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A simple model of the transition to enhanced confinement in reversed shear discharges is presented.
The proposed transition mechanism relies on a synergism between electric field shear suppression
of turbulence aided by reduced curvature drive due to magnetic shear reversal or reduction. Profile
structure and transport barrier propagation dynamics are predicted. A novel analytical theory for the
time evolution of the barrier foot-point location is presented. The model predicts that the transition
threshold has favorable dependence on pretransition temperature ratiosTiyTed, in-out asymmetry in the
E 3 B shearing rate (i.e., lower for larger Shafranov shift), density profile peakedness, and unfavorable
scaling with density. Optimal confinement occurs in discharges where deposition is peaked within the
magnetic shear reversal radius. [S0031-9007(97)02457-5]
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Achieving understanding and control of turbulent tran
port is a necessary prerequisite for the design of an e
nomical advanced tokamak fusion reactor. Significa
progress toward enhanced performance has been mad
exploiting the spontaneous transition to high confineme
regimes, such asH mode [1] orVH mode [2] induced by
increased radial electric field shear. SuchEr shear [3],
which is produced by the onset of sheared rotation a
the steepening of the ion pressure profile, suppresses
bulence and transport [4], thus initiating a self-reinforcin
feedback [5,6] which results in a bifurcation to a sta
with significant local reduction of fluctuations and trans
port. In H mode andVH mode, the transport barrier is
initiated at the plasma edge.

Recently, a new regime of enhanced core confinem
has been discovered in discharges with reversed m
netic shear [7,8]. In such discharges, formed by inten
auxiliary heating of prelude (pretransition) plasmas du
ing current ramp-up, confinement is observed to increa
dramatically when a critical power input level is surpasse
Stored energy content builds rapidly, and a transport b
rier forms atr * rmin, wherermin is the location of the
minimum of qsrd. Typically, particle, ion thermal and
momentum transport in the core of such ERS (enhanc
reversed shear) [7] and NCS (negative central shear)
plasmas is reduced to levels below that of convention
neoclassical theory. This is consistent with the long stan
ing predictions that negative magnetic shear will redu
geodesic curvature drive of microinstabilities [such as t
toroidal ion temperature gradient (ITG) driven mode, var
ous trapped particle modes, and high-n ballooning modes]
and that peaked density profiles will quench ITG mod
[9,10]. Nevertheless, thetheoreticalpredictions that resid-
ual ITG turbulence and collisionless trapped electron mo
turbulence should persist in prelude discharges [11],
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well as theexperimentalindications of a clear bifurca-
tion in particle, energy and momentum content evolutio
(as shown by a discontinuity in the time derivative of lo
cal density, ion temperature, and toroidal rotation velocit
subsequent to establishment of reversed shearall together
suggest thatmagnetic shear reversal is not sole caus
of the remarkable confinement improvements observed
ERSyNCS-mode plasmas. This is consistent with the ob-
servation of internal transport barriers in weakly negativ
shear discharges, where geodesic curvature drive is
fully eliminated [8].

Here, we propose a simple model of ERSyNCS tran-
sition dynamics. The model consists of an electric fie
shear driven transport bifurcation which develops in th
radially inhomogeneous ambient transport environme
characteristic of the prelude phase plasmas. The stro
radial inhomogeneity is a consequence of theqsrd profile
structure. The essential mechanism intrinsic to the mo
is a local transport bifurcation which occurs when a lo
cal profile gradient threshold (entering the determinatio
of E0

r ) is exceeded. Magnetic shear reversal lowers the
cal threshold, thus facilitating transition and localizing th
region of barrier formation to the region of shear revers
Thus, asynergismbetween the reduced curvature drive o
the pretransition reversed shear plasma and theE0

r-driven
transport bifurcation isfundamentalto this model. The
transition front is predicted to propagate [12] outward in r
dius until it reaches a radius at which the power, particle,
momentum input is insufficient to exceed the local thres
old criterion. Note that within the scope of this model, th
obvious question of why theelectricfield shear bifurcation
is spatially pinned to the region ofmagneticshear reversal
is straightforwardly resolved, since (even weakly) negati
shear significantly reduces geodesic curvature drive, th
lowering thelocal (electric field-shear-driven) bifurcation
© 1997 The American Physical Society
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threshold. Thus, magnetic and electric field shear effe
are synergistic in our model.

