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A simple model of the transition to enhanced confinement in reversed shear discharges is presented.
The proposed transition mechanism relies on a synergism between electric field shear suppression
of turbulence aided by reduced curvature drive due to magnetic shear reversal or reduction. Profile
structure and transport barrier propagation dynamics are predicted. A novel analytical theory for the
time evolution of the barrier foot-point location is presented. The model predicts that the transition
threshold has favorable dependence on pretransition temperaturéltdfp), in-out asymmetry in the
E X B shearing rate (i.e., lower for larger Shafranov shift), density profile peakedness, and unfavorable
scaling with density. Optimal confinement occurs in discharges where deposition is peaked within the
magnetic shear reversal radius. [S0031-9007(97)02457-5]

PACS numbers: 52.55.Fa

Achieving understanding and control of turbulent trans-well as theexperimentalindications of a clear bifurca-
port is a necessary prerequisite for the design of an ecdion in particle, energy and momentum content evolution
nomical advanced tokamak fusion reactor. Significan{as shown by a discontinuity in the time derivative of lo-
progress toward enhanced performance has been made d¢gl density, ion temperature, and toroidal rotation velocity)
exploiting the spontaneous transition to high confinemensubsequent to establishment of reversed shétdogether
regimes, such asdl mode [1] orVH mode [2] induced by suggest thamagnetic shear reversal is not sole cause
increased radial electric field shear. Sughshear [3], of the remarkable confinement improvements observed in
which is produced by the onset of sheared rotation anERSNCS-mode plasmasThis is consistent with the ob-
the steepening of the ion pressure profile, suppresses twservation of internal transport barriers in weakly negative
bulence and transport [4], thus initiating a self-reinforcingshear discharges, where geodesic curvature drive is not
feedback [5,6] which results in a bifurcation to a statefully eliminated [8].
with significant local reduction of fluctuations and trans- Here, we propose a simple model of ERES tran-
port. In H mode andvVH mode, the transport barrier is sition dynamics. The model consists of an electric field
initiated at the plasma edge. shear driven transport bifurcation which develops in the

Recently, a new regime of enhanced core confinememtdially inhomogeneous ambient transport environment
has been discovered in discharges with reversed magharacteristic of the prelude phase plasmas. The strong
netic shear [7,8]. In such discharges, formed by intenseadial inhomogeneity is a consequence of tte) profile
auxiliary heating of prelude (pretransition) plasmas durstructure. The essential mechanism intrinsic to the model
ing current ramp-up, confinement is observed to increasis a local transport bifurcation which occurs when a lo-
dramatically when a critical power input level is surpassedcal profile gradient threshold (entering the determination
Stored energy content builds rapidly, and a transport bamf E/) is exceeded. Magnetic shear reversal lowers the lo-
rier forms atr = rpnin, Whereryn is the location of the cal threshold, thus facilitating transition and localizing the
minimum of ¢(r). Typically, particle, ion thermal and region of barrier formation to the region of shear reversal.
momentum transport in the core of such ERS (enhanced@hus, asynergismbetween the reduced curvature drive of
reversed shear) [7] and NCS (negative central shear) [&he pretransition reversed shear plasma andtthdriven
plasmas is reduced to levels below that of conventionalransport bifurcation iSundamentalto this model. The
neoclassical theory. This is consistent with the long standtransition front is predicted to propagate [12] outward in ra-
ing predictions that negative magnetic shear will reducelius until it reaches a radius at which the power, particle, or
geodesic curvature drive of microinstabilities [such as thenomentum input is insufficient to exceed the local thresh-
toroidal ion temperature gradient (ITG) driven mode, vari-old criterion. Note that within the scope of this model, the
ous trapped particle modes, and higballooning modes] obvious question of why thelectricfield shear bifurcation
and that peaked density profiles will quench ITG modess spatially pinned to the region afiagneticshear reversal
[9,10]. Nevertheless, thteoreticalpredictions that resid- is straightforwardly resolved, since (even weakly) negative
ual ITG turbulence and collisionless trapped electron modshear significantly reduces geodesic curvature drive, thus
turbulence should persist in prelude discharges [11], awering thelocal (electric field-shear-driven) bifurcation
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threshold. Thus, magnetic and electric field shear effect¥he solution of Eq. (2) determines the stationary profile
are synergistic in our model. of N(x) in terms of the radially integrated deposition pro-
The basic ERENCS dynamics can be manifested file S(x/A;) and the profile of the ambient transport in
in a very simple two-field model which evolves local the prelude phase. Note th&ix) is determinedocally
fluctuation intensitye(r,t) = {(ii/n)?) and local mean and exhibits a distinct prelude (i.eL-mode-like) root
density gradient magnitud€(r, 1) = |(1/{n)) (d{(n)/dr)].  when a»(N?)? < 1, namely N(x) = [«;S(x)/Doyo]"/?,
Density gradient evolution is determined by the evolutionand a steepened gradient (i.el;mode-like) root when
of radially integrated mean density = [, dr’(n). Thus, @2(N2)?> > 1, namely N(x) = S(x)/D,. In the latter
the basic equations are case, the profile is determined by neoclassical transport
oe yo[(x — x,)/A,INe ) alone. ltis apparentfrominspection tatx) will fall into
91+ ) VEVIE ai(r)e”,  (la) the H-mode-like state forx < x, + A, where yo[(x —

