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We give the exact low-density coefficients of the large-distance algebraic tails of static correlations
in quantum plasmas. Quantum statistics is taken into account, and the interaction is the pure Coulomb
potential without any regularization. The low-density expansions, valid in regimes of weak coupling
and low degeneracy, are obtained by using a path-integral formalism at finite temperature. Applications
to the hydrogen plasma in the Sun and to the charge-carrier gas in germanium are given. The interplay
with classical Debye screening is discussed. [S0031-9007(97)02472-1]
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In astrophysics or in laboratory physics, matter ca
often be considered as a fluid of nonrelativistic qua
tum point charges (for instance, nuclei and electrons) w
Coulomb interactioneaegyr between two chargesea and
eg separated by a distancer (a and g are species in-
dices). Contrary to the common belief according to whic
Coulomb screening always leads to exponential clust
ing—as it is the case in the classical regime, in the sem
classical Thomas-Fermi model or in the quantum rando
phase approximation (RPA)—the existence of algebra
tails in the static correlations of quantum plasmas h
been gradually displayed. After the first doubts raise
about exponential screening of external charges [1,2]
h̄ expansion of the internal correlations about their cla
sical values was produced for a multicomponent plasm
[3,4] in the Maxwell-Boltzmann (MB) approximation and
with a Coulomb potential regularized at short distanc
in order to prevent the classical collapse of charges w
opposite signs. (The latter can be avoided only by ta
ing into account the Fermi statistics for a system whe
all negative andyor positive charges are fermions [5].
The MB particle-particle correlations fall off as1yr6 with
a coefficient starting at the order̄h4. More recently, in
the framework of a path-integral “loop” formalism, which
takes into account the quantum statistics (Bose or Ferm
and deals with the pure1yr Coulomb potential [6], with-
out any regularization at short distances, it was show
that after exact resummation of the long-range tail of th
Coulomb interaction the truncated two-body distributio
function rT

agsrd (called correlation in the following) de-
cays asAagyr6 in real matter [7]. In fact, the argumen
is perturbative in the sense that it relies on a term-by-te
analysis of an expansion with respect to some auxilia
parameter “density of loop.” (In the standard many-bod
perturbation theory using Feynman diagrams at finite te
perature, such a general analysis seems not to be poss
as explained in Ref. [6]; hints that some corrections to t
RPA diagrams induce algebraic tails in correlations ha
been exhibited only for the very special model of the on
component plasma with a neutralizing background [8
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However, as it will be accounted for in a future extended
paper, low-density expansions for real multicomponen
plasmas can be devised from the general loop formalism
valid at any density. Thus the conclusions of Ref. [7] are
strengthened by exact analytical results in the low-densit
regime— such results are not available in other quantum
situations at the moment —and the existence of the alge
braic tails of correlations is settled as follows.

In this Letter, we present the exact analytical low-
density limit for the coefficients of the algebraic tails
Aagyr6, Bayr8, and Cyr10 for the particle-particle,
particle-charge, and charge-charge correlations,rT

agsrd,P
a earT

agsrd, and
P

a,g eaegrT
agsrd, respectively. The

coefficient of the 1yr8 falloff of the induced charge
density derived from the linear response theory is als
given. These results hold for real plasmas, with quantum
statistics and no modelization of the Coulomb interaction
in regimes of low degeneracy and weak coupling a
finite temperature. By producing the above low-density
coefficients, we settle the existence of the algebraic tail
from the theoretical point of view. Numerical estimations
are made for the core of the Sun and the charge carrie
in an intrinsic semiconductor, because these systems me
the required conditions for the validity of the low-density
limit. Though the effect is quantitatively small within a
large range of distances in these situations, its existence
qualitatively important, in principle, because it determines
the effective interactions between charges. The effec
might turn out to be observable in some future, more
refined experiments involving correlations, perhaps in
plasmas in stronger quantum conditions, such as electro
in metals, but the calculation of the coefficients of the
algebraic tails in these systems is far beyond the scope
the present paper.

Another point of the Letter is to exemplify how low-
density expansions give a flavor of the subtle mechanism
at stake and their interplay with the fast classical screen
ing usually taken for granted. The origin of the alge-
braic tails, namely, the absence of exponential screenin
for the quantum fluctuations of the dipolar interaction
© 1997 The American Physical Society
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between charges surrounded by their polarization clouds
sketched in the path-integral formalism. We exhibit how
at the first 2 orders in density, the above cascade of pow
laws (when summing over charges) is determined by t
basic rules of classical screening in macroscopic elect
statics, which are themselves entirely enforced by the D
bye contribution. (The mechanisms are similar but mo
complex at higher orders in density.)