The basic ERSyNCS dynamics can be manifeste
in a very simple two-field model which evolves loca
fluctuation intensity´sr , td ­ ksñynd2l and local mean
density gradient magnitudeNsr , td ­ js1yknld sdknlydrdj.
Density gradient evolution is determined by the evolutio
of radially integrated mean densityh ­

Rr
0 dr 0knl. Thus,

the basic equations are

≠´

≠t
­

g0fsx 2 xr dyDrgN´

1 1 a2srd sV 0
EyV 0

cd2
2 a1srd´2, (1a)

≠

≠t
h ­ SsxyDdd 2 D0´N 2 DnN . (1b)

Equations (1a) and (1b) are a generalization of a sub
of previous models [4–6] to an inhomogeneous syste
Hereg0fsx 2 xrdyDr gN is the spatial profile of microin-
stability growth in the absence of electric field shear,Dr

is the scale of variation ing0 about the geodesic curvature
drive fall-off radiusxr , V 0

EyV 0
c is the normalized electric

field shearing rate (V 0
EyV 0

c , N2, from radial force bal-
ance),SsxyDdd ­ 1yn

Rx
0 dx0Snsx0d. D0´ is the turbulent

diffusivity, and Dn is the neoclassical diffusivity. Note
x ­ r2 is understood, and the geodesic curvature dri
is reduced atxr , but need not vanish. Also,a1srd, a2srd
are model-dependent proportionality coefficients defin
in Ref. [13]. Typical spatial profiles ofg0fsx 2 xrdyDr g
andSnsxyDdd are shown in Figs. 1(a) and 1(b). Note tha
g0 decreases over a scaleDr in the neighborhood ofxr ,
and thusDr corresponds tosq00yqd21y2, namely the char-
acteristic width of shear variation.g0 is assumed small
for x , xr , corresponding to residual turbulence in th
region of reversed shear. The profile ofSsxyDdd corre-
sponds to an assumption of central deposition, with dep
sition profile widthDd.

The stationary condition for this model is thus simply

1 2
DnNsxd
SsxyDdd

­
D0g0sxdNsxd2ya1

f1 1 a2sssNsxd2dddgSsxyDdd
. (2)

FIG. 1. (a) Spatial profile of turbulence growth rate. (b
Spatial profile of integrated deposition profile.
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The solution of Eq. (2) determines the stationary profil
of Nsxd in terms of the radially integrated deposition pro
file SsxyDdd and the profile of the ambient transport in
the prelude phase. Note thatNsxd is determinedlocally
and exhibits a distinct prelude (i.e.,L-mode-like) root
when a2sN2d2 ø 1, namely Nsxd ­ fa1SsxdyD0g0g1y2,
and a steepened gradient (i.e.,H-mode-like) root when
a2sN2d2 ¿ 1, namely Nsxd ­ SsxdyDn. In the latter
case, the profile is determined by neoclassical transp
alone. It is apparent from inspection thatNsxd will fall into
the H-mode-like state forx , xr 1 Dr where g0fsx 2

xrdyDr g is small and thelocal “L °! H” transition thresh-
old is easily exceeded. Forxr 1 Dr , g0sxd increases
rapidly, so the solution forNsxd must revert to a prelude
phase value. Between these regions of asymptotic beha
ior, the boundary of the core transport barrier is located.

The nontrivial spatial structure of the stationary stat
profile is greatly elucidated by considering the surfac
of constant transport fluxG (here G ­ D0´N) in the
space of position and gradientsx, Nd. Thisflux landscape
(drawn for TFTR parameters—see later) is shown i
Fig. 2(a). Note that constantN slices of the flux landscape
depict the familiar radial profiles ofG and (implicitly) D,
which increase with radius. Correspondingly, a constan
x slice of Gsx, Nd traces anS-shaped bifurcation curve
which describes the local gradient transition at eac
radial location. Two prominent features of the flux
landscape are a steep ridge at modest values ofN,