; ¢ x,)/A,]is small and théocal “ L. — H” transition thresh-

9 _ _ _ old is easily exceeded. For, + A,, yo(x) increases
ar S(/Aa) = DoeN = DuN . (1b) rapidly, so the solution foN(x) must revert to a prelude
Equations (1a) and (1b) are a generalization of a subs@hase value. Between these regions of asymptotic behav-
of previous models [4—-6] to an inhomogeneous systenor, the boundary of the core transport barrier is located.
Here yo[(x — x,)/A,]N is the spatial profile of microin-  The nontrivial spatial structure of the stationary state
stability growth in the absence of electric field she®r,  profile is greatly elucidated by considering the surface
is the scale of variation iy, about the geodesic curvature of constant transport fluX’ (here I' = DyeN) in the
drive fall-off radiusx,, V/g/VC/ is the normalized electric space of position and grad|e(m N). Thisflux landscape
field shearing rateWz/V! ~ N2, from radial force bal- (drawn for TFTR parameters—see later) is shown in
ance),S(x/Ag) = 1/n [y dx'S,(x'). Doe is the turbulent  Fig. 2(a). Note that constahtslices of the flux landscape
diffusivity, and D, is the neoclassical diffusivity. Note depict the familiar radial profiles df and (implicitly) D,

x = r? is understood, and the geodesic curvature drivyhich increase with radius. Correspondingly, a constant-
is reduced ak,, but need not vanish. Alsay,(r), a2(r)  x slice of I'(x, N) traces anS-shaped bifurcation curve
are model-dependent proportionality coefficients definegyhich describes the local gradient transition at each

in Ref. [13]. Typical spatial profiles ofo[(x — x,)/A,]  radial location. Two prominent features of the flux

ands,(x/Ad) are shown in Figs. 1(a) and 1(b). Note thatjandscape are a steep ridge at modest valuesN,of
vo decreases over a scale in the neighborhood of,,

and thusA, corresponds tdg”/q)~'/2, namely the char-
acteristic width of shear variationy, is assumed small
for x < x,, corresponding to residual turbulence in the s
region of reversed shear. The profile $ft/A,) corre- s
sponds to an assumption of central deposition, with depo-
sition profile widthA .

The stationary condition for this model is thus simply

D,N(x) _ _ Doyo()N(x)*/a; @)
SGa/Ag) [+ ax(N(x)H)]S(x/Ag)
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FIG. 2. (a) Transport flux landscape, in position-gradient
FIG. 1. (a) Spatial profile of turbulence growth rate. (b)space. (b) Topography of constdntcontours in position-
Spatial profile of integrated deposition profile. gradient space.
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which proceeds into a hill at largg and modestN. 30 T : 1 T T
These are hereafter termed the prelude phase ridge and | =38

hill, respectively. At largeN, a second, topographically » mova=.38

simpler up-slope appears at all valuesxof The slope of B ool - r/a=.43 -
this inclination, dubbed thél-mode beach, is set b9, g’ T as.4s — 7]
as the inclination is determined by neoclassical transport. o [ g ]
The actual solution profile oW (x) is determined by the % wt T e -
intersection of the flux landscape with the deposition & | ST

surface S(x/A,), which is flat for x > A,4, i.e., for Ll Y i p
radii beyond the deposition region. Thus the transport 0 EreELry et e e
barrier lies in the regiom\; < x < x,. This is shown 0 5 10 Is 20 25 30

in Fig. 2(b), which is a topographic plot of constant flux
contours inx, N space. Note that the largeboundary FIG. 3. Time histories of the pressure gradient at different
of the barrier is located where the prelude hill is highradial locations during a power ramp.

enough to intersect the deposition surface, thus causing

I'(x,N) to be locally double valued. This determines agiven by<{(¢), wherex < €(r) is the core region of colli-
lower bound inx for the location of the catastrophe [14], sional transportD = D,) andx > £(z) is the region of
representative of a local — L transition. The precise anomalous transpotD = D,). The transport bifurcation
location of the barrier foot-point must be determined usingoccurs in a narrow layer abodtr). The trajectory his-

a dynamical calculation, given below. Note also thattory of £(¢) is determined by the matching conditions for
the structure of the flux landscape dramatically suggestthe bi-stable transport bifurcation problem, which require
that optimal performance will result when the depositioncontinuity of density and particle flux, and also impose a
region is located within the shear reversal radius, i.e.¢condition akin to the Maxwell construction, familiar from
A, < x,. This is because particles or power deposited aphase equilibrium theory. The latter is obtained by multi-
x > x, will experienceL-mode transport and thus suffer plying the transport equation byand integrating through
degraded confinement. These conclusions are consistethie bifurcation front layer (of thickness), yielding

with experimental studies [15]. o N,

The dynamics of reversed shear discharge evolution NT(N)le. = dN T'(N) (4)
may be studied numerically using a simple extension o . N . g
the model of Egs. (1a) and (Lb), obtained by retainin or a stationary state. Note that Eq. (4) is satisfied by

