
cule such as that shown in Fig. 1 can carry a dipo
momentpA ­

P
a qarAa perpendicular to its long axis.

We then find a third order contribution to the projecte
torque of the formeijkpl

AC
jm
B Ri

'≠k≠l≠mVc, whereC
jm
B ­P

b qbsrj
brm

b 2
1
3 r2

bdjmd is the charge quadrupole mo
ment tensor. The molecular chiral strength analogous
c for this system iscc ­ eijkpiCjmQkm. With this def-
inition, TBA is proportional toccGpsRd whereGpsRd is
the dipole-moment pair correlation function, which, lik
GbsRd, measures angular correlations in the plane perp
y
s).
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dicular ton. Adding chargesq and2q to the molecules
shown in Fig. 1 (and using the atomic positions specifie
in Table I), we havecc ­ 4q2w2L sing. We believe that
chiral interactions of this type play a role in those liquid
crystals which can form ferroelectric phases (i.e., Sm-Cp,
TGBp

C , etc.).
We close with some observations concerning th

relation of our work to previous treatments of chira
interactions. An intermolecular potential of the form
V ch

BA ­ M
ij
A ejklRkMil

B VpsRd 1 sA $ Bd remains chiral
and nonzero upon spinning about the local nemat
director. It leads automatically to a free energy o
the form of (1) with h proportional toVp . Thus, this
potential or ones similar to it are often used as a startin
point for the description of chiral liquid crystals. Our
analysis shows that this potentialcannot be obtained
from classical central forces between atoms on molecule
though it can arise through quantum dispersion forc
[6]. The potential corresponding to (5) has the form
VBA ­

P
BAfSijk

A Mlm
B ≠i≠j≠k≠l≠mV 1 sA $ Bdg. Sijk is

a symmetric tensor—it cannot be expressed in terms
eijk andMkl to produceV ch

BA.
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