FIG. 2. (a) Transport flux landscape, in position-gradien
space. (b) Topography of constant-G contours in position-
gradient space.
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which proceeds into a hill at largex and modestN.
These are hereafter termed the prelude phase ridge
hill, respectively. At largeN, a second, topographically
simpler up-slope appears at all values ofx. The slope of
this inclination, dubbed theH-mode beach, is set byDn,
as the inclination is determined by neoclassical transpo
The actual solution profile ofNsxd is determined by the
intersection of the flux landscape with the depositio
surface SsxyDdd, which is flat for x . Dd, i.e., for
radii beyond the deposition region. Thus the transp
barrier lies in the regionDd , x , xr . This is shown
in Fig. 2(b), which is a topographic plot of constant flu
contours inx, N space. Note that the large-x boundary
of the barrier is located where the prelude hill is hig
enough to intersect the deposition surface, thus caus
Gsx, Nd to be locally double valued. This determines
lower bound inx for the location of the catastrophe [14]
representative of a localH ! L transition. The precise
location of the barrier foot-point must be determined usi
a dynamical calculation, given below. Note also th
the structure of the flux landscape dramatically sugge
that optimal performance will result when the depositio
region is located within the shear reversal radius, i.
Dd , xr . This is because particles or power deposited
x . xr will experienceL-mode transport and thus suffe
degraded confinement. These conclusions are consis
with experimental studies [15].

The dynamics of reversed shear discharge evolut
may be studied numerically using a simple extension
the model of Eqs. (1a) and (1b), obtained by retaini
radial transport to provide spatial coupling. The extend
model equations are

≠´

≠t
­ g0sxdN´ 2 a1´2 2 a2V 02

E ´ 1
≠

≠x

µ
D0´

≠´

≠x

∂
,

(3a)

≠N
≠t

­ S 2 DnN 1
≠

≠x

µ
D0´

≠N
≠x

∂
. (3b)

Here, the notation is that of Refs. [6,13]. The tempor
evolution of N at various radii during a power ramp is
shown in Fig. 3. A radially local discontinuity indNydt
clearly occurs at progressively increasing radii, th
indicating a local gradient transition which propagate
outward in radius as the power input rate is increase
This phenomenon has subsequently been identified
NCS discharge of DIII-D. The ultimate location of the
transition front is determined by the input strength and t
slope of the prelude phase hill of theGsx, Nd surface, as
predicted in the previous paragraph.

The simplest possible model of ERS dischargedynam-
ics is that defined by the nonlinear transport equati
with bi-stable flux functionGsx, Nd, so that ≠ny≠t ­
2≠Gsx, Ndy≠x. Here,Gsx, Nd is s shaped at constantx,
as are cross sections of Fig. 2(a). Note that this discuss
does not assume the specific functional form ofG used in
Eq. (1). Then, the transport barrier foot-point location
1474
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FIG. 3. Time histories of the pressure gradient at differen
radial locations during a power ramp.

given by,std, wherex , ,std is the core region of colli-
sional transportsD ­ Dnd and x . ,std is the region of
anomalous transportsD ­ Dad. The transport bifurcation
occurs in a narrow layer about,std. The trajectory his-
tory of ,std is determined by the matching conditions for
the bi-stable transport bifurcation problem, which requir
continuity of density and particle flux, and also impose
condition akin to the Maxwell construction, familiar from
phase equilibrium theory. The latter is obtained by multi
plying the transport equation byn and integrating through
the bifurcation front layer (of thicknessd), yielding

N GsNdj,
1

,2
­

Z N1

N2

dN GsNd (4)

for a stationary state. Note that Eq. (4) is satisfied b
a unique value ofG, corresponding to transition from
profile gradientN2 to N1 at ,. This value is hereafter
referred to asGM . Then the matching conditions are
then justG,2

­ G,1
­ GM , ns,2d ­ ns,1d, and Eq. (4).

Additional (edge) boundary conditions arensad ­ 0 and
G0 ­ 2Dneo≠ny≠x (G0 is the flux from the core, assum-
ing central deposition). Inspection of the resulting dif-
fusion problem reveals that one cannot simultaneous
satisfy the matching criteria atx ­ , and the bound-
ary conditions atx ­ 0, x ­ a unlessG0 ­ GM . Thus,
GM determines the particle fueling rate (more generally
power) required to sustain a stationary transport barrie
with foot at x ­ ,. Of course, the slope of the prelude
phase hill determinesGM and thus the ultimate station-
ary value of,. For G0 . GM , ,std will increase and the
core N will steepen, until limited by other physical pro-
cesses (i.e., stability to “infernal” modes [16]). When
G0 / GM , so that ,Ù, , Dneo, approximate solution of
the time-dependent, nonlinear evolution problem for,std
yields