radial transport to provide spatial coupling. The extended UNique V?"“e ofT’, correspondm_g to transition from
model equations are profile gradientN_ to N4 at €. This value is hereafter

referred to asl’y;. Then the matching conditions are

& _ 2 P J < 8s> then justly = Ty, = Ty, n(¢~) = n(¢), and Eq. (4).
— = Ne — —arVpe + —|Doe — |, L ; y ’ iy '
at volx) are GYEE T 5 \F0% ox Additional (edge) boundary conditions at¢z) = 0 and
3 I'y = —Dyeodn/ox (I'g is the flux from the core, assum-
(3a) ing central deposition). Inspection of the resulting dif-
IN a9 aN fusion problem reveals that one cannot simultaneously
Fr § = DN + £<D°£ E) (3b) satisfy the matching criteria at = ¢ and the bound-

Here, the notation is that of Refs. [6,13]. The tempora@y conditions att = 0, x = a unlessly = I'y. Thus,
I'y, determines the particle fueling rate (more generally,

evolution of N at various radii during a power ramp is . ! 2 ;
shown in Fig. 3. A radially local discontinuity idN /dt p(_)wer) required to sustain a stationary transport barrier
with foot atx = €. Of course, the slope of the prelude

clearly occurs at progressively increasing radii, thus h hill determined d thus the ultimate stati
indicating alocal gradient transition which propagates P asel : f? erénlnlg ’i "iﬂn ¢ us .”FT‘ uitimate s;tlgn—
outward in radius as the power input rate is increasecf’y Value ott.. Fordo = L. (r) will increase and the

This phenomenon has subsequently been identified iﬁoreN W'.” steepen, until “I.|m|ted ?y other physical pro-
NCS discharge of DIlI-D. The ultimate location of the cesses (i.e., stability to “infernal” modes [16]). When

transition front is determined by the input strength and thd 0 = I'm, so that€{ < Dn.,, approximate solution of
slope of the prelude phase hill of ti(x, N) surface, as the time-dependent, nonlinear evolution problem @)

predicted in the previous paragraph. yields
The simplest possible model of ERS dischadyaam- I'o—T'y D,D, 12
ics is that defined by the nonlinear transport equation t(1) = [( Ty ><Da - D, >’}
with bi-stable flux functionI'(x,N), so thatdn/ot = 12
—dI'(x,N)/dx. Here,I'(x,N) is s shaped at constant = (M) D.t1/2 (5)
as are cross sections of Fig. 2(a). Note that this discussion Ty S

does not assume the specific functional fornrT'afised in  Thus, the transport barrier foot-point positiditr) in-
Eqg. (1). Then, the transport barrier foot-point location iscreases diffusively ab,,. More generally,£(¢) evolves
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according tof(r) ~ [(P — Peit/Peri0)]V*(D,1)"/%, where  current must be self-consistently evolved in shaped toka-
P, is thelocal power threshold for a transport bifurca- mak geometry. The target plasma profile dependence
tion. These results are qualitatively consistent with thosef the deposition function must be accounted for [i.e.,
shown in Figs. 3(a) and 3(b). Further discussion and deS = S(N,x/A;)]. A partially augmented model, which
tails of this derivation are given in Ref. [17]. evolves transport equations fesT;, T., ande has already
The major quantitative question pertinent to describingbeen developed. Solution of this model for TFTR param-
the ERSNCS transition is that of predicting the profile eters 87 = 4.7 T, R = 250 cm,a = 82 cm, andA,; =
threshold required to trigger the bifurcation. In this 0.2a) predicts an ERS transition & = 17 MW, in
simple model, the electric field shear is determinedgyood agreement with experimental results. In this case,
primarily by the density gradient, so the relevant thresholdhe reversal radius was located at @3thd on-axis pa-
parameter isF, the particle input rate (i.e.Pi,/ € ,, rameters off; = 24 KeV andn = 5 X 10'* cm™3 were
where € ;, is the energy per beam particle). In toroidal calculated. These results are also in good agreement with
geometry [18], theE X B shear suppression criterion is experiment. It is interesting to note that while the ini-
ws = (Apo/AP)o/dy [(cEr/RBy)] > Awy, whereys is  tial transition location and behavior are sensitive to local
the flux coordinate and w, is the turbulent decorrelation growth rates and local gradients 4itr) and power depo-
rate. HereA¢ is the toroidal correlation angléyyy =  sition, the global transition dynamics appear remarkably
RByAry, where Arg is the radial correlation length of robust. These (and further) extensions of the model will
the turbulence. Using radial force balance (assun¥ing be discussed in future publications.
controlsE!) and particle balance with the assumption of We thank K. H. Burrell, M. Zarnstorff, M. Beer, L. Lao,
gyro-Bohm patrticle diffusion then yields the thresholdH. Park, and E. Synakowski for useful discussions. This
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A(—lp) = <n>(PEC‘v/Ar§)% AC05-960R22464 (Lockheed Martin Energy Research
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HereA(y) is the surface area defined By Note that the
radial force balance and particle balance equations used
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