The derivation of low-density expansions, which i
based on a scaling analysis of resummed Mayer bonds
similar to that used in Ref. [9]. We have checked that
allows one to retrieve the virial expansion of the pressu
for a quantum multicomponent plasma up to orderr5y2

given in [10] and derived in [9,11]. r generically
denotes the densities, and half-integer powers arise fr
the Debye scalek21

D , wherek
2
D ; 4pb

P
a e2

ara . For
particles with chargeea (eg) and massma (mg), the
explicit values of the algebraic tails at the first order i
density are

rT
agsrd ,

r!`

1
r6

b4h̄4

240
rarg

3
X
a0

e2
a0

ma0

∑
da,a0 2

4pbeaea0ra0

k
2
D

∏
3

X
g0

e2
g0

mg0

∑
dg,g0 2

4pbegeg0 rg0

k
2
D

∏
, (1)

X
g

egrT
agsrd ,

r!`
2

1
r8

b4h̄4

8
ra

k
2
D

"X
g

e3
grg

mg

#

3
X
a0

e2
a0

ma0

∑
da,a0 2

4pbeaea0ra0

k
2
D

∏
,

(2)

X
a,g

eaegrT
agsrd ,

r!`

1
r10

7b4h̄4 1

k
4
D

"X
g

e3
grg

mg

#2

. (3)

In the zero-density limit, the coefficient of the charge
charge correlation does not vanish. This reflects the f
that the results obtained in the limit of an infinitely dilute
plasma do not coincide with the calculations performe
for particles in the vacuum, where no screening effe
takes place. Moreover, according to the linear respon
theory, the induced charge density

P
g egrind

g sr; dqd in
the presence of an infinitesimal external chargedq decays
as1yr8 [7] as the particle-charge correlation. At the firs
order in density, we getP

g egrind
g sr; dqd
dq

,
r!`

1
r8

pb5h̄4

2
1

k
4
D

"X
g

e3
grg

mg

#2

.

(4)
Comparison of (4) with the linear term with respect t
the given chargeea in (2) shows that the algebraic tails
satisfy the more general relation, valid at any distance a
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for any finite chargeea,

lim
ra!0

P
g egrT

agsrd
ra


X
g

egrind
g sr ; ead

Ç
ra0

. (5)

This relation states that in the limit where one speciesa

becomes more and more dilute, so that it disappears fr
the plasma, the charge density induced by one chargeea

can be retrieved from the particle-charge correlation.
We notice that in the case of a two-component plasm

of chargese1 and e2, with massesm1 and m2, the
coefficientsAsnd

ag of the 1yr6 tail of the particle-particle
correlations at the orderrn, with n  2, 5y2, are positive
and the corresponding effective interaction is attracti
whatever the signs of the charges. Moreover, the
coefficients satisfy the relation

A
snd
11

r
2
1


Asnd

2

r2
2


A

snd
12

r1r2

. (6)

The peculiar identity (6) is due to a classical contrib
tion in the screening of every quantum charge by the s
rounding plasma. It is no longer satisfied at higher orde
in density,n $ 3, because then quantum dynamical an
statistical effects are involved and destroy the symme
between the various species of particles. At the orderr2,

rT
agsrd ,

r!`

rarg

r6

b4h̄4

240

µ
e1e2

e1 1 je2j

∂2∑ e1

m1

1
je2j

m2

∏2

.

(7)
If e1  2e2 ; e, the local neutrality implies that
r1  r2 ; r and the tail (7) is equal tor2sjDyrd6

times s9y320dG5sl2yad4f1 1 sm2ym1dg2, where jD ;
k

21
D is the Debye length,l2 is the de Broglie ther-

mal wavelength of the negative charges,l2 ;p
bh̄2ym2, a is the mean interparticle distance an

G ; be2ya  s1y3d sayjDd2 is the coupling constant.
The formula (7) can be applied to the core of the Sun.