,std >
∑µ

G0 2 GM

GM

∂ µ
DaDn

Da 2 Dn

∂
t

∏1y2

>
µ

G0 2 GM

GM

∂1y2

Dnt1y2. (5)

Thus, the transport barrier foot-point position,std in-
creases diffusively atDn. More generally,,std evolves
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according to,std , fsP 2 PcrityPcritdg1y2sDntd1y2, where
Pcrit is the local power threshold for a transport bifurca-
tion. These results are qualitatively consistent with tho
shown in Figs. 3(a) and 3(b). Further discussion and d
tails of this derivation are given in Ref. [17].

The major quantitative question pertinent to describin
the ERSyNCS transition is that of predicting the profile
threshold required to trigger the bifurcation. In thi
simple model, the electric field shear is determine
primarily by the density gradient, so the relevant thresho
parameter isF, the particle input rate (i.e.,Piny [ b ,
where[ b is the energy per beam particle). In toroida
geometry [18], theE 3 B shear suppression criterion is
vs ­ sDc0yDfd≠y≠c fscEryRBudg . Dvk , wherec is
the flux coordinate andDvk is the turbulent decorrelation
rate. Here,Df is the toroidal correlation angle,Dc0 ­
RBuDr0, where Dr0 is the radial correlation length of
the turbulence. Using radial force balance (assuming=n
controlsE0

r) and particle balance with the assumption o
gyro-Bohm particle diffusion then yields the threshol
criterion

Fscd
Ascd

^ knl sr2
s csyDr2

0 d
ksRBud3fsudl
kRBul sRBud2

3

µ
Te

Ti

∂2µDv

vpe

∂2

k̄
. (6)

HereAscd is the surface area defined byc . Note that the
radial force balance and particle balance equations us
to calculateEr necessarily involve flux surface average
quantities, which thus propagate into Eq. (6). Howeve
vE itself is not a flux function and the shear suppres
sion criterion isnot a flux surface averaged criterion. The
factor sRBud22 indicates an in-out asymmetry of the tran
sition threshold, which is more strongly favorable with
increasing Shafranov shift, and thesTeyTid2 factor arises
from the presumption of collisionless trapped electro
modes (CTEM) as the ambient turbulence of the pr
lude discharge.fsud is a dimensionless poloidal profile
factor of order unity, andF is the rate of particle deposi-
tion within c for monotonically decreasing particle depo
sition profile. The most interesting features of Eq. (6) a
its prediction of favorable dependence ofF on Ti [via
sTeyTid2], and on strong in-out asymmetry (i.e., lowe
threshold for larger Shafranov shift). TakingDvk , gk

(in lieu of Dvk measurements or calculations) and notin
that the growth rate for CTEM scales as expf2RyLng re-
veals thatFyAscd decreases with increasing target densi
profile peakedness. In particular, transition appears ea
est in hot ion, highbr discharges with lowBu, low cur-
rent, and low density. Thus, hot ion mode plasmas su
as super-shots appear to be optimal prelude discharg
Note also that the transition criterion appears naturally
an input-per-area threshold for local transition, assumi
central fueling.

The simplest model presented here requires significa
augmentation prior to use in predictive modeling. Speci
cally, ion temperature, toroidal and poloidal velocity, an
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current must be self-consistently evolved in shaped tok
mak geometry. The target plasma profile dependen
of the deposition function must be accounted for [i.e
S ­ SsN , xyDdd]. A partially augmented model, which
evolves transport equations forn, Ti , Te, and´ has already
been developed. Solution of this model for TFTR param
eters (BT ­ 4.7 T, R ­ 250 cm, a ­ 82 cm, andDd >
0.2a) predicts an ERS transition atPcrit > 17 MW, in
good agreement with experimental results. In this cas
the reversal radius was located at 0.35a and on-axis pa-
rameters ofTi ­ 24 KeV andn ­ 5 3 1014 cm23 were
calculated. These results are also in good agreement w
experiment. It is interesting to note that while the ini-
tial transition location and behavior are sensitive to loca
growth rates and local gradients inqsrd and power depo-
sition, the global transition dynamics appear remarkab
robust. These (and further) extensions of the model w
be discussed in future publications.
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