a first approximation, the latter can be seen as a hydro
plasma almost fully ionized by pressure and temperatu
with a mass densityrm , 160 gycm3 at temperatureT ,
1.5 107 K. Thusa , 0.1 Å , the system is rather weakly
degenerated,l2ya , 0.7, and weakly coupled,G , 0.1.
The contribution from the algebraic tail (7) becomes
large as the classical Debye-Hückel contribution,

rT D
ag srd  2rargbeaeg

e2ryjD

r
, (8)

at a crossover distancerp , 31 jD. Thus the algebraic tail
appears only at very large distances compared with the
bye screening length; at intermediate distances, the De
approximation is valid, while at short distances, quantu
contributions become predominant. (In particular, qua
tum dynamics prevents the collapse of two charges w
opposite signs, while quantum statistics arises for partic
of the same species.) In fact, both Debye and excha
effects in the correlations are important for the thermod
namics, and the low-density equation of state [10], al
1465
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retrieved from the present formalism, describes succe
fully the core of the Sun [12]. Another class of system
to be investigated is that of solid state physics. The d
main of applicability of the formulas given in the presen
Letter is that of intrinsic semiconductors, where the charg
carrier gas (electrons and holes) is indeed at finite tempe
ture and weakly degenerated as well as weakly couple
For instance, in germanium, where the mass of holes
equal to that of electrons,a , 1530 Å, T , 300 K, so that
l2ya , 0.01, G , 0.4, andrp , 43 jD . A clear experi-
mental evidence of the static tails is still to be found, mayb
in semiconductors with stronger degeneracy and strong
coupling, whererp would be of the same order asjD and
the attractive effective interaction (6) might play a role.

At a more technical level, we briefly summarize how
path-integral formalism allows one to show the following
two points. First, contrary to classical fluctuations whic
are exponentially screened, equilibrium quantum fluctu
ations induce algebraic tails in the static correlations. Se
ond, at the first 2 orders in density, these tails redu
to the square of some kind of screened dipolar potent
between quantum fluctuations of the charges surround
by their polarization clouds. On one hand, thanks to th
Feynman-Kac formula, the quantum Gibbs factor in po
sition representation is given by a path integral and th
quantum fluctuations of particles at the inverse temper
ture b can be described in terms of loops with random
shapes. Indeed, a particle at positionr that is not ex-
changed with any other one in a given density-matr
element is associated with one closed pathr 1 laj ssd,
wherela is the de Broglie thermal length of speciesa

and j ssd (with 0 # s # 1) is a dimensionless Brown-
ian bridge,j ss  0d  j ss  1d  0, with a normalized
Gaussian measure. On the other hand,p particles that
are exchanged with one another under a cyclic permu
tion correspond to open paths which can be collected in
a closed loop. The internal degrees of freedom of th
latter are the speciesa of the involved particles, the “ex-
change degeneracy”p, and the shape of the curve formed
by the positions of thep particles and the Brownian
paths that link them together. The grand partition func
tion of the system of quantum point charges with quan
tum statistics, and which interact through the Coulom
potential, is equal to that of a gas of classical loop
with Maxwell-Boltzmann statistics, and which interact via
some two-body potential of Coulomb type [6,13]. (Se
also Ref. [14] for a brief account). The quantum Hamil
tonian does not involve the spins, and the latter only co
tribute to degeneracy factors in the loop fugacities. Th
interaction between loops couples only curve elemen
with abscissas that are equal up to an integer, so th
it does not coincide with the electrostatic potential be
tween charged wires, except for its monopole-monopo
and monopole-multipole parts. Thus, after exact resum
mations [6], the large-distance1yr and 1yr2 tails of the
loop interaction are exponentially screened, whereas the
1466
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appears a partially (not exponentially) screened dipol
potential y

dip
ag . As shown in Ref. [7], after integration

over quantum fluctuations, rotational invariance and th
harmonicity of the function1yr eventually lead to an1yr6

decay for the particle-particle correlations at any densit
At the first order in density, only loops with exchange de
generacyp equal to1 do contribute,

ydip
ag sr, j , j 0d  2eaeg

Z 1

0
ds

Z 1

0
ds0fdss 2 s0d 2 1g

3 flaj ssd ? ===g
£
lgj 0ss0d ? ===

§ µ
1
r

∂
,

(9)

while the exact value of the tailsAagyr6, Bayr8, and
Cyr10 turn out to coincide, after proper summation ove
charges, with the algebraic tail of the convolutionX

a0 ,g0

Z
dx

Z
dy SD

aa0sxdga0g0 sr 1 y 2 xdSD
g0gsyd . (10)

In (10) a0 and g0 run from 1 to the number of species,
and

ga0g0 srd ;
Z

Dsj1d
Z

Dsj2d
b2

2
fydip

a0g0 sr, j1, j2dg2 (11)

is an effective squared dipolar potential. The structu
factor SD

agsr 2 r0d ; ra da,gdsr 2 r0d 1 rTD
ag sjr 2

r0jd involves the short-ranged classical Debye correlatio
(8). The latter correlation, calculated in a linearize
approximation, is well defined for particles with pure
Coulomb interaction, whereas the total classical corr
lation for point particles is not, because of the collaps
between charges with opposite signs. We notice th
according to Eq. (5.12) of Ref. [4], where the quantum
correlations are calculated with MB statistics and
Coulomb potential regularized at the origin, the term o
order h̄4 in the large-distance behavior of the approxi
mate MB correlation reduces to (10) when the classic
correlations between particles with short-ranged repulsi
in Eq. (5.12) are replaced by the Debye correlations (8
The systematic analysis of our diagrammatics show
that the exact algebraic tails at the next order in dens
behave, after adequate summation over charges, as
decay of the convolution (10) only renormalized by
factor of orderr1y2. The latter half-integer power arises
from integrals scaled by the Debye length.

We stress that the algebraic decays of the correlatio
are compatible with the basic screening laws, accordin
to which the polarization cloud around either an interna
or an infinitesimal external charge exactly compensat
this charge. In the classical case, multicomponent pla
mas with a Coulomb potential regularized at the origi
obey these laws, because the classical Debye correlat
saturates the corresponding sum rules,Z

dr
X
g

egSD
agsrd  0 , (12)
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Z
dr
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6

X
a,g

eaegSD
agsrd  2

1
4pb

, (13)

where (13) is the so-called Stillinger-Lovett sum rul
[15]. An argument, which involves a decompositio
of the classical correlation into the sum of the Deby
correlation and a convolution analogous to (10), with
fast decaying function in place ofgag, is given in Sec. IV
of Ref. [7] (where the repulsive core potential was omitte
in the notations). At the quantum level, a generalizatio
of this argument exists: there still exists some memo
of the classical exponential screening of macroscop
electrostatics which ensures the basic screening laws [7

Moreover, the above memory of classical screening
also responsible for the cascade of inverse power law
1yr6, 1yr8, 1yr10, in the decays of the particle-particle
particle-charge, and charge-charge correlations, at a
order in density [7]. In fact, we show that at the firs
2 orders in density the cascade is enforced only by t
classical screening rules entirely satisfied by the Deb
contribution. At the first 2 orders in density, the leadin
algebraic tails are given by the convolution (10), with
renormalized factor at the second order in density. Sin
SD

ag is short ranged, the falloff of the particle-particle
correlationrT

agsrd arises fromX
a0,g0

∑Z
dx SD

aa0sxd
∏ ∑Z

dy SD
g0gsyd

∏
ga0g0srd , (14)

while, according to (12) and (13) and the identitR
dr r

P
g egSD

agsrd  0, the decay of the particle-charge
correlation

P
g egrT

agsrd is given byX
a0,g0

∑Z
dx SD

aa0sxd
∏ 24Z

dy
jy j2

6

X
g

egSD
g0gsyd

35
3 Dga0g0 srd , (15)

and the 1yr10 tail of the charge-charge correlationP
a,g eaegrT

agsrd results fromX
a0,g0

"Z
dx

jxj2

6

X
a

eaSD
aa0sxd

#

3

24Z
dy

jyj2

6

X
g

egSD
g0gsyd

35DDga0g0 srd . (16)

By taking into accountDs1yr6d  30yr8 andDs1yr8d 
56yr10, together with (8) and (13), we get the tails (1)
(3), which indeed satisfy

P
g egAag  0 and

P
a eaBa 

0, in accordance with the general cascade of power law
In conclusion, we briefly discuss the coefficientAag

of the algebraic decay of the particle-particle correlatio
at higher orders in density. Half-integer powers of th
density appear, because the quantum contributions
partially screened by classical collective effects at lar
distances, and the latter are scaled by the Debye leng
Contrary to the terms of orderr2 and r5y2, which
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are purely proportional toh̄4, the term of orderr3

involves two kinds of terms. The terms of the first
kind are proportional toh̄4 arising from one squared
dipolar potential fydip

ag g2 times a function which has
essential singularities when̄h goes to zero, because it
involves the contributions from exchange phenomen
and from quantum dynamical effects (bare—bound an
scattering—two-body states). The terms of the secon
kind are proportional toh̄6 either because they involve
one fydip

ag g2 multiplied by a screened “diffraction”h̄2

correction due to the long range of the Coulomb potentia
or because they result from the product of oney

dip
ag with

a convolution of twoy
dip
ag ’s. Eventually, at the orderr2

and r5y2, the leading algebraic decays arise only from
the squared fluctuations of one dipolar interaction, an
the coefficients of these tails are entirely determined b
free quantum dynamics, Maxwell-Boltzmann statistics
and classical screening; however, from the orderr3 on,
the mechanisms are more intricate and contributions fro
quantum dynamics and statistics of interacting charge
emerge in the coefficients of the algebraic decays.
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